JP7020446B2 - High-strength steel plate - Google Patents

High-strength steel plate Download PDF

Info

Publication number
JP7020446B2
JP7020446B2 JP2019062706A JP2019062706A JP7020446B2 JP 7020446 B2 JP7020446 B2 JP 7020446B2 JP 2019062706 A JP2019062706 A JP 2019062706A JP 2019062706 A JP2019062706 A JP 2019062706A JP 7020446 B2 JP7020446 B2 JP 7020446B2
Authority
JP
Japan
Prior art keywords
steel sheet
alloy layer
less
mass
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019062706A
Other languages
Japanese (ja)
Other versions
JP2020158874A (en
Inventor
隼人 竹山
謙太郎 秦
武士 松田
和明 土本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2019062706A priority Critical patent/JP7020446B2/en
Publication of JP2020158874A publication Critical patent/JP2020158874A/en
Application granted granted Critical
Publication of JP7020446B2 publication Critical patent/JP7020446B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

本発明は、耐遅れ破壊性に優れた高強度鋼板に関するものであり、詳細には、主として自動車、建材用の強度部材に好適な鋼板であって、耐遅れ破壊性と耐食性に優れ、好ましくは引張強度1180MPa以上を有する高強度鋼板に関するものである。 The present invention relates to a high-strength steel sheet having excellent delayed fracture resistance, and more specifically, a steel sheet suitable mainly for strength members for automobiles and building materials, and has excellent delayed fracture resistance and corrosion resistance, preferably. The present invention relates to a high-strength steel sheet having a tensile strength of 1180 MPa or more.

従来、自動車用鋼板としては、耐食性に関する要求から亜鉛めっき鋼板が多く用いられている。具体的には、亜鉛の犠牲防食作用により、鋼板の塗装後耐食性を著しく向上させることができるため、亜鉛めっき鋼板が自動車用鋼板として多く用いられている。一方、近年、自動車のCO排出量の低減および安全性確保の観点から、自動車用鋼板の高強度化が図られている。 Conventionally, galvanized steel sheets are often used as steel sheets for automobiles because of the requirement for corrosion resistance. Specifically, galvanized steel sheets are often used as steel sheets for automobiles because the sacrificial anticorrosion action of zinc can significantly improve the corrosion resistance of steel sheets after painting. On the other hand, in recent years, from the viewpoint of reducing CO 2 emissions of automobiles and ensuring safety, the strength of steel sheets for automobiles has been increased.

しかしながら、鋼材の強度を高めていくと、遅れ破壊という現象が生じやすくなることが知られており、この遅れ破壊は鋼材強度の増大とともに激しくなり、特に引張強度1180MPa以上の高強度鋼で顕著となる。なお、遅れ破壊とは、高強度鋼材が静的な負荷応力(引張り強さ以下の負荷応力)を受けた状態で、ある時間が経過したとき、外見上はほとんど塑性変形を伴うことなく、突然脆性的な破壊が生じる現象である。 However, it is known that when the strength of steel is increased, a phenomenon called delayed fracture is likely to occur, and this delayed fracture becomes more severe as the strength of steel increases, especially in high-strength steel with a tensile strength of 1180 MPa or more. Become. In addition, delayed fracture is a state in which a high-strength steel material is subjected to static load stress (load stress less than the tensile strength), and when a certain period of time elapses, it appears suddenly with almost no plastic deformation. This is a phenomenon in which brittle fracture occurs.

この遅れ破壊は、鋼板の場合、プレス加工により所定の形状に成形したときの残留応力と、応力集中部における鋼の水素脆性により生じるものであることが知られている。この水素脆性の原因となる水素は、ほとんどの場合、外部環境から鋼中に侵入し、拡散した水素であると考えられており、代表的には、鋼板の腐食の際に発生した水素が鋼中に侵入し、拡散したものである。一般に、亜鉛めっき鋼板は冷延鋼板より腐食時の水素侵入量が多く、遅れ破壊を生じやすい。 It is known that this delayed fracture is caused by the residual stress when the steel sheet is formed into a predetermined shape by press working and the hydrogen embrittlement of the steel in the stress concentration portion. In most cases, the hydrogen that causes this hydrogen embrittlement is thought to be hydrogen that has penetrated into the steel from the external environment and diffused, and typically, the hydrogen generated during the corrosion of the steel sheet is the steel. It has invaded and spread inside. In general, galvanized steel sheets have a larger amount of hydrogen penetration during corrosion than cold-rolled steel sheets, and are prone to delayed fracture.

高強度鋼板におけるこのような遅れ破壊を防止するために、例えば、特許文献1では、鋼板の組織や成分を調整することにより、遅れ破壊感受性を弱める検討がなされている。また、特許文献2では、遅れ破壊を防止する高強度溶融亜鉛めっき鋼板に関する検討がなされている。 In order to prevent such delayed fracture in a high-strength steel sheet, for example, in Patent Document 1, studies have been made to reduce the delayed fracture sensitivity by adjusting the structure and composition of the steel sheet. Further, in Patent Document 2, a study has been made on a high-strength hot-dip galvanized steel sheet that prevents delayed fracture.

特開2004-231992号公報Japanese Unexamined Patent Publication No. 2004-231992 特開平6-145893号公報Japanese Unexamined Patent Publication No. 6-145893

しかし、特許文献1の手法では、外部環境から鋼板内部に侵入する水素量は変化しないため、遅れ破壊の発生を遅らせることは可能であっても、遅れ破壊自体を防止することはできない。また、特許文献2の手法で、鋼成分組成と微細組織構成を調整しても、十分な耐遅れ破壊性はまだ得られていなかった。
このように、耐食性と耐遅れ破壊性の双方に優れた高強度鋼板の技術の確立は十分であるとはまだ言えなかった。
However, in the method of Patent Document 1, since the amount of hydrogen invading the inside of the steel sheet from the external environment does not change, it is possible to delay the occurrence of delayed fracture, but it is not possible to prevent delayed fracture itself. Further, even if the steel composition and the microstructure are adjusted by the method of Patent Document 2, sufficient delayed fracture resistance has not yet been obtained.
As described above, it cannot be said that the technology for high-strength steel sheets having excellent corrosion resistance and delayed fracture resistance has been sufficiently established.

したがって本発明の目的は、以上のような従来技術の課題を解決し、主として自動車、建材用の強度部材に好適な高強度鋼板であって、耐遅れ破壊性と耐食性に優れた高強度鋼板を提供することにある。 Therefore, an object of the present invention is to solve the above-mentioned problems of the prior art and to obtain a high-strength steel plate which is mainly suitable for strength members for automobiles and building materials and has excellent delayed fracture resistance and corrosion resistance. To provide.

本発明者らは、上記の課題を解決すべく、鋼板内部に侵入する水素を抑制することにより遅れ破壊を防止する手段について、鋭意検討および研究を重ねた。その結果、下地鋼板表面を、特定の被覆量とMn濃度を有するZn-Mn合金層で被覆することにより、鋼板内部への水素侵入を大幅に抑制して鋼板の遅れ破壊を防止することができ、しかも優れた耐食性も得られることを見出した。 In order to solve the above problems, the present inventors have diligently studied and studied means for preventing delayed fracture by suppressing hydrogen invading the inside of the steel sheet. As a result, by coating the surface of the base steel sheet with a Zn—Mn alloy layer having a specific coating amount and Mn concentration, it is possible to significantly suppress hydrogen intrusion into the inside of the steel sheet and prevent delayed fracture of the steel sheet. Moreover, it was found that excellent corrosion resistance can also be obtained.

本発明はこのような知見に基づきなされたもので、以下を要旨とするものである。
[1]引張強度が1180MPa以上である下地鋼板と、該下地鋼板表面に被覆されたZn-Mn合金層と、を有し、
前記Zn-Mn合金層は、被覆量が0.10g/m以上90g/m未満であり、
且つ前記Zn-Mn合金層中のMn濃度が5質量%以上50質量%未満であることを特徴とする高強度鋼板。
[2]前記Zn-Mn合金層の被覆量が20g/m以上90g/m未満であることを特徴とする前記[1]に記載の高強度鋼板。
[3]前記Mn濃度が10質量%以上30質量%以下であることを特徴とする前記[1]又は[2]に記載の高強度鋼板。
[4]前記下地鋼板が、質量%で、C:0.03~0.4%、Si:0.01~3.00%、Mn:0.5~3.0%、P:0.05%以下、S:0.005%以下、Al:0.001~1.500%、N:0.005%以下、Cu:0.05~1.00%、およびB:0.001~0.005%を含有し、更に、Nb:0.005~0.050%、Ti:0.005~0.080%、V:0~0.5%、Mo:0.05~1.00%、Cr:0.001~1.000%、およびNi:0.05~1.00%のうちから選ばれる1種又は2種以上を含有し、残部がFeおよび不可避的不純物である成分組成を有することを特徴とする前記[1]~[3]のいずれかに記載の高強度鋼板。
The present invention has been made based on such findings, and the gist thereof is as follows.
[1] It has a base steel sheet having a tensile strength of 1180 MPa or more and a Zn—Mn alloy layer coated on the surface of the base steel sheet.
The Zn—Mn alloy layer has a coating amount of 0.10 g / m 2 or more and less than 90 g / m 2 .
Moreover, a high-strength steel plate having a Mn concentration of 5% by mass or more and less than 50% by mass in the Zn—Mn alloy layer.
[2] The high-strength steel plate according to the above [1], wherein the coating amount of the Zn—Mn alloy layer is 20 g / m 2 or more and less than 90 g / m 2 .
[3] The high-strength steel plate according to the above [1] or [2], wherein the Mn concentration is 10% by mass or more and 30% by mass or less.
[4] The base steel plate is C: 0.03 to 0.4%, Si: 0.01 to 3.00%, Mn: 0.5 to 3.0%, P: 0.05 in mass%. % Or less, S: 0.005% or less, Al: 0.001 to 1.500%, N: 0.005% or less, Cu: 0.05 to 1.00%, and B: 0.001 to 0. It contains 005%, and further, Nb: 0.005 to 0.050%, Ti: 0.005 to 0.080%, V: 0 to 0.5%, Mo: 0.05 to 1.00%, It contains one or more selected from Cr: 0.001 to 1.000% and Ni: 0.05 to 1.00%, and has a component composition in which the balance is Fe and unavoidable impurities. The high-strength steel plate according to any one of the above [1] to [3].

本発明の高強度鋼板は、遅れ破壊が効果的に抑制される優れた耐遅れ破壊性を有するとともに、優れた耐食性を有する。本発明の高強度鋼板は、自動車、建材用の強度部材に好適に用いられる。 The high-strength steel plate of the present invention has excellent delayed fracture resistance in which delayed fracture is effectively suppressed, and also has excellent corrosion resistance. The high-strength steel plate of the present invention is suitably used as a strength member for automobiles and building materials.

実施例で用いた遅れ破壊評価用試験片を模式的に示す図面である。It is a figure which shows typically the test piece for delayed fracture evaluation used in an Example. 実施例において行った複合サイクル腐食試験の工程を示す説明図である。It is explanatory drawing which shows the process of the composite cycle corrosion test performed in an Example.

本発明の高強度鋼板は、引張強度が1180MPa以上である下地鋼板と、該下地鋼板表面に被覆されたZn-Mn合金層とを有し、Zn-Mn合金層は、被覆量が0.10g/m以上90g/m未満であり、且つZn-Mn合金層中のMn濃度が5質量%以上50質量%未満であることを特徴とし、耐遅れ破壊性と耐食性とに優れる。 The high-strength steel sheet of the present invention has a base steel sheet having a tensile strength of 1180 MPa or more and a Zn—Mn alloy layer coated on the surface of the base steel sheet, and the Zn—Mn alloy layer has a coating amount of 0.10 g. It is characterized in that it is at least / m 2 and less than 90 g / m 2 , and the Mn concentration in the Zn—Mn alloy layer is 5% by mass or more and less than 50% by mass, and is excellent in delayed fracture resistance and corrosion resistance.

本発明の高強度鋼板の基質となる鋼板(下地鋼板)は、引張強度が1180MPa以上の鋼板であり、1340MPa以上であることが好ましい。
遅れ破壊は、鋼中に侵入した水素が応力集中部に拡散したり、濃化したりして、脆化を引き起こすことで発生するため、鋼の強度に依存する。すなわち、引張強度が低い鋼板では、本質的に遅れ破壊が生じにくい。よって、本発明の効果は、引張強度が低い鋼板でも得られるが、引張強度が1180MPa以上の鋼板で顕著に発現され、引張強度が1340MPa以上の鋼板でより顕著に発現される。
The steel sheet (base steel sheet) used as a substrate for the high-strength steel sheet of the present invention is a steel sheet having a tensile strength of 1180 MPa or more, preferably 1340 MPa or more.
Delayed fracture occurs when hydrogen that has entered the steel diffuses or thickens in the stress concentration area, causing embrittlement, and thus depends on the strength of the steel. That is, a steel sheet having a low tensile strength is essentially less likely to undergo delayed fracture. Therefore, the effect of the present invention can be obtained even in a steel sheet having a low tensile strength, but it is remarkably exhibited in a steel sheet having a tensile strength of 1180 MPa or more, and more remarkably in a steel sheet having a tensile strength of 1340 MPa or more.

なお、上記の引張強度は、JIS Z 2241(2011年)に準拠して測定できる。 The above tensile strength can be measured in accordance with JIS Z 2241 (2011).

下地鋼板の成分組成および鋼組織は、特に限定されない。また、圧延方法などについても特に限定されず、熱延鋼板、冷延鋼板のいずれを下地鋼板として用いてもよい。これらのうち、鋼板が自動車分野や建材分野などにおいて用いられること、特には、自動車分野において多く用いられることを鑑みると、冷延鋼板を用いることが好ましい。すなわち、本発明の下地鋼板は、引張強度が1180MPa以上である高強度冷延鋼板が好ましく、引張強度が1340MPa以上の高強度冷延鋼板がさらに好ましい。 The composition and steel structure of the base steel sheet are not particularly limited. Further, the rolling method and the like are not particularly limited, and either a hot-rolled steel sheet or a cold-rolled steel sheet may be used as the base steel sheet. Of these, cold-rolled steel sheets are preferably used in view of the fact that steel sheets are used in the fields of automobiles and building materials, and in particular, they are often used in the fields of automobiles. That is, the base steel sheet of the present invention is preferably a high-strength cold-rolled steel sheet having a tensile strength of 1180 MPa or more, and more preferably a high-strength cold-rolled steel sheet having a tensile strength of 1340 MPa or more.

本発明において好ましく用いられる下地鋼板は、所望の引張強度を有するものであれば、いかなる成分組成および鋼組織を有するものでもよく、機械特性などの諸特性を向上させるために、例えば、C、Nなどの侵入型固溶元素やSi、Mn、P、Crなどの置換型固溶元素の添加による固溶体強化、Ti、Nb、V、Alなどの炭・窒化物による析出強化、W、Zr、Hf、Co、B、Cu、希土類元素などの強化元素の添加といった化学組成的改質、再結晶の起こらない温度で回復焼きなましすることによる強化あるいは完全に再結晶させずに未再結晶領域を残す部分再結晶強化、ベイナイトやマルテンサイト単相化あるいはフェライトとこれら変態組織の複合組織化といった変態組織による強化、フェライト粒径をdとしたときのHall-Petchの式:σ=σ0+kd-1/2(式中σ:応力、σ0、k:材料定数)で表される細粒化強化、圧延などによる加工強化といった組織的ないし構造的改質を単独でまたは複数を組み合わせて行うことができる。 The base steel plate preferably used in the present invention may have any composition and steel structure as long as it has a desired tensile strength, and in order to improve various properties such as mechanical properties, for example, C, N. Strengthening of solid solution by addition of intrusive solid solution elements such as Si, Mn, P, Cr, etc., precipitation strengthening by carbonic acid / nitride such as Ti, Nb, V, Al, W, Zr, Hf , Co, B, Cu, chemical composition modification such as addition of strengthening elements such as rare earth elements, strengthening by recovery baking at a temperature where recrystallization does not occur, or parts that leave unrecrystallized regions without complete recrystallization. Recrystallization reinforcement, reinforcement by transformation structure such as bainite or martensite monophasic formation or composite assembly of ferrite and these transformation structures, Hall-Petch formula when ferrite grain size is d: σ = σ0 + kd-1 / 2 ( In the formula, σ: stress, σ0, k: material constant) can be used alone or in combination for structural or structural modification such as granulation strengthening and processing strengthening by rolling or the like.

このような下地鋼板の成分組成としては、例えば、質量%で、C:0.03~0.4%、Si:0.01~3.00%、Mn:0.5~3.0%、P:0.05%以下、S:0.005%以下、Al:0.001~1.500%、N:0.005%以下、Cu:0.05~1.00%、およびB:0.001~0.005%を含有し、更に、Nb:0.005~0.050%、Ti:0.005~0.080%、V:0~0.5%、Mo:0.05~1.00%、Cr:0.001~1.000%、およびNi:0.05~1.00%のうちから選ばれる1種又は2種以上を含有し、残部がFeおよび不可避的不純物である成分組成とすることができる。 The composition of such a base steel plate is, for example, in terms of mass%, C: 0.03 to 0.4%, Si: 0.01 to 3.00%, Mn: 0.5 to 3.0%, and the like. P: 0.05% or less, S: 0.005% or less, Al: 0.001 to 1.500%, N: 0.005% or less, Cu: 0.05 to 1.00%, and B: 0 .001 to 0.005%, Nb: 0.005 to 0.050%, Ti: 0.005 to 0.080%, V: 0 to 0.5%, Mo: 0.05 to Contains one or more selected from 1.00%, Cr: 0.001 to 1.000%, and Ni: 0.05 to 1.00%, with the balance being Fe and unavoidable impurities. It can have a certain component composition.

以下、本発明の鋼板の成分組成について説明する。なお、成分に関する%表示は特に断らない限り質量%を意味するものとする。 Hereinafter, the composition of the steel sheet of the present invention will be described. In addition, the% display regarding a component shall mean mass% unless otherwise specified.

C:0.03~0.4%
Cは鋼板の強度を高める効果を有する。その効果を得るためには、0.03%以上のCが必要である。一方で、C含有量が0.4%を超えると自動車や家電の素材として用いる場合に必要である溶接性が劣化する。したがって、C含有量は0.03~0.4%としてよい。
C: 0.03 to 0.4%
C has the effect of increasing the strength of the steel sheet. In order to obtain the effect, C of 0.03% or more is required. On the other hand, if the C content exceeds 0.4%, the weldability required for use as a material for automobiles and home appliances deteriorates. Therefore, the C content may be 0.03 to 0.4%.

Si:0.01~3.00%
Siは鋼を強化し、延性を向上させるのに有効な元素であり、その効果を得るためには0.01%以上のSiが必要である。一方で、Si含有量が3.00%を超えると、Siが表面に酸化物を形成し、めっき外観が劣化する。したがって、Si含有量は0.01~3.00%としてよい。好ましくは0.01~2.00%である。
Si: 0.01-3.00%
Si is an element effective for strengthening steel and improving ductility, and 0.01% or more of Si is required to obtain the effect. On the other hand, when the Si content exceeds 3.00%, Si forms an oxide on the surface and the plating appearance is deteriorated. Therefore, the Si content may be 0.01 to 3.00%. It is preferably 0.01 to 2.00%.

Mn:0.5~3.0%
Mnは、焼入れ性を高め鋼板の強度を高めるために有用な元素である。その効果は、Mn含有量が0.5%未満では得られない。一方、Mn含有量が3.0%を超えると、Mnの偏析が生じ、加工性が低下する。したがって、Mn含有量は0.5~3.0%としてよい。
Mn: 0.5-3.0%
Mn is an element useful for enhancing hardenability and increasing the strength of steel sheets. The effect cannot be obtained when the Mn content is less than 0.5%. On the other hand, if the Mn content exceeds 3.0%, Mn segregation occurs and the workability is lowered. Therefore, the Mn content may be 0.5 to 3.0%.

P:0.05%以下
Pは不可避的に含有される元素のひとつであり、0.005%未満にする為には、コストの増大が懸念される為、0.005%以上であることが望ましい。一方で、P含有量が0.05%を超えると、鋳造時のオーステナイト粒界へのP偏析に伴う粒界脆化により局部延性の劣化を通じて成型後の鋼板の耐遅れ破壊性を劣化させる。したがって、P含有量は極力低減させることが好ましく、P含有量は0.05%以下としてよい。好ましくは0.02%以下である。
P: 0.05% or less P is one of the elements inevitably contained, and in order to make it less than 0.005%, there is a concern that the cost will increase, so it should be 0.005% or more. desirable. On the other hand, when the P content exceeds 0.05%, the delayed fracture resistance of the molded steel sheet is deteriorated through the deterioration of local ductility due to the grain boundary embrittlement due to the P segregation to the austenite grain boundaries during casting. Therefore, the P content is preferably reduced as much as possible, and the P content may be 0.05% or less. It is preferably 0.02% or less.

S:0.005%以下
Sは製鋼過程で不可避的に含有される元素である。しかしながら、多量に含有すると溶接性が劣化する。そのため、S含有量は0.005%以下としてよい。
S: 0.005% or less S is an element inevitably contained in the steelmaking process. However, if it is contained in a large amount, the weldability deteriorates. Therefore, the S content may be 0.005% or less.

Al:0.001~1.500%
Alは溶鋼の脱酸を目的に添加されるが、その含有量が0.001%未満の場合、その目的が達成されない。一方で、Al含有量が1.500%を超えると、AlとNが結合して窒化物が形成される。窒化物は鋳造時にオーステナイト粒界上に析出して粒界脆化させることで、遅れ破壊性を劣化させる。したがって、Al含有量は0.001~1.500%としてよい。
Al: 0.001 to 1.500%
Al is added for the purpose of deoxidizing molten steel, but if the content is less than 0.001%, the purpose is not achieved. On the other hand, when the Al content exceeds 1.500%, Al and N are combined to form a nitride. The nitride precipitates on the austenite grain boundaries during casting and embrittles the grain boundaries, thereby deteriorating the delayed fracture property. Therefore, the Al content may be 0.001 to 1.500%.

N:0.005%以下
NはAlと結合して窒化物を形成する。N含有量が0.005%を超えると、窒化物が鋳造時にオーステナイト粒界上に析出して脆化を引き起こし、耐遅れ破壊特性を劣化させる。したがって、N含有量は0.005%以下とする。
N: 0.005% or less N combines with Al to form a nitride. When the N content exceeds 0.005%, the nitride precipitates on the austenite grain boundaries during casting, causing embrittlement and deteriorating the delayed fracture resistance. Therefore, the N content is set to 0.005% or less.

Cu:0.05~1.00%
Cuは腐食環境中において鋼板の溶解を抑制し、鋼中に侵入する水素量を低減させる効果がある。Cu含有量が0.05%未満ではその効果が得られない。一方、Cu含有量が1.00%超えではコストアップを招く。したがって、Cu含有量は0.05~1.00%としてよい。
Cu: 0.05-1.00%
Cu has the effect of suppressing the melting of the steel sheet in a corrosive environment and reducing the amount of hydrogen invading the steel. If the Cu content is less than 0.05%, the effect cannot be obtained. On the other hand, if the Cu content exceeds 1.00%, the cost will increase. Therefore, the Cu content may be 0.05 to 1.00%.

B:0.001~0.005%
Bは0.001%以上で焼き入れ促進効果が得られる。一方、B含有量が0.005%超えでは化成処理性が劣化する。したがって、B含有量は0.001~0.005%としてよい。
B: 0.001 to 0.005%
When B is 0.001% or more, the quenching promoting effect can be obtained. On the other hand, if the B content exceeds 0.005%, the chemical conversion treatment property deteriorates. Therefore, the B content may be 0.001 to 0.005%.

Nb:0.005~0.050%
Nbは0.005%以上で強度調整(強度向上)の効果が得られる。一方、Nb含有量が0.050%超えではコストアップを招く。よって、含有する場合、Nb含有量は0.005~0.050%としてよい。
Nb: 0.005 to 0.050%
When Nb is 0.005% or more, the effect of strength adjustment (strength improvement) can be obtained. On the other hand, if the Nb content exceeds 0.050%, the cost will increase. Therefore, when it is contained, the Nb content may be 0.005 to 0.050%.

Ti:0.005~0.080%
Tiは0.005%以上で強度調整(強度向上)の効果が得られる。一方、Ti含有量が0.080%超えでは化成処理性の劣化を招く。よって、含有する場合、Ti含有量は0.005~0.080%としてよい。
Ti: 0.005 to 0.080%
When Ti is 0.005% or more, the effect of strength adjustment (strength improvement) can be obtained. On the other hand, if the Ti content exceeds 0.080%, the chemical conversion treatment property is deteriorated. Therefore, when it is contained, the Ti content may be 0.005 to 0.080%.

V:0~0.5%
VとCとが結合して形成される微細炭化物は、鋼板の析出強化および水素のトラップサイトとして作用するため耐遅れ破壊性向上に有効であるため、必要に応じて含有してもよい。V含有量が0.5質量%を超えると、炭化物が過剰に析出して強度-延性バランスが劣化するおそれがある。このため、V含有量は0~0.5%が好ましい。より好ましくは0.1%以下であり、さらに好ましくは0.05%以下である。本発明では上記効果を得るためには0.004%以上のVの含有が好ましい。
V: 0 to 0.5%
The fine carbide formed by combining V and C acts as precipitation strengthening of the steel sheet and as a trap site for hydrogen, and is effective in improving the delayed fracture resistance. Therefore, it may be contained as necessary. If the V content exceeds 0.5% by mass, carbides may be excessively precipitated and the strength-ductility balance may be deteriorated. Therefore, the V content is preferably 0 to 0.5%. It is more preferably 0.1% or less, still more preferably 0.05% or less. In the present invention, the content of V of 0.004% or more is preferable in order to obtain the above effect.

Mo:0.05~1.00%
Moは0.05%以上で強度調整(強度向上)の効果が得られる。一方、Mo含有量が1.00%超えではコストアップを招く。よって、含有する場合、Mo含有量は0.05~1.00%としてよい。
Mo: 0.05-1.00%
When Mo is 0.05% or more, the effect of strength adjustment (strength improvement) can be obtained. On the other hand, if the Mo content exceeds 1.00%, the cost will increase. Therefore, when it is contained, the Mo content may be 0.05 to 1.00%.

Cr:0.001~1.000%
Crは0.001%以上で焼き入れ性効果が得られる。一方、Cr含有量が1.000%超えではCrが表面濃化するため、溶接性が劣化する。よって、含有する場合、Cr含有量は0.001~1.000%としてよい。
Cr: 0.001 to 1.000%
A quenching effect can be obtained when Cr is 0.001% or more. On the other hand, when the Cr content exceeds 1.000%, the surface of Cr becomes thickened, so that the weldability deteriorates. Therefore, when it is contained, the Cr content may be 0.001 to 1.000%.

Ni:0.05~1.00%
Niは0.05%以上で残留γ相形成促進効果が得られる。一方、Ni含有量が1.00%超えではコストアップを招く。よって、含有する場合、Ni含有量は0.05~1.00%としてよい。
Ni: 0.05-1.00%
When Ni is 0.05% or more, the effect of promoting the formation of the residual γ phase can be obtained. On the other hand, if the Ni content exceeds 1.00%, the cost will increase. Therefore, when it is contained, the Ni content may be 0.05 to 1.00%.

残部はFeおよび不可避不純物である。
なお、上記成分として説明したNb、Ti、Mo、Cr、Niの含有量が下限値未満の場合、その成分は不可避的不純物として含まれるものとする。
The balance is Fe and unavoidable impurities.
When the content of Nb, Ti, Mo, Cr, and Ni described as the above component is less than the lower limit, the component is assumed to be contained as an unavoidable impurity.

本発明において基質となる下地鋼板の厚みは、特に限定されるものではないが、0.8~2.5mmが好ましく、1.2~2.0mmがより好ましい。 The thickness of the base steel plate as the substrate in the present invention is not particularly limited, but is preferably 0.8 to 2.5 mm, more preferably 1.2 to 2.0 mm.

本発明の高強度鋼板は、上記したような鋼板(下地鋼板)の表面が特定のZn-Mn合金層、すなわち、被覆量が0.10g/m以上90g/m未満であり、且つMn濃度が5質量%以上50質量%未満であるZn-Mn合金層で被覆されたものである。 In the high-strength steel sheet of the present invention, the surface of the steel sheet (base steel sheet) as described above is a specific Zn—Mn alloy layer, that is, the coating amount is 0.10 g / m 2 or more and less than 90 g / m 2 , and Mn. It is coated with a Zn—Mn alloy layer having a concentration of 5% by mass or more and less than 50% by mass.

本発明者らの研究および検討結果によれば、腐食過程における亜鉛めっきが被覆された鋼板内部への水素侵入については、湿潤下における腐食過程において、Znめっきの犠牲防食作用により、地鉄上で多くの水素が発生することが鋼板の遅れ破壊に大きく寄与していると考えた。また、鋼板内部への水素侵入を抑制するためには、特に、腐食過程における鋼板中への水素侵入を抑制することが重要であることが判明した。そして、Zn-Mnめっきにおいては、Mnによって腐食過程で緻密で保護性の高い腐食生成物が形成されることにより、鋼板中への水素侵入を抑制できると考えた。 According to the research and study results of the present inventors, regarding the invasion of hydrogen into the inside of the zinc-plated steel sheet in the corrosion process, in the corrosion process under wet conditions, the sacrificial anticorrosion action of Zn plating causes the base iron. It was considered that the generation of a large amount of hydrogen greatly contributed to the delayed fracture of the steel sheet. Further, in order to suppress the invasion of hydrogen into the steel sheet, it was found that it is particularly important to suppress the invasion of hydrogen into the steel sheet during the corrosion process. Then, in Zn-Mn plating, it was considered that hydrogen invasion into the steel sheet could be suppressed by forming a dense and highly protective corrosion product in the corrosion process by Mn.

以上の推定メカニズムから、水素侵入を抑制するために有効な腐食生成物を形成するためには、鋼板表面上のZn-Mn合金層の被覆量が0.10g/m以上90g/m未満であり、Zn-Mn合金層のMn濃度が5質量%以上50質量%未満であることが必要であることを知見した。また、特に腐食に厳しい部材に適用する場合には、Zn-Mn合金層の被覆量を20g/m以上90g/m未満とすることが好ましい。 From the above estimation mechanism, in order to form an effective corrosion product for suppressing hydrogen intrusion, the coating amount of the Zn—Mn alloy layer on the steel plate surface is 0.10 g / m 2 or more and less than 90 g / m 2 . It was found that the Mn concentration of the Zn—Mn alloy layer needs to be 5% by mass or more and less than 50% by mass. Further, when applied to a member particularly severe in corrosion, the coating amount of the Zn—Mn alloy layer is preferably 20 g / m 2 or more and less than 90 g / m 2 .

Zn-Mn合金層の被覆量が0.10g/m未満では、十分な水素侵入抑制効果と耐食性向上の効果の両立が実現できない。例えば、Zn-Mn合金層の被覆量が0.10g/mに対して非常に少ない場合では、水素侵入量を減らすことはできるものの、所望の耐食性を得られなくなる。一方、90g/m以上では、製造コストが増加してしまう。よって、Zn-Mn合金層の被覆量は0.10g/m以上90g/m未満であり、好ましくは、20g/m以上90g/m未満である。 If the coating amount of the Zn—Mn alloy layer is less than 0.10 g / m 2 , it is not possible to achieve both a sufficient effect of suppressing hydrogen intrusion and an effect of improving corrosion resistance. For example, when the coating amount of the Zn—Mn alloy layer is very small with respect to 0.10 g / m 2 , the hydrogen intrusion amount can be reduced, but the desired corrosion resistance cannot be obtained. On the other hand, if it is 90 g / m 2 or more, the manufacturing cost increases. Therefore, the coating amount of the Zn—Mn alloy layer is 0.10 g / m 2 or more and less than 90 g / m 2 , preferably 20 g / m 2 or more and less than 90 g / m 2 .

本発明の高強度鋼板は、上述したZn-Mn合金層を下地鋼板片面に被覆したものでもよいし、下地鋼板両面に被覆したものでもよい。
なお、Zn-Mn合金層の被覆量は、下地鋼板上のZn-Mn合金層を溶解させ、溶解前後の鋼板の質量差から算出することができる。
下地鋼板片面のみにZn-Mn合金層が被覆された場合は、上記質量差(g)を下地鋼板片面の面積で割ること(上記質量差(g)/下地鋼板片面の面積(m))により、Zn-Mn合金層の被覆量を測定することができる。
また、下地鋼板両面にZn-Mn合金層が被覆された場合は、上記質量差(g)を下地鋼板片面の面積の2倍の値で割ること(上記質量差(g)/(下地鋼板片面の面積(m)×2))により、Zn-Mn合金層の被覆量を測定することができる。
The high-strength steel sheet of the present invention may be one in which the above-mentioned Zn—Mn alloy layer is coated on one side of the base steel sheet, or may be one in which both sides of the base steel sheet are coated.
The coating amount of the Zn—Mn alloy layer can be calculated from the mass difference of the steel sheet before and after melting the Zn—Mn alloy layer on the base steel sheet.
When the Zn—Mn alloy layer is coated only on one side of the base steel sheet, the mass difference (g) is divided by the area of one side of the base steel sheet (mass difference (g) / area of one side of the base steel sheet (m 2 )). Therefore, the coating amount of the Zn—Mn alloy layer can be measured.
When both sides of the base steel sheet are coated with the Zn—Mn alloy layer, the mass difference (g) is divided by a value twice the area of one side of the base steel sheet (the mass difference (g) / (one side of the base steel sheet). The coverage of the Zn—Mn alloy layer can be measured by the area (m 2 ) × 2)).

また、Zn-Mn合金層中のMn濃度が5質量%未満では、腐食過程において十分な保護性を有する腐食生成物が形成されず、鋼板中への水素侵入を抑制できない。また50質量%以上では、電位がZnより大きく卑になるため、地鉄上での水素発生を促進してしまう。よって、Zn-Mn合金層中のMn濃度は5質量%以上50質量%未満であり、好ましくは、10質量%以上30質量%以下である。
なお、Mn濃度は、Zn-Mn合金層を溶解させて得られる溶液を用い、ICP発光分光分析法により測定することができる。
Further, if the Mn concentration in the Zn—Mn alloy layer is less than 5% by mass, a corrosion product having sufficient protective properties is not formed in the corrosion process, and hydrogen intrusion into the steel sheet cannot be suppressed. On the other hand, when the amount is 50% by mass or more, the potential is larger than that of Zn and becomes low, which promotes hydrogen generation on the ground iron. Therefore, the Mn concentration in the Zn—Mn alloy layer is 5% by mass or more and less than 50% by mass, preferably 10% by mass or more and 30% by mass or less.
The Mn concentration can be measured by ICP emission spectroscopy using a solution obtained by dissolving the Zn—Mn alloy layer.

下地鋼板表面をZn-Mn合金層で被覆する方法については、特別な制限はなく、公知の方法を適用することが可能であるが、例えば、電気めっき法(Zn-Mn合金電気めっき法)、無電解めっき法、蒸着法等を用いることができる。 The method of coating the surface of the base steel plate with the Zn—Mn alloy layer is not particularly limited, and a known method can be applied. For example, an electroplating method (Zn—Mn alloy electroplating method), A non-electroplating method, a vapor deposition method, or the like can be used.

電気めっき法(Zn-Mn合金電気めっき法)の場合には、めっき浴に含まれるZn、Mnの濃度を調整することでZn-Mn合金層のMn濃度を変えることができ、また、電解時間を調整することでZn-Mn合金層の被覆量を変えることができる。また、無電解めっき法の場合には、めっき浴に含まれるZn、Mnの濃度を調整することでZn-Mn合金層のMn濃度を変えることができ、また、電解時間を調整することでZn-Mn合金層の被覆量を変えることができる。また、蒸着法の場合には、ターゲットとしてZn及びMnを用いてMn濃度を調整することができ、また、蒸着時間を調整することでZn-Mn合金層の被覆量を変えることができる。 In the case of the electroplating method (Zn—Mn alloy electroplating method), the Mn concentration of the Zn—Mn alloy layer can be changed by adjusting the concentrations of Zn and Mn contained in the plating bath, and the electrolytic time. The coating amount of the Zn—Mn alloy layer can be changed by adjusting. Further, in the case of the electroless plating method, the Mn concentration of the Zn—Mn alloy layer can be changed by adjusting the concentrations of Zn and Mn contained in the plating bath, and the Zn concentration can be changed by adjusting the electrolytic time. -The coating amount of the Mn alloy layer can be changed. Further, in the case of the thin-film deposition method, the Mn concentration can be adjusted by using Zn and Mn as targets, and the coating amount of the Zn—Mn alloy layer can be changed by adjusting the vapor deposition time.

前述したように、本発明の高強度鋼板は、上述したZn-Mn合金層を下地鋼板片面に被覆したものでもよいし、下地鋼板両面に被覆したものでもよい。 As described above, the high-strength steel sheet of the present invention may be one in which the above-mentioned Zn—Mn alloy layer is coated on one side of the base steel sheet, or may be one in which both sides of the base steel sheet are coated.

なお、Zn-Mn合金層は、基本的にZnとMnからなるものであるが、Zn濃度がMn濃度より高いという条件を満たしていれば、V、Mo、およびWのうちから選ばれる1種以上を少量(合計10質量%以下)含有してもよい。 The Zn—Mn alloy layer is basically composed of Zn and Mn, but is selected from V, Mo, and W as long as the condition that the Zn concentration is higher than the Mn concentration is satisfied. The above may be contained in a small amount (10% by mass or less in total).

X線回折によれば、Zn-Mn合金層中のMnは酸化しておらず合金状態にある。酸化状態にはないことで、腐食時に反応し前述の緻密な腐食生成物が形成されると推定される。 According to X-ray diffraction, Mn in the Zn—Mn alloy layer is not oxidized and is in an alloy state. Since it is not in an oxidized state, it is presumed that it reacts at the time of corrosion to form the above-mentioned dense corrosion product.

基質として使用される下地鋼板の製造方法は特に限定されない。本発明の理解を容易にするために、冷延鋼板の表面をZn-Mn合金層で被覆する場合における、製鋼からの一連のプロセスについて、一例を挙げて簡単に説明する。 The method for producing the base steel sheet used as the substrate is not particularly limited. In order to facilitate the understanding of the present invention, a series of processes from steelmaking in the case where the surface of a cold-rolled steel sheet is coated with a Zn—Mn alloy layer will be briefly described with an example.

所定の成分組成の鋼を溶製し、常法に従い連続鋳造でスラブとする。次いで、得られたスラブを加熱炉中で1100~1300℃の温度で加熱し、750~950℃の仕上げ温度で熱間圧延を行い、500~650℃にて巻き取る。これに続いて酸洗後、圧下率30~70%の冷間圧延を行う。その後、必要に応じて、常法に従い、アルカリまたはアルカリと界面活性剤およびキレート剤との混合溶液による洗浄、電解洗浄、温水洗浄、乾燥を行う清浄化処理を行った後、750~900℃にて加熱処理し、急速冷却を行い、鋼板の引張強度の調整を行う。さらに必要に応じて、常法に従い伸長率0.01~0.5%程度の調質圧延を行うことで所望の引張強度を有する冷延鋼板を得、このようにして得られた冷延鋼板表面に、電気めっき法、無電解めっき法、蒸着法等の方法にて、Zn-Mn合金層を被覆量が0.10g/m以上90g/m未満で、Zn-Mn合金層中のMn濃度が5質量%以上50質量%未満となるように被覆する。これにより、本発明の高強度鋼板の一例としての高強度冷延鋼板を得ることができる。 Steel with a predetermined composition is melted and continuously cast into slabs according to a conventional method. Next, the obtained slab is heated in a heating furnace at a temperature of 1100 to 1300 ° C., hot rolled at a finishing temperature of 750 to 950 ° C., and wound at 500 to 650 ° C. Following this, after pickling, cold rolling with a rolling reduction of 30 to 70% is performed. Then, if necessary, according to a conventional method, a cleaning treatment of alkali or a mixed solution of an alkali with a surfactant and a chelating agent, electrolytic cleaning, hot water cleaning, and drying is performed, and then the temperature is set to 750 to 900 ° C. Heat treatment is performed, rapid cooling is performed, and the tensile strength of the steel plate is adjusted. Further, if necessary, a cold-rolled steel sheet having a desired tensile strength is obtained by performing temper rolling with an elongation rate of about 0.01 to 0.5% according to a conventional method, and the cold-rolled steel sheet thus obtained is obtained. The surface of the Zn—Mn alloy layer is coated with a Zn—Mn alloy layer by electroplating, electroless plating, vapor deposition, or the like, with a coating amount of 0.10 g / m 2 or more and less than 90 g / m 2 in the Zn—Mn alloy layer. The Mn concentration is coated so as to be 5% by mass or more and less than 50% by mass. Thereby, a high-strength cold-rolled steel sheet as an example of the high-strength steel sheet of the present invention can be obtained.

なお、冷延鋼板表面をZn-Mn合金層で被覆するのにめっき法、特に電気めっき法を用いた場合において、めっき処理時に鋼板およびZn-Mn合金層中に水素が侵入するおそれがあるときは、必要に応じて、めっき処理後に100~300℃程度の温度で24時間程度保持し、鋼板およびZn-Mn合金層中に侵入した水素を除去する処理を施してもよい。 When a plating method, particularly an electroplating method, is used to coat the surface of the cold-rolled steel plate with the Zn—Mn alloy layer, and there is a risk that hydrogen may enter the steel plate and the Zn—Mn alloy layer during the plating process. If necessary, it may be held at a temperature of about 100 to 300 ° C. for about 24 hours after the plating treatment, and may be subjected to a treatment for removing hydrogen that has entered into the steel plate and the Zn—Mn alloy layer.

以上説明したように、本発明の高強度鋼板は、耐遅れ破壊性と耐食性に優れる。
本発明において、優れた耐遅れ破壊性については、研削加工を施した試験片(30mm×99.5mm)を曲率半径4mmRで180°曲げ加工し、内側間隔が8mmとなるようにボルトとナットで拘束して固定して得られた遅れ破壊用試験片に対し、SAE J2334に規定された、「塩水浸漬(0.5質量%のNaCl、0.1質量%のCaCl、及び0.075質量%のNaHCOを有する25℃の溶液中で15分)」、「乾燥(60℃、RH50%環境下で17時間45分)」、「湿潤(50℃、RH100%環境下で6時間)」を順に行って1サイクル(24時間)とする複合サイクル腐食試験を実施し、各サイクルの塩水浸漬の工程前に割れの発生の有無を調査し、割れ発生サイクル数が30サイクル以上であることを指す。
また、優れた耐食性とは、上記の各サイクルの塩水浸漬工程前に赤錆発生の有無を調査し、5サイクル経過時点で赤錆発生が無いことを指す。
As described above, the high-strength steel plate of the present invention is excellent in delayed fracture resistance and corrosion resistance.
In the present invention, for excellent delayed fracture resistance, a ground test piece (30 mm × 99.5 mm) is bent 180 ° with a radius of curvature of 4 mmR, and bolts and nuts are used so that the inner spacing is 8 mm. For the delayed fracture test piece obtained by restraining and fixing, "salt water immersion (0.5 mass% NaCl, 0.1 mass% CaCl 2 and 0.075 mass) specified in SAE J2334. "Drying ( 60 ° C., 17 hours 45 minutes under RH 50% environment)", "Wet (50 ° C., 6 hours under 100% RH environment)" A combined cycle corrosion test was carried out in order to make one cycle (24 hours), and the presence or absence of cracks was investigated before the salt water immersion process of each cycle, and the number of crack occurrence cycles was 30 or more. Point to.
Further, the excellent corrosion resistance means that the presence or absence of red rust is investigated before the salt water immersion step of each of the above cycles, and no red rust is generated after 5 cycles.

下地鋼板として、表1のA~Fの各成分組成を有する板厚1.5mmの冷延鋼板(引張強度1480MPa)を試験片として用いた。これらの冷延鋼板をトルエンに浸漬して5分間超音波洗浄を行い、防錆油を除去した後、Zn-Mn合金電気めっきを施し、鋼板両面の表面にZn-Mn合金層(めっき層)を形成した。 As the base steel sheet, a cold-rolled steel sheet having a thickness of 1.5 mm (tensile strength of 1480 MPa) having each component composition of A to F in Table 1 was used as a test piece. These cold-rolled steel sheets were immersed in toluene and ultrasonically cleaned for 5 minutes to remove rust-preventive oil, and then Zn—Mn alloy electroplating was performed. Formed.

上記の引張強度はJIS Z 2241(2011年)に準拠して測定した。 The above tensile strength was measured according to JIS Z 2241 (2011).

Figure 0007020446000001
Figure 0007020446000001

電気めっき液としては、二価のマンガンイオン濃度:10g/L、二価の亜鉛イオン濃度:15g/Lを硫酸塩として添加し、クエン酸三ナトリウムを180g/L添加し硫酸によりpH5.5に調整したものを用いた。電流密度を10~80A/dmの範囲で調整することでZn-Mn合金層のMn濃度を変化させ、また、電解時間を調整することでZn-Mn合金層の被覆量を変化させ、No.1~20、22~41の鋼板を作製した。 As the electroplating solution, divalent manganese ion concentration: 10 g / L, divalent zinc ion concentration: 15 g / L was added as a sulfate, 180 g / L of trisodium citrate was added, and the pH was adjusted to 5.5 by sulfuric acid. The adjusted one was used. By adjusting the current density in the range of 10 to 80 A / dm 2 , the Mn concentration of the Zn—Mn alloy layer is changed, and by adjusting the electrolysis time, the coating amount of the Zn—Mn alloy layer is changed. .1 to 20 and 22 to 41 steel plates were produced.

なお、以上のめっき処理を行わない鋼板(No.21)を比較例の1つとした。 A steel sheet (No. 21) not subjected to the above plating treatment was used as one of the comparative examples.

Zn-Mn合金層の被覆量は、鋼板を塩酸に浸漬してZn-Mn合金層を溶解させ、溶解前後の鋼板の質量差から求めた。なお、Zn-Mn合金層の溶解の終点については、塩酸に鉄の溶解を防止するインヒビターを入れることにより判断した。塩酸にインヒビターを入れることにより、Zn-Mn合金層が溶けている最中は気体が発生するのに対し、Zn-Mn合金層の溶解が終了することで気体発生が終了する。この気体発生の終了を目視することにより、Zn-Mn合金層の溶解が終了したと判断した。 The coating amount of the Zn—Mn alloy layer was determined from the difference in mass of the steel sheet before and after melting the Zn—Mn alloy layer by immersing the steel sheet in hydrochloric acid. The end point of dissolution of the Zn—Mn alloy layer was determined by adding an inhibitor that prevents the dissolution of iron to hydrochloric acid. By adding an inhibitor to hydrochloric acid, gas is generated while the Zn—Mn alloy layer is being melted, whereas gas generation is completed when the dissolution of the Zn—Mn alloy layer is completed. By visually observing the end of this gas generation, it was determined that the dissolution of the Zn—Mn alloy layer was completed.

Zn-Mn合金層のMn濃度は、塩酸で合金層を溶解させて得られた溶液から、ICP発光分光分析法によりMn濃度を測定した。 The Mn concentration of the Zn—Mn alloy layer was measured by ICP emission spectroscopy from the solution obtained by dissolving the alloy layer with hydrochloric acid.

以上のようにして得られた試験片について、以下の評価を行った。得られた結果を、Zn-Mn合金層の構成とともに表2に示す。
(1)耐遅れ破壊性の評価
研削加工を施して作製した試験片(30mm×99.5mm)を曲率半径4mmRで180°曲げ加工し、図1に示すように、この曲げ試験片1を内側間隔が8mmとなるようにボルト2とナット3で拘束して試験片形状を固定し、遅れ破壊評価用試験片を得た。このようにして作製した遅れ破壊評価用試験片に対し、米国自動車技術会で定めたSAE J2334に規定された、塩水浸漬(0.5質量%のNaCl、0.1質量%のCaCl、及び0.075質量%のNaHCOを有する25℃の溶液中で15分)、乾燥(60℃、RH50%環境下で17時間45分)、湿潤(50℃、RH100%環境下で6時間)を順に行って1サイクル(24時間)とする複合サイクル腐食試験(図2参照)を、最大80サイクルまで実施した。各サイクルの最初の工程となる塩水浸漬の工程前に目視により割れの発生の有無を調査し、割れ発生サイクル数を測定した。また、本試験は、各鋼板3検体ずつ実施し、その平均値をもって評価を行った。評価はサイクル数から、以下の基準により評価した。割れ発生サイクル数が30サイクル以上である場合を合格(○又は◎)とした。なお、本評価では、平日の月曜日から試験を開始して、サイクル数としては平日(月~金)のサイクル数のみで評価し、休日(土、日)のサイクル数は評価しなかった。
◎:40サイクル以上
○:30サイクル以上、40サイクル未満
△:10サイクル以上、30サイクル未満
×:10サイクル未満
The test pieces obtained as described above were evaluated as follows. The obtained results are shown in Table 2 together with the composition of the Zn—Mn alloy layer.
(1) Evaluation of Delayed Fracture Resistance A test piece (30 mm × 99.5 mm) produced by grinding is bent 180 ° with a radius of curvature of 4 mmR, and as shown in FIG. 1, the bending test piece 1 is inside. The shape of the test piece was fixed by restraining it with bolts 2 and nuts so that the interval was 8 mm, and a test piece for delayed fracture evaluation was obtained. The test piece for delayed fracture evaluation thus prepared was immersed in salt water (0.5% by mass NaCl, 0.1% by mass CaCl 2 , and 0.1% by mass CaCl 2 specified in SAE J2334 defined by the American Society of Automotive Engineers of Japan. Dry (60 ° C., 17 hours 45 minutes in a RH 50% environment), wet (50 ° C., 6 hours in a RH 100% environment) in a 25 ° C. solution with 0.075% by weight NaCl 3 . A combined cycle corrosion test (see FIG. 2), which was carried out in order to make one cycle (24 hours), was carried out up to a maximum of 80 cycles. Before the salt water immersion process, which is the first step of each cycle, the presence or absence of cracks was visually investigated, and the number of crack occurrence cycles was measured. In addition, this test was carried out for each of the three steel plates, and the average value was used for evaluation. The evaluation was based on the number of cycles according to the following criteria. The case where the number of crack occurrence cycles is 30 or more is regarded as acceptable (○ or ◎). In this evaluation, the test was started on weekday Monday, and the number of cycles was evaluated only by the number of cycles on weekdays (Monday to Friday), and the number of cycles on holidays (Saturday and Sunday) was not evaluated.
⊚: 40 cycles or more ○: 30 cycles or more, less than 40 cycles Δ: 10 cycles or more, less than 30 cycles ×: less than 10 cycles

(2)耐食性の評価
上記耐遅れ破壊性評価を行ったサンプルについて、各サイクルの塩水浸漬工程前に目視により赤錆発生の有無を調査し、赤錆発生サイクル数を測定した。評価はサイクル数から、以下の基準により評価した。5サイクル経過時点で赤錆発生が無い場合を合格(○)とした。なお、本評価でも、平日の月曜日から試験を開始して、サイクル数としては平日(月~金)のサイクル数のみで評価し、休日(土、日)のサイクル数は評価しなかった。
○:5サイクル経過時点で赤錆発生なし
×:5サイクル未満で赤錆発生あり
(2) Evaluation of corrosion resistance With respect to the sample subjected to the above-mentioned delayed fracture resistance evaluation, the presence or absence of red rust generation was visually investigated before the salt water immersion step of each cycle, and the number of red rust generation cycles was measured. The evaluation was based on the number of cycles according to the following criteria. The case where no red rust was generated after 5 cycles was regarded as acceptable (○). In this evaluation as well, the test was started on weekday Mondays, and the number of cycles was evaluated only on weekdays (Monday to Friday), not on holidays (Saturday, Sunday).
◯: No red rust occurred after 5 cycles ×: Red rust occurred in less than 5 cycles

Figure 0007020446000002
Figure 0007020446000002

表2によれば、本発明例の鋼板は、いずれも優れた耐遅れ破壊性と耐食性が得られている。中でも、Zn-Mn合金層の被覆量が20g/m以上90g/m未満であり、Zn-Mn合金層中のMn濃度が10質量%以上30質量%以下である鋼板No.7、9、14、15、22~41は、優れた耐食性を得られると共に、非常に優れた耐遅れ破壊性が得られることが分かった。
これに対して比較例の鋼板は、耐遅れ破壊性、耐食性のいずれか又は両方が劣っている。
According to Table 2, the steel sheets of the examples of the present invention all have excellent delayed fracture resistance and corrosion resistance. Among them, the steel sheet No. 1 in which the coating amount of the Zn—Mn alloy layer is 20 g / m 2 or more and less than 90 g / m 2 and the Mn concentration in the Zn—Mn alloy layer is 10% by mass or more and 30% by mass or less. It was found that 7, 9, 14, 15, 22 to 41 obtained excellent corrosion resistance and very excellent delayed fracture resistance.
On the other hand, the steel sheet of the comparative example is inferior in either or both of delayed fracture resistance and corrosion resistance.

1 試験片
2 ボルト
3 ナット
1 Test piece 2 Bolt 3 Nut

Claims (3)

引張強度が1180MPa以上である下地鋼板と、該下地鋼板表面に被覆されたZn-Mn合金層と、を有し、前記下地鋼板が、質量%で、C:0.03~0.4%、Si:0.01~3.00%、Mn:0.5~3.0%、P:0.05%以下、S:0.005%以下、Al:0.001~1.500%、N:0.005%以下、Cu:0.05~1.00%、およびB:0.001~0.005%を含有し、更に、Nb:0.005~0.050%、V:0~0.5%、Mo:0.05~1.00%、Cr:0.001~1.000%、およびNi:0.05~1.00%のうちから選ばれる1種又は2種以上を含有し、残部がFeおよび不可避的不純物である成分組成を有し、且つ前記Zn-Mn合金層は、被覆量が0.10g/m以上90g/m未満であり、且つ前記Zn-Mn合金層のMn濃度が5質量%以上50質量%未満であることを特徴とする高強度冷延鋼板。 It has a base steel plate having a tensile strength of 1180 MPa or more and a Zn—Mn alloy layer coated on the surface of the base steel plate, and the base steel plate has a mass% of C: 0.03 to 0.4%. Si: 0.01 to 3.00%, Mn: 0.5 to 3.0%, P: 0.05% or less, S: 0.005% or less, Al: 0.001 to 1.500%, N : 0.005% or less, Cu: 0.05 to 1.00%, and B: 0.001 to 0.005%, and further, Nb: 0.005 to 0.050%, V: 0 to One or more selected from 0.5%, Mo: 0.05 to 1.00%, Cr: 0.001 to 1.000%, and Ni: 0.05 to 1.00%. The Zn—Mn alloy layer contains a component composition in which the balance is Fe and unavoidable impurities, and the coating amount of the Zn—Mn alloy layer is 0.10 g / m 2 or more and less than 90 g / m 2 , and the Zn—Mn alloy layer is present. A high-strength cold- rolled steel sheet characterized in that the Mn concentration of the alloy layer is 5% by mass or more and less than 50% by mass. 前記Zn-Mn合金層の被覆量が20g/m以上90g/m未満であることを特徴とする請求項1に記載の高強度冷延鋼板。 The high-strength cold- rolled steel sheet according to claim 1, wherein the coating amount of the Zn—Mn alloy layer is 20 g / m 2 or more and less than 90 g / m 2 . 前記Mn濃度が10質量%以上30質量%以下であることを特徴とする請求項1又は2に記載の高強度冷延鋼板。 The high-strength cold- rolled steel sheet according to claim 1 or 2, wherein the Mn concentration is 10% by mass or more and 30% by mass or less.
JP2019062706A 2019-03-28 2019-03-28 High-strength steel plate Active JP7020446B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019062706A JP7020446B2 (en) 2019-03-28 2019-03-28 High-strength steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019062706A JP7020446B2 (en) 2019-03-28 2019-03-28 High-strength steel plate

Publications (2)

Publication Number Publication Date
JP2020158874A JP2020158874A (en) 2020-10-01
JP7020446B2 true JP7020446B2 (en) 2022-02-16

Family

ID=72642054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019062706A Active JP7020446B2 (en) 2019-03-28 2019-03-28 High-strength steel plate

Country Status (1)

Country Link
JP (1) JP7020446B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007056307A (en) 2005-08-24 2007-03-08 Nippon Steel Corp Hot-pressed steel material having zinc-based metal plating thereon and having superior corrosion resistance after having been painted

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63140098A (en) * 1986-12-01 1988-06-11 Kawasaki Steel Corp Production of zn alloy electroplated steel sheet having excellent adhesiveness
JPS6411993A (en) * 1987-07-06 1989-01-17 Nippon Steel Corp Production of zn alloy plated steel sheet
JP2509940B2 (en) * 1987-07-06 1996-06-26 新日本製鐵株式会社 Method for producing Zn-Ni alloy plated steel sheet
JPH0811216B2 (en) * 1991-05-01 1996-02-07 新日本製鐵株式会社 Organic composite plated steel sheet
JP3425837B2 (en) * 1996-03-28 2003-07-14 株式会社神戸製鋼所 High-strength hot-rolled steel sheet, high-strength galvanized steel sheet excellent in pitting corrosion resistance and crushing properties, and methods for producing them

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007056307A (en) 2005-08-24 2007-03-08 Nippon Steel Corp Hot-pressed steel material having zinc-based metal plating thereon and having superior corrosion resistance after having been painted

Also Published As

Publication number Publication date
JP2020158874A (en) 2020-10-01

Similar Documents

Publication Publication Date Title
KR101335069B1 (en) High-strength cold-rolled steel sheet having excellent workability, molten galvanized high-strength steel sheet, and method for producing the same
CA2850045C (en) Galvanized steel sheet and method of manufacturing the same
JP5783269B2 (en) Alloy hot-dip galvanized steel sheet
CN111386358A (en) High-strength galvanized steel sheet and method for producing same
JP6589903B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
KR100705243B1 (en) Hot dip galvanized steel sheets of TRIP steels which have good adhesion property and excellent formability and the method of developing those steels
KR102635009B1 (en) High-strength hot rolled steel sheet and manufacturing method thereof
JP6460239B2 (en) Steel sheet, hot-dip galvanized steel sheet, alloyed hot-dip galvanized steel sheet, and methods for producing them
KR20190044668A (en) Steel plate
JP6460238B2 (en) Steel sheet, hot-dip galvanized steel sheet, alloyed hot-dip galvanized steel sheet, and methods for producing them
JP6699633B2 (en) High-strength cold-rolled steel sheet excellent in corrosion resistance after painting and delayed fracture resistance and method for producing the same
EP3395977B1 (en) High strength cold-rolled steel sheet and hot dip galvanized steel sheet having excellent hole expansion, ductility and surface treatment properties, and method for manufacturing same
JP2019026893A (en) High strength steel sheet excellent in delayed fracture resistance and corrosion resistance
JP7020446B2 (en) High-strength steel plate
JP6838665B2 (en) High-strength alloyed electrogalvanized steel sheet and its manufacturing method
KR20190044669A (en) Steel plate
TW201821629A (en) High strength steel sheet capable of providing an excellent formation capability
JP2023139466A (en) High strength steel sheet, and automobile body
JP2023139467A (en) High strength steel sheet, and automobile body
JP3347152B2 (en) Method for producing cold-rolled high-strength hot-dip galvanized steel sheet with excellent resistance to pitting corrosion
JP2023148613A (en) High strength steel sheet and car body
JP3898925B2 (en) High strength and high ductility hot dip galvanized steel sheet excellent in corrosion resistance and method for producing the same
JP5446499B2 (en) Steel sheet with excellent delayed fracture resistance and method for producing the same
JP6409647B2 (en) High-strength steel sheet with excellent delayed fracture resistance and corrosion resistance
TWI593812B (en) Steel plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220117

R150 Certificate of patent or registration of utility model

Ref document number: 7020446

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150