JPH0121234B2 - - Google Patents
Info
- Publication number
- JPH0121234B2 JPH0121234B2 JP57093085A JP9308582A JPH0121234B2 JP H0121234 B2 JPH0121234 B2 JP H0121234B2 JP 57093085 A JP57093085 A JP 57093085A JP 9308582 A JP9308582 A JP 9308582A JP H0121234 B2 JPH0121234 B2 JP H0121234B2
- Authority
- JP
- Japan
- Prior art keywords
- treatment
- steel sheets
- phosphate
- plating
- corrosion resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000011282 treatment Methods 0.000 claims description 113
- 229910000831 Steel Inorganic materials 0.000 claims description 74
- 239000010959 steel Substances 0.000 claims description 74
- 238000007747 plating Methods 0.000 claims description 31
- 229910045601 alloy Inorganic materials 0.000 claims description 30
- 239000000956 alloy Substances 0.000 claims description 30
- 229910052725 zinc Inorganic materials 0.000 claims description 22
- 238000004519 manufacturing process Methods 0.000 claims description 7
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 5
- 238000007654 immersion Methods 0.000 claims description 5
- NBIIXXVUZAFLBC-UHFFFAOYSA-N phosphoric acid Substances OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 5
- -1 phosphoric acid compound Chemical class 0.000 claims description 5
- 229910019142 PO4 Inorganic materials 0.000 description 36
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 36
- 239000010452 phosphate Substances 0.000 description 36
- 230000007797 corrosion Effects 0.000 description 28
- 238000005260 corrosion Methods 0.000 description 28
- 239000011701 zinc Substances 0.000 description 27
- 239000003973 paint Substances 0.000 description 26
- 239000011248 coating agent Substances 0.000 description 22
- 238000000576 coating method Methods 0.000 description 22
- 235000002639 sodium chloride Nutrition 0.000 description 19
- 150000003839 salts Chemical class 0.000 description 16
- 238000012360 testing method Methods 0.000 description 14
- 229910007567 Zn-Ni Inorganic materials 0.000 description 13
- 229910007614 Zn—Ni Inorganic materials 0.000 description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 238000005868 electrolysis reaction Methods 0.000 description 11
- 238000000034 method Methods 0.000 description 11
- 239000007921 spray Substances 0.000 description 11
- 238000011156 evaluation Methods 0.000 description 9
- 239000013078 crystal Substances 0.000 description 8
- 238000010422 painting Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 229910017709 Ni Co Inorganic materials 0.000 description 5
- 229910003267 Ni-Co Inorganic materials 0.000 description 5
- 229910003262 Ni‐Co Inorganic materials 0.000 description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 5
- 210000004027 cell Anatomy 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 5
- 150000004679 hydroxides Chemical class 0.000 description 5
- 238000005507 spraying Methods 0.000 description 5
- 229910001335 Galvanized steel Inorganic materials 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 238000009713 electroplating Methods 0.000 description 4
- 239000008397 galvanized steel Substances 0.000 description 4
- 230000007774 longterm Effects 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 229910018487 Ni—Cr Inorganic materials 0.000 description 3
- 229910001297 Zn alloy Inorganic materials 0.000 description 3
- 229910007570 Zn-Al Inorganic materials 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 229910017518 Cu Zn Inorganic materials 0.000 description 2
- 229910017752 Cu-Zn Inorganic materials 0.000 description 2
- 229910017943 Cu—Zn Inorganic materials 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- TVZPLCNGKSPOJA-UHFFFAOYSA-N copper zinc Chemical compound [Cu].[Zn] TVZPLCNGKSPOJA-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000002659 electrodeposit Substances 0.000 description 2
- 229910001385 heavy metal Inorganic materials 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 2
- 238000012805 post-processing Methods 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 229910000914 Mn alloy Inorganic materials 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 229910007564 Zn—Co Inorganic materials 0.000 description 1
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical compound [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- ZPWVASYFFYYZEW-UHFFFAOYSA-L dipotassium hydrogen phosphate Chemical compound [K+].[K+].OP([O-])([O-])=O ZPWVASYFFYYZEW-UHFFFAOYSA-L 0.000 description 1
- 235000019797 dipotassium phosphate Nutrition 0.000 description 1
- 229910000396 dipotassium phosphate Inorganic materials 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 1
- 229910000397 disodium phosphate Inorganic materials 0.000 description 1
- 235000019800 disodium phosphate Nutrition 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 210000002287 horizontal cell Anatomy 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- 235000011008 sodium phosphates Nutrition 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- NDKWCCLKSWNDBG-UHFFFAOYSA-N zinc;dioxido(dioxo)chromium Chemical compound [Zn+2].[O-][Cr]([O-])(=O)=O NDKWCCLKSWNDBG-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Electroplating Methods And Accessories (AREA)
- Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
Description
【発明の詳細な説明】
本発明は電気Zn或はZn系合金めつき鋼板の製
造方法に関するものである。
一般に、自動車用鋼板の如く実際使用に際し
て、プレス成形などの加工を行なつた後にそのま
ま使用する場合と、リン酸塩処理を施こし、さら
に塗装を施こして最終用途で使用する場合とある
が、前者では裸耐食性が、後者ではリン酸塩処理
性及び塗装後の耐食性がきわめて大きな問題であ
る。本発明の目的は、特に後者に対して優れた表
面処理鋼板を提供することである。
最近の傾向として、例えば北米やカナダなど積
雪の多い地方では、路上の積雪をとかすために岩
塩をまくようになつてきたが、それにともなつて
自動車の車体は激しい腐食環境下におかれること
になつた。これに対し、かかる腐食環境に強い素
材としてこれまでは電気亜鉛めつき、溶融亜鉛め
つき鋼板が主につかわれて来たが、塗装後の耐食
性はかならずしも充分とは言えず、比較的短時間
のうちに激しい腐食を呈し、穴があくなど安全上
からも種々の問題点が生じてきた。
このような状況下において、これら塩害に充分
耐えうる塗装後の耐食性の優れた表面処理鋼板の
開発が強くさけばれ、各鉄鋼メーカーでは多大の
努力を払い、多くの新表面処理鋼板を開発し、市
販されている。例えば、これらにZn―Ni系、Zn
―Ni―Co系、Fe―Zn系、Fe―Zn―Ni系、Zn―
Al系、Zn―Mn系、Zn―Ti系などの電気めつき
鋼板やジンクロメタル、或はさらにその上にクロ
メート処理した鋼板等、種々の表面処理鋼板があ
る。
表面処理鋼板を自動車用鋼板として使用する場
合、プレス成型―脱脂―リン酸塩処理―塗装の工
程を通るが、上記新表面処理鋼板においても塗装
後の耐食性が不充分なものが多々ある。中でも、
合金電気めつき鋼板はいずれの系統のものも裸耐
食性はかなり向上しているが、多くの場合リン酸
塩処理性及び塗装後の耐食性が往々にして劣る。
リン酸塩処理性を向上する方法として、従来か
らリン酸塩処理前にリン酸ソーダ系の懸濁液をス
プレーする方法が知られている。また、リン酸塩
処理液自体の反応性を上げるために、重金属塩を
添加する方法も公知である。
しかるに、例えば加工後の成型品に懸濁液をス
プレーする方法は、一連のリン酸塩処理工程に新
たに一工程挿入することになり、設備的・コスト
的に負担も大きく、既設ラインの仕様によつては
不可能なこともある。
処理液自体に重金属塩を添加する方法は、自動
車の如く各種の表面性状をもつ部材から構成した
物品を処理する場合には、他の部材の反応も促進
するので、部位によつては過度の被膜析出を起こ
させる心配があり、化成処理液のコスト自体もか
なり上昇する。上記方策は、いずれも表面処理鋼
板のリン酸塩処理性をある程度向上させるもの
の、特に優れたものでなく、決して充分とは言え
ない。
これに対し、本発明者等は種々検討を重ねた結
果、電気Zn或はZn系合金めつき鋼板の製造工程
において簡便、確実に適用でき、しかも処理効果
のきわめて大きい技術をみいだした。これによつ
て一般の電気Zn或はZn系合金めつき鋼板のリン
酸塩処理性及び塗装後の耐食性を大幅に向上でき
ることが判つた。
以下、本発明についてくわしく説明する。
本発明者等は種々検討した結果、電気Zn或は
Zn系合金めつき鋼板の界面はいずれも特殊な状
態になつており、内部のめつき成分とは一致して
いないことをみいだした。
第1図に、Zn―Ni系合金めつき鋼板の界面か
ら内部へ各成分がどのようになつているかをオー
ジエで測定した結果を示す。横軸にめつき表面か
らの距離Ar―Sputtering Time(×102scc)、横軸
に含有元素濃度Cx(at ratio)で示す。
めつき鋼板の内部では成分な一定であるが、界
面近傍ではZnがリツチであり、Oがかなり高い
ピークを示し、また、Ni濃度は急激に低下して
いる。
このような現象が生じるのは次の理由による。
一般に電気めつき鋼板を製造するめつきセル
は、縦型セル又は横型セルを使用する。今第2図
に示す周知の縦型セル4によつて、Zn―Ni系合
金めつきを施こす場合、鋼帯1と電極2によつて
囲まれる正常めつき領域(図中斜線範囲)と、
めつき浴3外にあつてめつき液のくみ出しによつ
て生じた余剰めつき液と鋼帯間に、弱電流が流れ
る領域(以下弱電流領域と呼ぶ)(図中点線範
囲)が存在する。
弱電流領域の長さは、浴面から通知ロール5
と押えロール6との接触点迄、即ち余剰めつき液
が鋼帯に存在する範囲に相当する。この弱電流領
域では、前記正常めつき領域の如く、最適電
流密度範囲外にずれているため、その電流密度域
で電着しやすい元素が優先的に電着し、最外層は
合金成分のバランスがくずれる。Zn―Ni系合金
めつきの場合はZnが優先的に電着し、Niはあま
り電着しない。
一方、このような弱電流領域での電着では、一
般に元素は完全な結晶状態でなく、無定形或は半
無定形の状態で電着する。これら無定形或は半無
定形状態で電着したのは、活性なため酸化物や水
酸化物になりやすい。
即ち、第3図に電気めつき鋼板のめつき層の断
面を模式的に示すと、地鉄7上に形成された結晶
化した金属めつき層8の表面には、酸化物層9か
ら構成され、この酸化物層9は特定元素の酸化物
或は水酸化物の無定形、半無定形物質でおおわれ
ていることになる。
上記現象はZn―Ni系合金めつき鋼板について
説明したが、他のZn系合金めつき鋼板でも同様
で、例えばFe―Zn系、Fe―Zn―Ni系、Fe―Zn
―Ni―Co系、Zn―Mn系、Zn―Al系、Zn―Ni―
Co系、Zn―Ni―Cr系合金めつき鋼板或はZnめつ
き鋼板においても、界面はZnの無定形或は半無
定形の酸化物や水酸化物でおおわれている。
合金めつきの場合は、前述したように弱電流領
域で電着しやすい特定元素が優先的に電着し、そ
れら元素の無定形或は半無定形の酸化物や水酸化
物でおおわれている。
いずれにしても、電気Zn或はZn系合金めつき
鋼板を製造する場合、界面は多かれ少なかれ特定
元素の無定形或は半無定形の酸化物や一水酸化物
でおおわれることになる。
これら無定形或は半無定形の酸化物や水酸化物
が、めつき鋼板のリン酸塩処理性、塗装耐食性等
表面特性を大幅に低下させていることを本発明者
等は種々検討した結果みいだした。
さらに本発明者等は多くの検討を重ねた結果、
いずれのめつき鋼板においても、以下に示す処理
を行なうことにより、電気めつき鋼板の界面を容
易に改質し、特にリン酸塩処理性及び塗装耐食性
の評価試験であるクロスカツト塩水噴霧試験(ク
ロスカツト―SST)、クロスカツト長期大気曝
露、クロスカツト塩水散布大気曝露、加工後クロ
スカツト塩水噴霧試験、耐水密着性(二次密着
性)等の評価値を大幅に向上できることが判つ
た。
即ち、本発明の特徴は電気Zn或はZn系合金め
つき鋼板の製造にあたり、電気めつき終了後、リ
ン酸化合物浴中でC処理(カソード電解処理)、
C―A処理(カソード―アノード電解処理)、A
―C処理(アノード―カソード電解処理)、A処
理(アノード電解処理)、或は浸漬処理を行なう
ことにより、界面の無定形、半無定形の酸化物、
水酸化物を還元や溶解によつて改質或は除去し、
表面特性を向上せしめる点にある。
例えば、Zn―Ni系合金めつき鋼板において、
目付量が20g/m2、Ni%が13%となるように合
金電気めつきを行なつた場合、めつき界面におけ
る元素の分布状態はほぼ第1図の通りであつた。
これにそのままリン酸塩処理を行なつた場合、リ
ン酸塩の結晶は小さく、適当な大きさに成長しな
い。
また、ED塗装後さらに中塗、上塗を行なつて
塗装耐食性試験を行なつた。クロスカツト塩水噴
霧試験では、2週間後(14日後)クロスカツト部
を中心に、片側2〜3mmの幅で塗膜フクレが認め
られた。クロスカツト長期大気曝露では、6ケ月
後クロスカツト部を中心に片側2〜3mmの幅で塗
膜フクレが認められた。クロスカツト塩水散布大
気曝露(3%NaCl液を毎日1回散布)では、6
ケ月後クロスカツト部を中心に片側4〜6mmの幅
で塗膜フクレが認められた。
加工後クロスカツト塩水噴霧試験では2週間
後、加工部におけるクロスカツト部を中心に片側
3〜4mmの幅で塗膜フクレが認められた。耐水密
着性(50℃×10日間浸漬後直後ゴバン目剥離)
は、ほぼ全面剥離し、評点は1点(10点満点、10
点最高)であつた。
これに対し、同じ合金めつき鋼板を第4図に示
す如く、めつきセル4に引続いて処理層10を設
け、この処理層にPH4〜5のNaH2PO4・2H2O
を満たし、NaH2PO4・2H2O50g/の濃度の
浴中で、Dk=10A/dm2×1.5secのカソード電解
処理を行なつた。これら試験のめつき層の深さ方
向における元素の分布状態を第5図に示す。界面
近傍の無定形、半無定形な酸化物或は水酸化物は
認められなかつた。これらめつき鋼板にリン酸塩
処理を行なつた結果、均一な緻密な結晶が得られ
た。
また、同様の条件で塗装を行ない、塗装耐食性
試験を行なつた。クロスカツト塩水噴霧試験(2
週間後)、クロスカツト長期大気曝露(6ケ月
後)、クロスカツト塩水散布大気曝露(6ケ月
後)、加工後クロスカツト塩水噴霧試験(2週間
後)、ではクロスカツト周辺に塗膜のフクレの形
跡はまつたく認められなかつた。また、耐水密着
性試験を行なつた結果(試験方法は上記に同じ)、
剥離の形跡はまつたく認められず評点は10点であ
つた。
これら結果は、特定な条件でC―A処理(カソ
ード―アノード電解処理)、A―C処理(アノー
ド―カソード電解処理)、A処理(アノード電解
処理)或は浸漬処理いずれを行なつても、ほぼ同
様の結果が得られた。また、これら処理を2組以
上組み合わせて行なつても同様な結果が得られ
た。
即ち、電気めつき鋼板の界面の無定形或は半無
定形物質の酸化物、水酸化物層をC処理で還元す
るか、C―A処理、A―C処理で1部還元し、1
部溶解するか、A処理、浸漬によつて溶解し除去
することにより(いずれにしても、界面の無定形
或は半無定形物質の酸化物、水酸化物層をなく
す)、電気めつき鋼板のリン酸塩処理性、塗装耐
食性を大幅に向上することを示すものである。
本発明で用いる処理浴はNaH2PO4・2H2O、
H3PO4、K2HPO4・2H2O、Na2HPO4・2H2O等
のリン酸化合物浴である。
ここでリン酸化合物を用いるのは、本発明によ
つてめつき層表面から除去されたイオン(Zn―
Ni系合金めつきの場合はZn、Ni)がリン酸
イオンと結合し、リン酸化合物となつて沈降し、
溶解(除去)されたZn、Niが表面に再析出
するのを防止できるからである(Zn、Niが
浴中に蓄積し、弱電流で再析出すると無定形或は
半無定形の状態にあり、それらはただちに酸化
物、水酸化物となり、もとの状態になり、効果が
ない)。
また、C処理、C―A処理、A―C処理、A処
理、浸漬処理条件はそれぞれのめつき鋼板の製造
条件に応じて適当に選定すればよい。
なお、本発明に用いる処理層は、前述した実施
例の如く、めつき処理の後に隣接して配置したも
のに限定されるものではなく、めつき処理後塗装
前処理を施こす前ならば、めつきライン外にあつ
ても本発明の方法を適用できるものである。
本発明に適しためつき系としては、前述した
Zn―Ni系だけでなく、Fe―Zn系、Fe―Zn―Ni
系、Fe―Zn―Ni―Co系、Zn―Mn系、Zn―Al
系、Zn―Ni―Co系、Zn―Ni―Cr系、Cu―Zn系
めつき鋼板についても同様であつた。
以下実施例について詳細に説明する。
なお、実施例1〜13の処理条件について各実施
例ごとに説明し、第1表にこれ等実施例と本発明
の処理を施さない比較例のリン酸塩処理性及び塗
装耐食性の評価結果をまとめた。各実施例の条件
で処理浴温度を特に規定していないが、通常50℃
程度が通常使用される。
いずれも、本発明の方法を用いれば、従来の後
処理なしのものに比較して、リン酸塩処理性及び
塗装性が大幅に改良されていることがわかる。
従つて、本発明では電気Zn或はZn系合金めつ
き鋼板の製造において電気めつき後、めつき鋼板
をリン酸化合物浴中でC処理(カソード電解処
理)、C―A処理(カソード―アノード電解処
理)、A―C処理(アノード―カソード電解処
理)、A処理(アノード電解処理)、浸漬処理を行
なうことにより、リン酸塩処理性及び塗装耐食性
の優れた電気めつき鋼板を得ることができる有益
な方法である。
実施例 1
Zn―Ni合金めつきを、20g/m2めつきした表
面処理鋼板及びこれら表面処理鋼板をさらに
NaH2PO4・2H2O50g/浴中で、Dk=10A/
dm2×2secカソード電解処理を行なつた表面処理
鋼板について、リン酸塩処理性及び塗装耐食性に
ついて調査を行なつた。
実施例 2
Zn―Al合金を30g/m2めつきした表面処理鋼
板及びこれらをさらにNaH2PO4・2H2O10g/
浴中で、Dk=10A/dm2×1.5secカソード電解
処理を行なつた表面処理鋼板について、リン酸塩
処理性及び塗装耐食性について調査を行なつた。
実施例 3
Fe―Zn―Ni合金を45g/m2めつきした表面処
理鋼板及びこれらをさらにNaH2PO4・2H2O30
g/浴中で、C―A処理(カソード―アノード
電解処理:5A/dm2×2sec)を行なつた表面処
理鋼板について、リン酸塩処理性及び塗装耐食性
について調査を行なつた。
実施例 4
Zn―Ni―Cr合金を30g/m2めつきした表面処
理鋼板及びこれらをさらにNaH2PO4・2H2O20
g/浴中で、A―C処理(アノード―カソード
電解処理:5A/dm2×3sec)を行なつた表面処
理鋼板について、リン酸塩処理性及び塗装耐食性
について調査を行なつた。
実施例 5
Fe―Zn合金を60g/m2めつきした表面処理鋼
板及びこれらをさらにNaH2PO4・2H2O70g/
、60℃の浴中で3秒間浸漬処理した表面処理鋼
板について、リン酸塩処理性及び塗装耐食性につ
いて調査を行なつた。
実施例 6
Zn―Mn合金を20g/m2めつきした表面処理鋼
板及びこれをさらにNaH2PO4・2H2O200g/
浴中でC処理(カソード電解処理:Dk=15A/
dm2×2sec)を行なつた表面処理鋼板について、
リン酸塩処理性及び塗装耐食性について調査を行
なつた。
実施例 7
Fe―Ni―Zn―Co合金を30g/m2めつきした表
面処理鋼板及びこれらをさらにH3PO4200g/
の浴中で、C―A処理(カソード―アノード電解
処理:10A/dm2×1.5sec)を行なつた表面処理
鋼板について、リン酸塩処理性及び塗装耐食性に
ついて調査を行なつた。
実施例 8
Fe―Zn合金を40g/m2めつきした表面処理鋼
板及びこれらをさらにNa2HPO4・2H2O20g/
の浴中でA―C処理(アノード―カソード電解
処理:15A/dm2×2sec)を行なつた表面処理鋼
板について、リン酸塩処理性及び塗装耐食性につ
いて調査を行なつた。
実施例 9
Zn―Ni合金を30g/m2めつきした表面処理鋼
板及びこれらをさらにKH2PO4・2H2O50g/
の浴中でC処理(カソード電解処理:15A/dm2
×1.5sce)を行なつた表面処理鋼板について、リ
ン酸塩処理性及び塗装耐食性について調査を行な
つた。
実施例 10
Znめつきを40g/m2めつきした表面処理鋼板
及びこれらをさらにNa2HPO4・2H2O150g/
の浴中でC処理(カソード電解処理:10A/dm2
×1.5sce)を行なつた表面処理鋼板について、リ
ン酸塩処理性及び塗装耐食性について調査を行な
つた。
実施例 11
Zn―Ni―Co系合金めつきを、20g/m2めつき
した表面処理鋼板及びこれらをさらにK2HPO4・
2H2O200g/浴中で10A/dm2×2secアノード
電解処理を行なつた表面処理鋼板について、リン
酸塩処理性及び塗装耐食性について調査した。
実施例 12
Cu―Zn系合金めつきを、30g/m2めつきした
表面処理鋼板及びこれらをさらにNa2HPO4・
2H2O150g/浴中でC―A処理(カソード―
アノード電解処理:5A/dm2×2sec)を行なつ
た表面処理鋼板について、リン酸塩処理性及び塗
装耐食性について調査を行なつた。
実施例 13
Sn―Zn系合金めつきを、20g/m2めつきした
表面処理鋼板及びこれらをさらにNaH2PO4・
2H2O250g/浴中でA―C処理(アノード―
カソード電解処理:5A/dm2×3sec)を行なつ
た表面処理鋼板について、リン酸塩処理性及び塗
装耐食性について調査を行なつた。
なお上記実施例で用いた試験方法及び評価方法
は次の通りである。
1) リン酸塩処理性
評 価:
◎:均一な緻密な結晶、結晶は小
○: 〃 、結晶は多小大
△: 〃 、結晶は大
×:1部マダラ状、結晶は粗大
××:マダラ状 、結晶はかなり粗大
2) クロスカツト塩水噴霧試験
リン酸塩処理―ED塗装―中塗―上塗塗装後
クロスカツトし、塩水噴霧試験を2週間行な
い、クロスカツトを中心に塗料のフクレ幅を測
定する。
評 価:
◎:フクレ幅なし(ゼロ)
○:片側フクレ幅0.5mm以内
△: 〃 0.5〜2mm
×: 〃 2〜5mm
××: 〃 5mm以上
3) クロスカツト長期大気曝露
リン酸塩処理―ED塗装―中塗―上塗塗装後
クロスカツトし、6ケ月間大気中に曝露し、ク
ロスカツトを中心に塗料のフクレ幅を測定す
る。
評 価:2)に同じ
4) クロスカツト塩水散布大気曝露
リン酸塩処理―ED塗装―中塗―上塗塗装後
クロスカツトし、大気中に曝露し、1日1回、
3%NaCl液を試料に散布する。
6ケ月後、クロスカツトを中心に塗料のフク
レ幅を測定する。
評 価:2)に同じ
5) 加工後クロスカツト塩水噴霧試験
絞り加工後、リン酸塩処理―ED塗装―中塗
―上塗塗装後絞り加工部にクロスカツトし、1
ケ月間塩水噴霧試験を行ない、クロスカツトを
中心に塗料のフクレ幅を測定する。
評 価:2)に同じ
6) 耐水密着性
リン酸塩処理―ED塗装―中塗―上塗塗装後
50℃の温水に10日間浸漬し、直後ゴバン目剥離
試験を行なう。
評 価:10点:塗膜剥離ゼロ
9点: 〃 0〜1%
8点: 〃 1〜3%
7点: 〃 3〜5%
6点: 〃 5〜10%
5点: 〃 10〜20%
4点: 〃 20〜30%
3点: 〃 30〜50%
2点: 〃 50〜90%
1点: 〃 90〜100%
【表】DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing an electrically coated Zn or Zn-based alloy plated steel sheet. In general, when actually using steel sheets for automobiles, there are cases where they are used as is after undergoing processing such as press forming, and cases where they are subjected to phosphate treatment and then painted before being used for the final purpose. In the former case, bare corrosion resistance is an extremely important issue, while in the latter case, phosphate treatment properties and corrosion resistance after painting are extremely important issues. An object of the present invention is to provide a surface-treated steel sheet that is particularly excellent in the latter case. As a recent trend, for example, in regions with heavy snowfall such as North America and Canada, rock salt has been sprinkled on roads to melt snow, but as a result, car bodies are exposed to an extremely corrosive environment. Summer. In contrast, electrogalvanized and hot-dip galvanized steel sheets have been mainly used as materials that are resistant to such corrosive environments, but the corrosion resistance after painting is not always sufficient, and Various safety problems have arisen, including severe corrosion and holes. Under these circumstances, the development of surface-treated steel sheets with excellent corrosion resistance after painting that can withstand salt damage is strongly discouraged, and each steel manufacturer has made great efforts to develop many new surface-treated steel sheets. It is commercially available. For example, these include Zn-Ni, Zn
-Ni-Co series, Fe-Zn series, Fe-Zn-Ni series, Zn-
There are various surface-treated steel sheets, such as electroplated steel sheets such as Al-based, Zn-Mn-based, and Zn-Ti-based steel sheets, zinc chromate steel sheets, and steel sheets with chromate treatment applied thereon. When a surface-treated steel sheet is used as a steel sheet for automobiles, it goes through the steps of press forming, degreasing, phosphate treatment, and painting, but even in the above-mentioned new surface-treated steel sheets, the corrosion resistance after painting is often insufficient. Among them,
Although all types of alloy electroplated steel sheets have considerably improved bare corrosion resistance, in most cases phosphatability and post-coating corrosion resistance are often poor. As a method for improving phosphate treatment properties, a method of spraying a sodium phosphate suspension before phosphate treatment has been known. Furthermore, a method of adding heavy metal salts to increase the reactivity of the phosphate treatment solution itself is also known. However, for example, the method of spraying a suspension onto a molded product after processing requires an additional step to be added to the series of phosphate treatment steps, which is a heavy burden in terms of equipment and cost, and does not require the specifications of the existing line. In some cases it may not be possible. The method of adding heavy metal salts to the treatment liquid itself may cause excessive reaction in some areas when treating articles made of parts with various surface textures, such as automobiles, as it also accelerates reactions in other parts. There is a concern that film deposition may occur, and the cost of the chemical conversion treatment solution itself increases considerably. Although all of the above measures improve the phosphate treatment properties of the surface-treated steel sheet to some extent, they are not particularly excellent and cannot be said to be sufficient. On the other hand, as a result of various studies, the present inventors have discovered a technique that can be easily and reliably applied to the manufacturing process of electrically coated Zn or Zn-based alloy plated steel sheets, and that has an extremely large processing effect. It has been found that this method can significantly improve the phosphate treatment properties and post-painting corrosion resistance of general electrical Zn or Zn-based alloy coated steel sheets. The present invention will be explained in detail below. As a result of various studies, the inventors of the present invention found that electric Zn or
It was discovered that the interfaces of Zn-based alloy coated steel sheets are all in a special state, and the internal plating components do not match. Figure 1 shows the results of Auger measurements of how each component is distributed from the interface to the interior of a Zn-Ni alloy coated steel sheet. The horizontal axis shows the distance from the plating surface Ar-Sputtering Time (×10 2 scc), and the horizontal axis shows the contained element concentration Cx (at ratio). Although the components are constant inside the plated steel sheet, Zn is rich near the interface, O shows a fairly high peak, and the Ni concentration decreases rapidly. This phenomenon occurs for the following reasons. Generally, a vertical cell or a horizontal cell is used as a plating cell for producing electroplated steel sheets. When applying Zn--Ni alloy plating using the well-known vertical cell 4 shown in FIG. ,
There is a region where a weak current flows (hereinafter referred to as the weak current region) (dotted line range in the figure) between the steel strip and the surplus plating solution generated by pumping out the plating solution heated outside the plating bath 3. . The length of the weak current area is from the bath surface to the notification roll 5.
This corresponds to the point of contact between the plate and the presser roll 6, that is, the range where excess plating liquid exists on the steel strip. In this weak current region, like the normal plating region mentioned above, the current density is outside the optimum current density range, so elements that are easy to electrodeposit in that current density region are preferentially electrodeposited, and the outermost layer has a balance of alloy components. My body collapses. In the case of Zn-Ni alloy plating, Zn is preferentially electrodeposited, and Ni is not very much electrodeposited. On the other hand, in electrodeposition in such a weak current region, elements are generally electrodeposited not in a completely crystalline state but in an amorphous or semi-amorphous state. These electrodeposited materials in an amorphous or semi-amorphous state tend to become oxides or hydroxides because they are active. That is, when a cross section of a plating layer of an electroplated steel sheet is schematically shown in FIG. This oxide layer 9 is covered with an amorphous or semi-amorphous substance such as an oxide or hydroxide of a specific element. The above phenomenon has been explained for Zn-Ni alloy plated steel sheets, but it is similar for other Zn-based alloy coated steel sheets, such as Fe-Zn system, Fe-Zn-Ni system, Fe-Zn system.
-Ni-Co series, Zn-Mn series, Zn-Al series, Zn-Ni-
Even in Co-based, Zn-Ni-Cr-based alloy-plated steel sheets, or Zn-plated steel sheets, the interface is covered with amorphous or semi-amorphous oxides and hydroxides of Zn. In the case of alloy plating, as described above, specific elements that are easy to electrodeposit in a weak current region are preferentially electrodeposited, and are covered with amorphous or semi-amorphous oxides or hydroxides of these elements. In any case, when producing electrical Zn or Zn-based alloy plated steel sheets, the interface is more or less covered with amorphous or semi-amorphous oxides or monohydroxides of specific elements. As a result of various studies, the present inventors have found that these amorphous or semi-amorphous oxides and hydroxides significantly reduce the surface properties of galvanized steel sheets, such as their phosphate treatment properties and paint corrosion resistance. I found it. Furthermore, as a result of many studies, the present inventors found that
For any type of galvanized steel sheet, the interface of the electroplated steel sheet can be easily modified by performing the treatments shown below. It was found that evaluation values such as cross-cut long-term atmospheric exposure, cross-cut salt water spray atmospheric exposure, post-processing cross-cut salt spray test, and water-resistant adhesion (secondary adhesion) can be significantly improved. That is, the feature of the present invention is that in the production of electrical Zn or Zn-based alloy plated steel sheets, after electroplating, C treatment (cathode electrolytic treatment) in a phosphoric acid compound bath,
C-A treatment (cathode-anode electrolysis treatment), A
- By performing C treatment (anode-cathode electrolysis treatment), A treatment (anode electrolysis treatment), or immersion treatment, amorphous or semi-amorphous oxides at the interface,
Modify or remove hydroxide by reduction or dissolution,
Its purpose is to improve surface properties. For example, in a Zn-Ni alloy plated steel plate,
When alloy electroplating was carried out so that the basis weight was 20 g/m 2 and the Ni% was 13%, the distribution of elements at the plating interface was approximately as shown in FIG.
If this is directly treated with phosphate, the phosphate crystals will be small and will not grow to an appropriate size. Furthermore, after the ED coating, an intermediate coat and a top coat were applied, and a paint corrosion resistance test was conducted. In the cross-cut salt spray test, after two weeks (14 days), paint film blisters were observed in a width of 2 to 3 mm on one side, mainly at the cross-cut portion. After 6 months of long-term exposure of the crosscut to the atmosphere, blistering of the paint film was observed in a width of 2 to 3 mm on one side centering on the crosscut. In cross-cut salt water spray atmospheric exposure (spraying 3% NaCl solution once daily), 6
After several months, blistering of the coating film was observed in a width of 4 to 6 mm on one side centering on the cross-cut area. In the post-processing cross-cut salt water spray test, two weeks later, paint film blistering was observed in a width of 3 to 4 mm on one side centering on the cross-cut area in the processed area. Water resistant adhesion (peel off immediately after soaking at 50℃ for 10 days)
almost completely peeled off, and the rating was 1 point (out of 10, 10
(highest score). On the other hand, as shown in FIG. 4, the same alloy-plated steel sheet is provided with a treatment layer 10 following the plating cell 4, and this treatment layer is coated with NaH 2 PO 4 .2H 2 O with a pH of 4 to 5.
Cathode electrolytic treatment was performed at Dk = 10 A/dm 2 ×1.5 sec in a bath with a concentration of 50 g / NaH 2 PO 4 .2H 2 O. The distribution of elements in the depth direction of the plating layer in these tests is shown in FIG. No amorphous or semi-amorphous oxide or hydroxide was observed near the interface. As a result of phosphate treatment of these plated steel plates, uniform and dense crystals were obtained. In addition, coating was performed under the same conditions to conduct a coating corrosion resistance test. Cross-cut salt spray test (2)
(after 2 weeks), long-term atmospheric exposure of cross-cuts (after 6 months), exposure of cross-cuts to salt water spraying in the atmosphere (after 6 months), salt spray test of cross-cuts after processing (after 2 weeks), there was no evidence of blistering of the paint film around the cross-cuts. It wasn't recognized. In addition, the results of a water resistant adhesion test (the test method is the same as above),
No evidence of peeling was observed and the score was 10 points. These results show that regardless of whether C-A treatment (cathode-anode electrolysis treatment), A-C treatment (anode-cathode electrolysis treatment), A treatment (anode electrolysis treatment) or immersion treatment is performed under specific conditions, Almost similar results were obtained. Similar results were also obtained when two or more of these treatments were combined. That is, the oxide or hydroxide layer of the amorphous or semi-amorphous substance at the interface of the electroplated steel sheet is reduced by C treatment, or a portion is reduced by C-A treatment or A-C treatment, and 1
Electroplated steel sheets can be produced by partially dissolving or by dissolving and removing them by A treatment or immersion (in any case, eliminating the oxide or hydroxide layer of amorphous or semi-amorphous substances at the interface). This shows that the phosphate treatment properties and paint corrosion resistance of the paint are significantly improved. The treatment bath used in the present invention is NaH 2 PO 4 2H 2 O,
It is a phosphoric acid compound bath such as H 3 PO 4 , K 2 HPO 4 ·2H 2 O, Na 2 HPO 4 ·2H 2 O, etc. Here, the phosphoric acid compound is used because ions (Zn-
In the case of Ni-based alloy plating, Zn, Ni) combine with phosphate ions, become phosphate compounds, and precipitate.
This is because dissolved (removed) Zn and Ni can be prevented from redepositing on the surface (if Zn and Ni accumulate in the bath and redeposit with a weak current, they will be in an amorphous or semi-amorphous state. , they immediately turn into oxides, hydroxides, return to their original state, and have no effect). Further, the C treatment, CA treatment, AC treatment, A treatment, and dipping treatment conditions may be appropriately selected depending on the manufacturing conditions of each plated steel sheet. Note that the treated layer used in the present invention is not limited to those arranged adjacently after the plating treatment as in the above-mentioned embodiments, but as long as it is placed after the plating treatment and before the pre-painting treatment. The method of the present invention can be applied even outside the plating line. As a mating system suitable for the present invention, the above-mentioned
Not only Zn-Ni system, but also Fe-Zn system, Fe-Zn-Ni system
system, Fe-Zn-Ni-Co system, Zn-Mn system, Zn-Al
The same was true for Zn-Ni-Co, Zn-Ni-Cr, and Cu-Zn galvanized steel sheets. Examples will be described in detail below. The treatment conditions of Examples 1 to 13 will be explained for each example, and Table 1 shows the evaluation results of phosphate treatability and paint corrosion resistance of these examples and comparative examples that are not subjected to the treatment of the present invention. Summarized. Although the treatment bath temperature is not particularly specified under the conditions of each example, it is usually 50°C.
degree is usually used. In both cases, it can be seen that when the method of the present invention is used, the phosphate treatability and paintability are significantly improved compared to the conventional method without post-treatment. Therefore, in the present invention, in the production of electrical Zn or Zn-based alloy plated steel sheets, after electroplating, the plated steel sheets are subjected to C treatment (cathode electrolytic treatment) and C-A treatment (cathode-anode treatment) in a phosphoric acid compound bath. Electroplated steel sheets with excellent phosphate treatment properties and paint corrosion resistance can be obtained by performing electrolytic treatment), AC treatment (anode-cathode electrolysis treatment), A treatment (anodic electrolysis treatment), and immersion treatment. This is a useful method. Example 1 Surface-treated steel sheets with Zn-Ni alloy plating of 20g/ m2 and these surface-treated steel sheets further
NaH 2 PO 4・2H 2 O 50g/in bath, Dk=10A/
A surface-treated steel sheet that had been subjected to dm 2 ×2 sec cathodic electrolytic treatment was investigated for its phosphate treatment properties and paint corrosion resistance. Example 2 A surface-treated steel plate plated with Zn-Al alloy at 30g/ m2 and further plated with NaH 2 PO 4・2H 2 O 10g/m2
A surface-treated steel sheet that had been subjected to cathodic electrolytic treatment in a bath with Dk = 10 A/dm 2 ×1.5 sec was investigated for phosphate treatment properties and paint corrosion resistance. Example 3 A surface-treated steel plate plated with Fe-Zn-Ni alloy at 45g/m2 and further coated with NaH 2 PO 4 2H 2 O30
A surface-treated steel sheet that had been subjected to CA treatment (cathode-anode electrolytic treatment: 5 A/dm 2 ×2 sec) in a bath of 200 ml was investigated for its phosphate treatment properties and paint corrosion resistance. Example 4 Surface-treated steel sheet coated with Zn-Ni-Cr alloy at 30 g/m2 and further coated with NaH 2 PO 4 2H 2 O20
A surface-treated steel sheet that had been subjected to AC treatment (anode-cathode electrolytic treatment: 5 A/dm 2 ×3 sec) in a bath of 300 ml was investigated for its phosphate treatment properties and paint corrosion resistance. Example 5 A surface-treated steel plate plated with Fe-Zn alloy at 60 g/ m2 and further plated with NaH 2 PO 4 2H 2 O 70 g/m2
The phosphate treatment properties and paint corrosion resistance of surface-treated steel sheets immersed in a bath at 60°C for 3 seconds were investigated. Example 6 A surface treated steel plate coated with 20g/ m2 of Zn-Mn alloy and further plated with 200g/m of NaH 2 PO 4・2H 2 O
C treatment in bath (cathode electrolysis treatment: Dk=15A/
Regarding surface-treated steel sheets subjected to
We investigated phosphate treatment properties and paint corrosion resistance. Example 7 A surface-treated steel plate coated with Fe-Ni-Zn-Co alloy at 30 g/ m2 and further coated with H 3 PO 4 200 g/m2.
A surface-treated steel sheet that had been subjected to CA treatment (cathode-anode electrolysis treatment: 10 A/dm 2 ×1.5 sec) in a bath was investigated for phosphate treatment properties and paint corrosion resistance. Example 8 A surface-treated steel plate plated with Fe-Zn alloy at 40g/ m2 and further coated with Na2HPO4・2H2O20g / m2 .
The phosphate treatment properties and coating corrosion resistance of surface-treated steel sheets that had been subjected to A-C treatment (anode-cathode electrolysis treatment: 15 A/dm 2 × 2 sec) in a bath were investigated. Example 9 A surface-treated steel plate coated with Zn-Ni alloy at 30g/ m2 and further coated with KH 2 PO 4・2H 2 O 50g/m2
C treatment (cathode electrolytic treatment: 15A/dm 2
The phosphate treatment properties and paint corrosion resistance of the surface-treated steel sheets that had been subjected to a 1.5 sce coating were investigated. Example 10 Surface-treated steel sheet with Zn plating of 40 g/ m2 and these further coated with Na 2 HPO 4・2H 2 O 150 g/m2
C treatment (cathode electrolytic treatment: 10A/dm 2
The phosphate treatment properties and paint corrosion resistance of the surface-treated steel sheets that had been subjected to a 1.5 sce coating were investigated. Example 11 A surface-treated steel sheet plated with Zn-Ni-Co alloy at a rate of 20g/ m2 and further coated with K2HPO4 .
Phosphate treatment properties and paint corrosion resistance were investigated on surface-treated steel sheets that had been subjected to anodic electrolytic treatment at 10 A/dm 2 ×2 seconds in a 200 g 2H 2 O/bath. Example 12 A surface-treated steel sheet plated with Cu-Zn alloy at a rate of 30 g/ m2 and further coated with Na 2 HPO 4 .
2H 2 O150g/C-A treatment in bath (cathode)
The phosphate treatment properties and coating corrosion resistance of the surface-treated steel sheets subjected to anode electrolytic treatment (5 A/dm 2 ×2 sec) were investigated. Example 13 A surface-treated steel sheet plated with Sn--Zn alloy at a rate of 20g/ m2 and further coated with NaH 2 PO 4 .
2H 2 O250g/A-C treatment in bath (anode-
A surface-treated steel sheet that had been subjected to cathodic electrolytic treatment (5 A/dm 2 ×3 sec) was investigated for its phosphate treatment properties and paint corrosion resistance. The test methods and evaluation methods used in the above examples are as follows. 1) Phosphate treatability Evaluation: ◎: Uniform, dense crystals, small crystals ○: 〃, crystals are small and large △: 〃, crystals are large ×: Partly spotted, crystals are coarse XX: Spotted, crystals are quite coarse 2) Cross-cut salt spray test Cross-cut after phosphate treatment - ED coating - intermediate coating - top coating, conduct salt water spray test for 2 weeks, and measure the blistering width of the paint centering on the cross-cut. Evaluation: ◎: No blistering width (zero) ○: One side blistering width within 0.5mm △: 〃 0.5-2mm ×: 〃 2-5mm ××: 〃 5mm or more3) Cross-cut long-term atmospheric exposure Phosphate treatment - ED painting - Intermediate coating - After applying the top coat, cross-cut it, expose it to the atmosphere for 6 months, and measure the blistering width of the paint around the cross-cut. Evaluation: Same as 2) 4) Cross-cut salt water spraying atmospheric exposure Phosphate treatment - ED coating - Intermediate coating - After coating, cross-cut and expose to the atmosphere, once a day.
Sprinkle the sample with 3% NaCl solution. After 6 months, measure the blistering width of the paint centering on the cross cut. Evaluation: Same as 2) 5) Cross-cut salt spray test after processing After drawing, phosphate treatment - ED coating - Intermediate coating - Top coating After cross-cutting on the drawing part, 1
A salt water spray test is conducted for several months, and the blistering width of the paint is measured centering on the cross cut. Evaluation: Same as 2) 6) Water resistant adhesion After phosphate treatment - ED coating - Intermediate coating - Top coating
Immerse in warm water at 50℃ for 10 days, and immediately perform a cross-cut peel test. Evaluation: 10 points: Zero paint film peeling 9 points: 〃 0-1% 8 points: 〃 1-3% 7 points: 〃 3-5% 6 points: 〃 5-10% 5 points: 〃 10-20% 4 points: 〃 20-30% 3 points: 〃 30-50% 2 points: 〃 50-90% 1 point: 〃 90-100% [Table]
第1図はZn―Ni系合金めつき鋼板のめつき層
の含有元素分布を示した図表、第2図は縦型めつ
き層により電気めつきする際のめつき領域の説明
図、第3図は電気めつき鋼板のめつき層断面の模
式図、第4図は本発明に使用した処理層をめつき
層に隣接した説明図、第5図は本発明を用いた
Zn―Ni系合金めつき層の各成分の分布図である。
1…鋼帯、2…電極、3…めつき浴、4…めつ
きセル、5…通電ロール、6…押えロール、7…
地鉄、8…金属めつき層、9…酸化物層、10…
処理層、…正常めつき領域、…弱電流領域。
Figure 1 is a diagram showing the distribution of elements contained in the plating layer of a Zn-Ni alloy coated steel sheet, Figure 2 is an explanatory diagram of the plating area when electroplating is performed using a vertical plating layer, and Figure 3 The figure is a schematic diagram of a cross section of the plating layer of an electroplated steel sheet, Figure 4 is an explanatory diagram of the treated layer used in the present invention adjacent to the plated layer, and Figure 5 is a diagram showing the treated layer used in the present invention.
FIG. 3 is a distribution diagram of each component of a Zn--Ni based alloy plating layer. DESCRIPTION OF SYMBOLS 1... Steel strip, 2... Electrode, 3... Plating bath, 4... Plating cell, 5... Current roll, 6... Presser roll, 7...
Base iron, 8... Metal plating layer, 9... Oxide layer, 10...
Processing layer, normal plating area, weak current area.
Claims (1)
いて、電気Zn或はZn系合金めつき後、めつき鋼
板をリン酸化合物浴中でC処理(カソード電解処
理)、C―A処理(カソード―アノード電解処
理)、A―C処理(アノード―カソード電解処
理)、A処理(アノード電解処理)、浸漬処理の1
種或は2種以上を行ない、電気めつき表面の酸化
物を除去することを特徴とする電気Zn或はZn系
合金めつき鋼板の製造方法。1. In the production of electrical Zn or Zn-based alloy plated steel sheets, after electrolytic Zn or Zn-based alloy plating, the plated steel sheets are subjected to C treatment (cathode electrolytic treatment) and C-A treatment (cathode electrolytic treatment) in a phosphoric acid compound bath. -Anodic electrolytic treatment), A-C treatment (anode-cathode electrolytic treatment), A treatment (anodic electrolytic treatment), and immersion treatment.
1. A method for producing an electroplated steel sheet with Zn or Zn-based alloy, which comprises removing oxides from the electroplated surface by performing one or more of the following steps.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9308582A JPS58210194A (en) | 1982-06-02 | 1982-06-02 | Production of surface treated steel plate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9308582A JPS58210194A (en) | 1982-06-02 | 1982-06-02 | Production of surface treated steel plate |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58210194A JPS58210194A (en) | 1983-12-07 |
JPH0121234B2 true JPH0121234B2 (en) | 1989-04-20 |
Family
ID=14072683
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9308582A Granted JPS58210194A (en) | 1982-06-02 | 1982-06-02 | Production of surface treated steel plate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58210194A (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61227181A (en) * | 1985-03-30 | 1986-10-09 | Sumitomo Metal Ind Ltd | Highly corrosion resistant surface treated steel material |
JPS61272400A (en) * | 1985-05-27 | 1986-12-02 | Nippon Steel Corp | Manufacture of hot dipped steel sheet |
JPS62294198A (en) * | 1986-06-12 | 1987-12-21 | Sumitomo Metal Ind Ltd | Rustproof steel sheet for automobile and its production |
JPS6393879A (en) * | 1986-10-06 | 1988-04-25 | Nkk Corp | Production of zinc-nickel alloy electroplated steel sheet having superior suitability to chemical treatment |
JP2528944B2 (en) * | 1988-07-13 | 1996-08-28 | 川崎製鉄株式会社 | Method for producing Zn-based alloy electroplated steel sheet excellent in chemical conversion treatability and corrosion resistance |
DE4329290C2 (en) * | 1993-08-31 | 1998-04-09 | Bosch Gmbh Robert | Process for the electrolytic cleaning of metallic parts and its application |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4951133A (en) * | 1972-09-19 | 1974-05-17 | ||
JPS5079444A (en) * | 1973-11-19 | 1975-06-27 | ||
JPS5142582A (en) * | 1974-10-08 | 1976-04-10 | Sumitomo Electric Industries | Zetsuendensenno himakunaizanryuoryokuno sokuteiho |
JPS5218654A (en) * | 1975-08-01 | 1977-02-12 | Hitachi Ltd | Elevator control system |
JPS5337818A (en) * | 1976-09-18 | 1978-04-07 | Hitachi Ltd | Oil flow channel switchover device for oil electrical machinery and apparatus |
JPS56119780A (en) * | 1980-02-27 | 1981-09-19 | Nisshin Steel Co Ltd | Pretreatment for phosphating treatment of steel sheet |
JPS58181889A (en) * | 1982-04-17 | 1983-10-24 | Nippon Steel Corp | Preparation of single surface zinc electroplated steel plate |
-
1982
- 1982-06-02 JP JP9308582A patent/JPS58210194A/en active Granted
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4951133A (en) * | 1972-09-19 | 1974-05-17 | ||
JPS5079444A (en) * | 1973-11-19 | 1975-06-27 | ||
JPS5142582A (en) * | 1974-10-08 | 1976-04-10 | Sumitomo Electric Industries | Zetsuendensenno himakunaizanryuoryokuno sokuteiho |
JPS5218654A (en) * | 1975-08-01 | 1977-02-12 | Hitachi Ltd | Elevator control system |
JPS5337818A (en) * | 1976-09-18 | 1978-04-07 | Hitachi Ltd | Oil flow channel switchover device for oil electrical machinery and apparatus |
JPS56119780A (en) * | 1980-02-27 | 1981-09-19 | Nisshin Steel Co Ltd | Pretreatment for phosphating treatment of steel sheet |
JPS58181889A (en) * | 1982-04-17 | 1983-10-24 | Nippon Steel Corp | Preparation of single surface zinc electroplated steel plate |
Also Published As
Publication number | Publication date |
---|---|
JPS58210194A (en) | 1983-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6136078B2 (en) | ||
JPH04246191A (en) | Method for directly electroplating aluminum strip with zinc | |
US3816082A (en) | Method of improving the corrosion resistance of zinc coated ferrous metal substrates and the corrosion resistant substrates thus produced | |
JPS6056436B2 (en) | Surface-treated steel sheet with excellent corrosion resistance and phosphate treatment properties | |
JPH0121234B2 (en) | ||
US5503733A (en) | Process for phosphating galvanized steel surfaces | |
JPS62211397A (en) | Production of zinc alloy plated steel sheet having excellent adhesiveness | |
JPH03223472A (en) | Surface treating liquid and surface treatment for galvanized steel sheet | |
JPS63277794A (en) | Production of steel sheet coated with sn-based multilayered plating and having superior adhesion to paint | |
JP2509940B2 (en) | Method for producing Zn-Ni alloy plated steel sheet | |
JPH0256437B2 (en) | ||
JPS634635B2 (en) | ||
JPS5852494A (en) | Iron-zinc alloy plated steel material | |
JPH07166371A (en) | Zn-ni based alloy plated steel sheet excellent in corrosion resistance, powdering resistance, low temperature impact peeling resistance, slidability and phosphating property | |
JPH01108396A (en) | Production of galvannealed steel sheet for coating by cationic electrodeposition | |
JPS6136594B2 (en) | ||
JPH0142359B2 (en) | ||
JPS61119694A (en) | Production of electroplated steel plate | |
KR930007927B1 (en) | Two-layer plating alloy steel sheet of high corrosion resistance and method for producing the same | |
JPH10158885A (en) | Production of phosphated and galvanized steel sheet | |
JPS6254198B2 (en) | ||
JPS58104195A (en) | Production of zinc composite plated steel plate having excellent secondary adhesive strength of paint film | |
JPH05171461A (en) | Method of phosphating al-zn alloy plated metallic sheet | |
KR20050050174A (en) | The process for high strength and high tensile steel sheet with good phosphate coating and painting properties | |
JPH0430476B2 (en) |