JPH0256437B2 - - Google Patents

Info

Publication number
JPH0256437B2
JPH0256437B2 JP61134869A JP13486986A JPH0256437B2 JP H0256437 B2 JPH0256437 B2 JP H0256437B2 JP 61134869 A JP61134869 A JP 61134869A JP 13486986 A JP13486986 A JP 13486986A JP H0256437 B2 JPH0256437 B2 JP H0256437B2
Authority
JP
Japan
Prior art keywords
plating
alloy plating
alloy
content
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61134869A
Other languages
Japanese (ja)
Other versions
JPS62294198A (en
Inventor
Nobukazu Suzuki
Katsuya Hosono
Kazuhide Ooshima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP13486986A priority Critical patent/JPS62294198A/en
Publication of JPS62294198A publication Critical patent/JPS62294198A/en
Publication of JPH0256437B2 publication Critical patent/JPH0256437B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〈産業上の利用分野〉 この発明は、防錆性能が優れるのみならず、優
れたメツキ密着性、塗装性並びに塗装後の塗膜密
着性を備え、自動車車体の内板はもとより、外板
としても好適なZn系合金メツキ鋼板、及びその
製造方法に関するものである。 〈背景技術〉 近年、自動車車体の防錆性能に対する要求は
益々厳しくなり、その対策も一段と深刻化の度合
を深めてきた。特に、各自動車メーカーから自動
車車体の穴あきや外面錆抑制年月の長期化を図つ
た防錆目標の引き上げ案が次々と提案され、自動
車用防錆鋼板の防錆性能向上策は緊急の課題とな
つている。 ところで、現在、自動車用防錆鋼板の主流は、
塗装性や耐食性に優れているとの理由から、Zn
―Fe合金メツキ鋼板及びZn―Ni合金メツキ鋼板
に代表されるZn系合金メツキ鋼板に移りつつあ
る。もつとも、これらZn系合金メツキ鋼板は、
これまで特に耐穴あき腐食性に優れていることに
注目が寄せられて主として自動車の内板に使用さ
れてきたが、外面錆抑制年月長期化目標の具体化
に伴つてZn―Fe合金メツキ或いはZn―Ni合金メ
ツキを車体外装外面へ適用する検討が始まり、一
部Zn―Fe合金メツキについてはその実用も試み
られるようになつてきた。 しかしながら、耐食性の点でより優れていると
されるZn―Ni合金メツキ鋼板では、自動車用外
板として要求される性能に対して以下に示すよう
な問題があり、改善が望まれているのが現状であ
つた。即ち、 (a) 通常のZn―Ni合金メツキではメツキ層のNi
含有量:10〜16重量%の範囲で良好な耐食性能
が得られるが、この範囲の合金はγ単相の硬い
金属間化合物となつており、そのため該鋼板を
自動車用外板として使用すると走行時に受けが
ちな飛び石等によるチツピング衝撃により、塗
膜の剥離と同時にメツキ皮膜の剥離までをも生
じ易い。そして、チツピング現象によるメツキ
剥離個所は赤錆が生じ易く、外面錆の発生が極
力嫌われる自動車外板としての用途には致命的
な問題となる。 (b) 自動車用外板の外面性能として要求される大
きな特性の一つに塗膜の耐水密着性があり、現
在、塗装前処理として実施されるリン酸塩処理
の改善に伴つて緻密な結晶を持つた塗膜密着性
の良いリン酸亜鉛処理皮膜の形成も可能となつ
たが、それでもZn―Ni合金メツキ面に対して
は安定して満足できる化成皮膜形成が困難であ
る。 (c) 自動車用外板にはカチオン電着塗装が欠かせ
ないが、カチオン電着塗装では塗装時の耐クレ
ーターリング性が大きな問題となり、Zn―Ni
合金メツキ面は該耐クレーターリング性が良い
とは決して言えないものもある。もつとも、こ
の耐クレーターリング性を改善するためにFe
メツキ又はFe―Znメツキを施す手段も提案さ
れてはいるが(特公昭58―15554号公報、特公
昭60―57518号公報)、このようなFe系メツキ
をZn―Ni合金メツキの上層として施すと、耐
クレーターリング性は向上するものの塗装後に
も当然残存するFe系メツキの存在により赤錆
が発生し易くなり、自動車用外板として極めて
不利となる。 なお、前記(a)項で指摘した耐チツピング性はメ
ツキの密着性に関係するものであるが、メツキの
密着性を改善するものとして過去にNi含有量の
異なるZn―Ni合金の多層メツキを施す提案がな
されてはいる(特開昭58―204196号公報)。一方、
Zn―Ni合金の多層メツキを耐食性や耐パウダリ
ング性の改善策として施す提案も見受けられる
(特開昭58―204196号公報、特開昭60―141894号
公報)。しかしながら、これらZn―Ni合金の多層
メツキを行うにはメツキ浴のZn2+とNi2+の濃度
比を種々に変える管理が必要であり、設備的に莫
大な投資が必要である上、操業管理も非常に困難
なものであつた。 〈問題点を解決するための手段〉 本発明者等は、上述のような観点から、防錆性
能に優れることは勿論のこと、メツキ密着性、塗
装性、塗装塗膜の密着性等も良好で、自動車車体
の内板としても、また外板としても十分に満足で
きる表面処理鋼板を安定して提供すべく、研究を
重ねた結果、以下に示される如き知見が得られた
のである。即ち、 鋼板基材上にまず高Ni含有量でかつ特定厚
さのZn―Ni合金メツキ中間層を形成し、その
上にNi含有量を調整したZn―Ni合金外層をメ
ツキするとともに、更に該Zn―Ni合金メツキ
外層の外表面をメツキ浴乃至は他の酸液にて処
理すると、上記高Ni含有量のZn―Ni合金メツ
キ中間層により鋼板素地とZn―Ni合金メツキ
外層との密着性が改善されて耐チツピング性が
顕著に向上する上、メツキ浴乃至は他の酸液に
よるZn―Ni合金メツキ外層の外表面処理によ
つて僅かながらZnの優先溶解が起き化成処理
性が格段に向上し、塗装後の2次密着性(塗膜
密着性)やカチオン電着塗装時の耐クレーター
リング性の著しい改善作用を有するようにな
り、Zn―Ni合金メツキ外層の優れた防錆能も
加味され、総じて自動車車体の外板としても十
分に満足できる表面処理鋼板が実現されるこ
と。 前記したクレーターリング現象についてはそ
のメカニズムに関して種々の説が報告されてお
り、一般には「電着塗装時の異常放電により部
分的に熱硬化した塗膜が生じ、その部分が焼付
け後のレベリング効果を有していないため電着
塗膜があばた状のクレーターになる」との説が
支持されているにも関わらず上記異常放電が何
に起因するのかが十分解明されていなかつた
が、該異常放電は化成皮膜の不均一性によつて
生じる上、該不均一性に依存しており、リン酸
亜鉛皮膜等の化成処理皮膜が均一でかつ微細で
あれば耐クレーターリング性が向上するもの
で、前記表面処理鋼板の優れた耐クレーターリ
ング性は、Zn―Ni合金メツキ外層外表面のメ
ツキ浴乃至は他の酸液によるZn分の優先溶解
処理によつて化成処理性が顕著に改善されてい
るためにもたらされること。 しかし、鋼板に特定の高Ni含有量のZn―Ni
合金メツキを施すには通常厳密に管理したメツ
キ浴と電流密度での作業を要求されるが、複数
の処理槽を備えたメツキ設備を使用し、その初
期の処理槽(好ましくは第1槽、或いは第1〜
2槽)において素材鋼板(鋼帯を含む)にZn
―Ni合金メツキを多めの付着量で施した後、
これを後続の処理槽に収容したメツキ液若しく
は硫酸等の酸液中に浸漬すると、Zn―Ni合金
メツキ処理により素材鋼板に付着したメツキ層
からZnが優先的に溶解してNiリツチとなり、
該Zn―Ni合金メツキ層は極めて安定かつ容易
に所望の高Ni含有量の合金層となつて残存す
るので、このような手法によつて素材鋼板上に
高Ni含有量の中間Zn―Ni合金メツキ層を設け
た後、更に後続の電気メツキ槽にて所定のZn
―Ni合金メツキを行い、そのまた更に後続の
メツキ浴又はその他の酸液が満たされた処理槽
中で該メツキ鋼板にアノード処理、カソード処
理或いは単なる浸漬処理を施してZn分の軽い
優先溶解を行わせると、メツキ表面が僅かでは
あるがNiリツチな面となり、化成反応が均一
化すると共に非常に緻密な化成処理膜が形成さ
れるようになるため、前述した如き自動車用と
して好適な表面処理鋼板を良好な作業性の下で
安定して製造できること。 この発明は、上記知見に基づいて成されたもの
であり、 自動車用防錆鋼板を、基材鋼板上にNi含有量
が30重量%以上でメツキ付着量が10mg/m2〜1
g/m2の中間ZnーNiメツキ層を介して、Ni含有
量が8〜16重量%のZn―Ni合金メツキ外層が設
けられ、かつ該Zn―Ni合金メツキ外層がメツキ
浴乃至は酸液によるNi濃化表面を有した構成と
することにより、優れたメツキ密着性、塗装性並
びに塗装後の塗膜密着性を付与した点、 を特徴とするものであり、更には、 複数の処理槽を備えたメツキ設備にて、被処理
鋼板(鋼帯を含む)にまずメツキ付着量が3g/
m2以下のZn―Ni合金メツキを施した後、後続の
処理槽に満たしたメツキ液若しくは酸液中に浸漬
し、Zn―Ni合金メツキ層のZnを優先溶解させて
Ni含有量が30重量%以上で付着量が10mg/m2
1g/m2のZn―Ni合金メツキ層を残存させ、続
いてその上にNi含有量が8〜16重量%のZn―Ni
合金メツキを施し、次いでメツキ浴中乃至は酸液
中での処理によつて該Zn―Ni合金メツキ層表面
におけるZn分の優先溶解を行わしめることによ
り、メツキ密着性、塗装性並びに塗装後の塗膜密
着性に優れた自動車用防錆鋼板を、作業性良く、
かつ安定して製造し得るようにした点、 に特徴を有するものである。 なお、Zn―Ni合金メツキ層表面の軽いZn分優
先溶解処理手段としては、Zn―Ni合金メツキ槽
に続く処理槽に収容したZn―Ni合金メツキ浴又
は硫酸等の酸液中にてアノード処理やカソード処
理を施す方法が好ましいが、前記メツキ浴や酸液
中に浸漬するのみの方法によつても良い。この表
面処理により、Zn―Ni合金メツキ層表面ではZn
が優先的に溶解し、僅かではあるがNiリツチを
表層が形成されるため、化成反応(特にリン酸塩
処理反応)が均一に起きるようになると共に、形
成される化成処理皮膜が非常に緻密となる。従つ
て、塗装時の二次密着性(塗膜密着性)やカチオ
ン電着塗装時の耐クレータリング性の著しい改善
がもたらされる。ここで、Ni濃化の程度は極く
僅かであつても相応の効果が確保できるので格別
に特定する必要はなく、処理時間としては数秒以
下程度でも十分である。 次に、この発明において、「中間Zn―Ni合金メ
ツキのNi含有量並びに付着量(厚さ)」、「Zn―
Ni合金メツキ外層のNi含有量」及び「中間合金
メツキ層形成のため最初に付着させるZn―Ni合
金メツキの付着量」を前記の如くに数値限定した
理由を説明する。 A 中間Zn―Ni合金メツキのNi含有量並びに付
着量 中間Zn―Ni合金メツキのNi含有量が30重量%
未満であつたり、その付着量(厚さ)が10mg/m2
未満では自動車車体用外板として使用したときの
低温チツピング性改善効果が認められず、一方、
該メツキ付着量が1g/m2を越えると、使用中に
素地(鋼板)にまで達する傷が生じた場合に素地
のFeと中間Zn―Ni合金メツキ層のNiとの間でガ
ルバニツク電池が形成されて腐食が促進されるの
で、耐食性に悪影響が出てくる。従つて、中間
Zn―Ni合金メツキのNi含有量は30重量%以上
と、またその付着量(厚さ)は10mg/m2〜1g/
m2と限定した。 B Zn―Ni合金メツキ外層のNi含有量 Zn―Ni合金メツキでは、一般にNi含有量によ
つて耐食性が大きく異なる。そして、理論的には
Ni含有量:10〜16重量%でγ単相となるので耐
食性が良く、Ni量:10重量%未満では(γ+η)
の混相に、またNi量が16重量%を越えると(γ
+β)の混相になるので何れもメツキ層内の相間
でガルバニツク電池を形成し、耐食性に悪影響が
出ると考えられる(ここで、γ相はNi5Zn21又は
Ni3Nn22であり、β相はNiZnの金属間化合物で
ある)。ところが、実験的な確認からはNi含有
量:8〜16重量%で良好な耐食性が得られ(特に
12〜13重量%が好ましい)、この範囲を外れると
所望の耐食性を示さなくなることから、Zn―Ni
合金メツキ外層のNi含有量を8〜16重量%と定
めた。 C 中間合金メツキ層形成のため最初に付着させ
るZn―Ni合金メツキの付着量 鋼板上にNi含有量:30重量%以上の中間Zn―
Ni合金メツキ層を設けるに際し、一旦付着させ
たZn―Ni合金メツキを酸浸漬してメツキ層のNi
を濃縮する方法を採用する場合、Zn―Ni合金メ
ツキの最初の付着量が3g/m2未満では所望Ni
含有量への濃縮が達成されたとしてもその際の残
存メツキ量:10mg/m2を確保するのが極めて困難
であるので、Zn―Ni合金メツキの最初の付着量
を3g/m2以上と定めた。 続いて、この発明を実施例によつて比較例と対
比しながら具体的に説明するが、これは飽くまで
も一例示に止まるものであり、この発明が該実施
例によつて制限されるものでないことは勿論であ
る。 〈実施例〉 水平メツキ槽を11槽備えた電気メツキラインを
使用し、板厚:0.8mm、板幅:1117mmの冷延鋼板
に、前処理として常法通りのアルカリ脱脂及び酸
洗を施して表面清浄化を行つた後、第1表に示さ
れるような条件でZn―Ni合金メツキを施した。 なお、このときの各処理槽には、第11槽(最終
槽)の一部を除いては次のようなメツキ浴が収容
されていた。 メツキ液組成:Zn2+…30g/、 Ni2+…60g/、 硫酸ソーダ…50g/、 酢酸ナトリウム…20g/、 メツキ液のPH:1.5〜2.5、
<Industrial Application Fields> This invention not only has excellent rust prevention performance, but also has excellent plating adhesion, paintability, and film adhesion after painting, and is suitable for use not only as inner panels of automobile bodies but also as outer panels. The present invention also relates to a suitable Zn-based alloy plated steel sheet and a method for manufacturing the same. <Background Art> In recent years, requirements for anti-corrosion performance of automobile bodies have become increasingly strict, and countermeasures have also become more serious. In particular, various automobile manufacturers have proposed one after another proposals to raise the rust prevention target in order to prolong the period of suppressing holes and external rust in automobile bodies, and measures to improve the rust prevention performance of automobile rust-preventive steel sheets are an urgent issue. It is becoming. By the way, currently the mainstream of rust-proof steel sheets for automobiles is
Zn is known for its excellent paintability and corrosion resistance.
-There is a shift to Zn-based alloy plated steel sheets, represented by Fe alloy plated steel sheets and Zn-Ni alloy plated steel sheets. However, these Zn-based alloy plated steel sheets are
Until now, Zn-Fe alloy plating has attracted attention for its excellent puncture and corrosion resistance, and has been used mainly for the interior panels of automobiles. Alternatively, studies have begun to consider applying Zn--Ni alloy plating to the exterior surfaces of vehicle bodies, and attempts have also been made to put some Zn--Fe alloy plating into practical use. However, Zn-Ni alloy plated steel sheets, which are said to have better corrosion resistance, have the following problems with the performance required for automobile outer panels, and improvements are desired. It was the current situation. That is, (a) In normal Zn-Ni alloy plating, Ni in the plating layer
Content: Good corrosion resistance can be obtained in the range of 10 to 16% by weight, but the alloy in this range is a hard single-phase γ intermetallic compound, so if the steel plate is used as an outer plate for an automobile, it will not run smoothly. Due to the chipping impact caused by flying stones, etc., which tends to occur at times, it is easy to cause peeling of the paint film and even peeling of the plating film at the same time. Red rust is likely to occur in areas where the plating has peeled off due to the chipping phenomenon, which is a fatal problem when used as an automobile exterior panel, where the occurrence of exterior rust is highly discouraged. (b) One of the major characteristics required for the external surface performance of automobile exterior panels is the water-resistant adhesion of the paint film. Although it has become possible to form a zinc phosphate treated film with good paint adhesion, it is still difficult to form a stable and satisfactory chemical conversion film on Zn-Ni alloy plated surfaces. (c) Cationic electrodeposition coating is indispensable for automobile exterior panels, but cratering resistance during painting is a major problem with cationic electrodeposition coating, and Zn-Ni
Some alloy plated surfaces cannot be said to have good cratering resistance. However, in order to improve this cratering resistance, Fe
Although methods for applying plating or Fe-Zn plating have been proposed (Japanese Patent Publication No. 15554/1983, Japanese Patent Publication No. 57518/1983), it is difficult to apply such Fe-based plating as an upper layer of Zn-Ni alloy plating. Although the cratering resistance is improved, red rust is likely to occur due to the presence of Fe-based plating that naturally remains even after painting, making it extremely disadvantageous as an automobile exterior panel. Note that the chipping resistance pointed out in section (a) above is related to the adhesion of plating, and in the past, multilayer plating of Zn-Ni alloys with different Ni contents was used to improve the adhesion of plating. There have been proposals to do so (Japanese Unexamined Patent Publication No. 58-204196). on the other hand,
There are also proposals to apply multilayer plating of Zn--Ni alloy as a measure to improve corrosion resistance and powdering resistance (Japanese Patent Application Laid-Open Nos. 58-204196 and 1982-141894). However, in order to perform multi-layer plating of these Zn-Ni alloys, it is necessary to control the concentration ratio of Zn 2+ and Ni 2+ in the plating bath by varying the ratio, which requires a huge investment in equipment, and requires operational efficiency. Management was also extremely difficult. <Means for Solving the Problems> From the above-mentioned viewpoints, the present inventors have developed a product that not only has excellent rust prevention performance but also has good plating adhesion, paintability, and paint film adhesion. As a result of repeated research in order to stably provide a surface-treated steel sheet that is fully satisfactory as both the inner and outer panels of automobile bodies, the following knowledge was obtained. That is, first, a Zn--Ni alloy plating intermediate layer with a high Ni content and a specific thickness is formed on a steel plate base material, and then a Zn--Ni alloy outer layer with an adjusted Ni content is plated on top of that, and then a Zn--Ni alloy plating layer with an adjusted Ni content is formed. When the outer surface of the Zn-Ni alloy plating outer layer is treated with a plating bath or other acid solution, the Zn-Ni alloy plating middle layer with a high Ni content improves the adhesion between the steel sheet base and the Zn-Ni alloy plating outer layer. In addition, by treating the outer surface of the Zn-Ni alloy plating outer layer with a plating bath or other acid solution, there is a slight preferential dissolution of Zn, and the chemical conversion treatment properties are significantly improved. It has a remarkable improvement effect on secondary adhesion (paint film adhesion) after painting and cratering resistance during cationic electrodeposition coating, and also has excellent rust prevention ability of the Zn-Ni alloy plating outer layer. The objective of the present invention is to realize a surface-treated steel sheet that is fully satisfactory as an outer panel of an automobile body. Various theories have been reported regarding the mechanism of the cratering phenomenon described above, and the general theory is that ``abnormal electrical discharge during electrodeposition coating causes a partially thermally hardened coating film, and that area causes a leveling effect after baking.'' The cause of the above abnormal discharge has not been fully elucidated, although the theory that the electrodeposition coating film becomes pock-shaped craters due to the lack of This is caused by and depends on the non-uniformity of the chemical conversion coating, and if the chemical conversion coating such as zinc phosphate coating is uniform and fine, the cratering resistance will improve. The excellent cratering resistance of the above-mentioned surface-treated steel sheet is due to the fact that the chemical conversion treatment properties are significantly improved by preferential dissolution treatment of Zn using a plating bath or other acid solution on the outer surface of the Zn-Ni alloy plating outer layer. What is brought about. However, Zn--Ni with a certain high Ni content in the steel sheet
Alloy plating usually requires work in a plating bath and current density that is strictly controlled, but plating equipment with multiple treatment tanks is used, and the initial treatment tank (preferably the first tank, Or the first ~
2 tanks), Zn was added to the material steel plate (including steel strip).
- After applying a large amount of Ni alloy plating,
When this is immersed in a plating solution or an acid solution such as sulfuric acid stored in a subsequent treatment tank, Zn preferentially dissolves from the plating layer attached to the material steel plate due to the Zn-Ni alloy plating treatment and becomes Ni-rich.
Since the Zn-Ni alloy plating layer remains extremely stable and easily as the desired alloy layer with high Ni content, it is possible to form an intermediate Zn-Ni alloy with high Ni content on the raw steel plate by this method. After forming the plating layer, a predetermined amount of Zn is further applied in the subsequent electroplating bath.
-Ni alloy plating is carried out, and the plated steel sheet is then subjected to anode treatment, cathode treatment, or simple immersion treatment in a subsequent plating bath or other treatment tank filled with an acid solution to achieve a light preferential dissolution of Zn. When this process is carried out, the plating surface becomes a Ni-rich surface, although it is slightly, and the chemical conversion reaction becomes uniform and a very dense chemical conversion film is formed, making it suitable for surface treatment for automobiles as mentioned above. Ability to stably manufacture steel plates with good workability. This invention was made based on the above knowledge, and provides a rust-proof steel plate for automobiles with a Ni content of 30% by weight or more and a plating adhesion amount of 10 mg/m 2 to 1 on a base steel plate.
A Zn-Ni alloy plating outer layer having a Ni content of 8 to 16% by weight is provided via an intermediate Zn-Ni plating layer of g/m 2 , and the Zn-Ni alloy plating outer layer is exposed to a plating bath or an acid solution. It is characterized by having a structure with a Ni-enriched surface, which provides excellent plating adhesion, paintability, and paint film adhesion after painting.Furthermore, it has multiple treatment tanks. In plating equipment equipped with
After applying Zn-Ni alloy plating of less than m 2 , it is immersed in a plating solution or acid solution filled in a subsequent treatment tank to preferentially dissolve the Zn in the Zn-Ni alloy plating layer.
Ni content is 30% by weight or more and adhesion amount is 10mg/m 2 ~
A Zn-Ni alloy plating layer of 1 g/m 2 remains, followed by a Zn-Ni alloy plating layer with a Ni content of 8-16% by weight.
By applying alloy plating and then treating in a plating bath or acid solution to preferentially dissolve the Zn on the surface of the Zn--Ni alloy plating layer, the plating adhesion, paintability, and post-painting properties are improved. Automotive rust-proof steel sheets with excellent paint film adhesion are easy to work with.
It is characterized by the following features: and it can be manufactured stably. In addition, as a preferential dissolution treatment for the light Zn on the surface of the Zn-Ni alloy plating layer, anode treatment is performed in a Zn-Ni alloy plating bath or in an acid solution such as sulfuric acid contained in a treatment tank following the Zn-Ni alloy plating tank. It is preferable to carry out a cathodic treatment, but a method of simply immersing the substrate in the plating bath or acid solution may also be used. With this surface treatment, Zn
is preferentially dissolved and a Ni-rich surface layer is formed, although only slightly, so that chemical conversion reactions (especially phosphate treatment reactions) occur uniformly, and the chemical conversion coating that is formed is extremely dense. becomes. Therefore, the secondary adhesion (coating film adhesion) during coating and the cratering resistance during cationic electrodeposition coating are significantly improved. Here, even if the degree of Ni concentration is extremely small, a corresponding effect can be ensured, so there is no need to specify it, and a treatment time of several seconds or less is sufficient. Next, in this invention, "Ni content and adhesion amount (thickness) of intermediate Zn--Ni alloy plating", "Zn--
The reason why the Ni content of the Ni alloy plating outer layer and the amount of Zn--Ni alloy plating initially deposited to form the intermediate alloy plating layer are numerically limited as described above will be explained. A Ni content and adhesion amount of intermediate Zn-Ni alloy plating Ni content of intermediate Zn-Ni alloy plating is 30% by weight
less than 10mg/m 2 and its adhesion amount (thickness)
If it is less than
If the amount of plating exceeds 1 g/ m2 , a galvanic cell will be formed between the Fe of the base and the Ni of the intermediate Zn-Ni alloy plating layer if a scratch occurs that reaches the base (steel plate) during use. corrosion is accelerated, which has an adverse effect on corrosion resistance. Therefore, intermediate
The Ni content of the Zn-Ni alloy plating is 30% by weight or more, and the amount (thickness) of the coating is 10mg/m 2 to 1g/m2.
It was limited to m2 . B Ni content of outer layer of Zn--Ni alloy plating In general, the corrosion resistance of Zn--Ni alloy plating varies greatly depending on the Ni content. And in theory
When the Ni content is 10 to 16% by weight, it becomes a single phase of γ, which has good corrosion resistance, and when the Ni content is less than 10% by weight, (γ + η)
When the Ni content exceeds 16% by weight (γ
+β), so it is thought that a galvanic cell is formed between the phases in the plating layer, which has an adverse effect on corrosion resistance (here, the γ phase is Ni 5 Zn 21 or
Ni 3 Nn 22 and the β phase is an intermetallic compound of NiZn). However, experimental confirmation showed that good corrosion resistance was obtained with a Ni content of 8 to 16% by weight (especially
Zn-Ni
The Ni content of the alloy plating outer layer was determined to be 8 to 16% by weight. C Amount of Zn-Ni alloy plating deposited first to form intermediate alloy plating layer Intermediate Zn- with Ni content: 30% by weight or more on steel plate
When forming the Ni alloy plating layer, the Zn-Ni alloy plating that has been deposited is immersed in acid to remove the Ni in the plating layer.
When using a method of concentrating Zn-Ni alloy plating, if the initial coating weight of Zn-Ni alloy plating is less than 3 g/ m2 , the desired Ni
Even if concentration is achieved, it is extremely difficult to secure a residual plating amount of 10 mg/m 2 , so the initial deposit amount of Zn-Ni alloy plating should be 3 g/m 2 or more. Established. Next, this invention will be concretely explained using Examples while comparing with Comparative Examples, but these are merely illustrative, and this invention is not limited by the Examples. Of course. <Example> Using an electric plating line equipped with 11 horizontal plating tanks, a cold-rolled steel plate with a thickness of 0.8 mm and a width of 1117 mm was pretreated with alkaline degreasing and pickling as usual. After cleaning, Zn--Ni alloy plating was applied under the conditions shown in Table 1. Each treatment tank at this time contained the following plating baths, except for a part of the 11th tank (final tank). Plating liquid composition: Zn 2+ ...30g/, Ni2 + ...60g/, Sodium sulfate...50g/, Sodium acetate...20g/, Plating liquid PH: 1.5-2.5,

【表】【table】

【表】 メツキ浴温度:50〜60℃、 また、メツキに際しては各セル(槽)毎に電流
を制御して電流密度を調整し(第1表での“低電
流密度”の表示では数A/dm2に、“通常電流密
度”の表示では20〜150A/dm2に調整され、ま
た第2槽及び第11槽では一部を除いてNi濃縮の
ために無通電とされた)、ラインスピードは40〜
100m/minに調整された。 そして、最終の第11槽での表面部Zn分の優先
溶解処理は、メツキ浴中への無通電浸漬の他、
2.0Nの硫酸溶液(50℃)中への無通電浸漬、同
様硫酸溶液中でのアノード(10A/dm2
1.5sec)処理又はカソード処理(15A/dm2
1.5sec)の手段で実施した。 次に、このようにして得られたZn―Ni合金メ
ツキ鋼板につき、円筒絞り試験にて成形性を調べ
るとともに、塗装下地処理として日本パーカライ
ジング(株)社の“BT―3020(商品名)”を使用した
化成処理と、日本ペイント(株)社の“パワートツプ
U―30(商品名)”を使用した20μ厚のカチオン電
着塗装と、メラミン・アルキツド塗料によるそれ
ぞれ35〜40μの中塗り塗装及び上塗り塗装とから
成る3コート処理を施し、耐水密着性、耐クレー
ターリング性、耐チツピング性並びに耐外面錆性
を評価した。 なお、耐水密着性のテストには、50℃の脱イオ
ン水中に10日間浸漬した後、塗膜に2mm間隔の碁
盤目切り傷を入れてテープ剥離し、そのときの塗
膜残存率を調査する方法を採用した。 また、耐クレーターリング性のテストには、電
着塗装の際に瞬時に設定電圧を印加する方法で電
着電圧を上昇させ、その時にクレータリングを生
じる電圧を測定する手段を採用した。 耐チツピング性は、まず3コート処理を施した
塗装鋼板を−20℃に冷却してからグラベロメータ
を用いてASTMのD―3170―74に規定する条件
でチツピングテストを行い、その時のメツキの剥
離の有無をもつて評価した。 更に、耐外面錆性は、塗装板にクロスカツトを
入れて屋外暴露を行い、週に2回の割で3%
NaCl溶液を散布しつつ半年間経過した後の赤錆
発生の有無、及びクロスカツトからの片側クリー
プ幅によつて評価した。 これらの結果を、各層のメツキ付着量並びに
Zn―Ni合金メツキ層のNi含有量とともに第1表
に併せて示す。 第1表に示される結果からも、この発明によつ
て耐水密着性、耐クレーターリング性、耐チツピ
ング性、耐外面錆性及び成形性が共に優れ、自動
車車体の内板はもとより、外板として使用しても
十分に優れた性能を発揮する防錆鋼板が得られる
のに対して、製造条件がこの発明の規定から外
れ、従つてこの発明で規定する条件を満たさない
メツキ鋼板は前記何れかの性能に欠けており、今
後の目標とされる自動車用防錆鋼板には適しない
ことが明らかである。 〈総括的な効果〉 上述のように、この発明によれば、車体の内板
としての使用或いは外板としての使用を問わず、
何れに適用しても優れた性能を発揮する自動車用
防錆鋼板を作業性良く安定して量産することが可
能となり、自動車の耐久性を一段と向上できるな
ど、産業上極めて有用な効果がもたらされるので
ある。
[Table] Plating bath temperature: 50 to 60°C. Also, during plating, the current density is adjusted by controlling the current for each cell (bath) (the "low current density" indicated in Table 1 is several A). /dm 2 , the "normal current density" display was adjusted to 20 to 150 A/dm 2 , and in the 2nd tank and 11th tank (with some exceptions, no current was applied for Ni concentration), the line Speed is 40~
The speed was adjusted to 100m/min. In the final 11th tank, the preferential dissolution treatment for the surface Zn was performed by immersion in the plating bath without electricity.
The anode was immersed in a 2.0N sulfuric acid solution (50°C) without electricity, and the anode was immersed in a 2.0N sulfuric acid solution (at 10A/dm2 ).
1.5sec) treatment or cathode treatment (at 15A/dm2 )
1.5 seconds). Next, the formability of the Zn-Ni alloy plated steel sheet obtained in this way was examined in a cylindrical drawing test, and Nippon Parkerizing Co., Ltd.'s "BT-3020 (product name)" was applied as a base treatment for painting. The chemical conversion treatment used, cationic electrodeposition coating with a thickness of 20μ using Nippon Paint Co., Ltd.'s "Power Top U-30 (product name)", and 35-40μ intermediate coating and topcoat each with melamine alkyd paint A three-coat treatment consisting of painting was applied, and water resistance, adhesion, cratering resistance, chipping resistance, and external surface rust resistance were evaluated. In addition, to test the water resistance adhesion, after immersing the paint in deionized water at 50°C for 10 days, make grid cuts at 2 mm intervals on the paint film and peel it off with tape, and then investigate the paint film survival rate. It was adopted. In addition, for the cratering resistance test, a method was adopted in which the electrodeposition voltage was increased by instantaneously applying a set voltage during electrodeposition coating, and the voltage that caused cratering at that time was measured. Chipping resistance is determined by first cooling a 3-coat coated steel plate to -20°C and then performing a chipping test using a gravelometer under the conditions specified in ASTM D-3170-74. Evaluation was made based on the presence or absence of Furthermore, the external rust resistance was tested by putting a cross cut in the painted board and exposing it outdoors twice a week to reduce the rust by 3%.
Evaluation was made based on the presence or absence of red rust after half a year had passed while spraying NaCl solution, and the creep width on one side from the cross cut. These results are calculated based on the amount of plating on each layer and
Table 1 also shows the Ni content of the Zn--Ni alloy plating layer. From the results shown in Table 1, the present invention has excellent water-resistant adhesion, cratering resistance, chipping resistance, external rust resistance, and formability, and can be used not only as an inner panel of an automobile body but also as an outer panel. While a rust-proof steel plate that exhibits sufficiently excellent performance can be obtained even when used, a plated steel plate whose manufacturing conditions deviate from the provisions of this invention and therefore does not meet the conditions specified by this invention is one of the above. It is clear that it is not suitable for rust-proofing steel sheets for automobiles, which is a future target. <Overall Effects> As described above, according to the present invention, regardless of whether it is used as an inner panel or an outer panel of a vehicle body,
It has become possible to stably mass-produce rust-proof steel sheets for automobiles that exhibit excellent performance no matter where they are applied, with good workability, and it has brought extremely useful industrial effects such as further improving the durability of automobiles. It is.

Claims (1)

【特許請求の範囲】 1 基材鋼板上にNi含有量が30重量%以上でメ
ツキ付着量が10mg/m2〜1g/m2の中間Zn―Ni
メツキ層を介して、Ni含有量が8〜16重量%の
Zn―Ni合金メツキ外層が設けられ、かつ該Zn―
Ni合金メツキ外層がメツキ浴乃至は酸液による
Ni濃化表面を有して成ることを特徴とする、自
動車用防錆鋼板。 2 複数の処理槽を備えたメツキ設備にて、被処
理鋼板にまずメツキ付着量が3g/m2以下のZn
―Ni合金メツキを施した後、後続の処理槽に満
たしたメツキ液若しくは酸液中に浸漬し、Zn―
Ni合金メツキ層のZnを優先溶解させてNi含有量
が30重量%以上で付着量が10mg/m2〜1g/m2
Zn―Niメツキ層を残存させ、続いてその上にNi
含有量が8〜16重量%のZn―Ni合金メツキを施
し、次いでメツキ浴中乃至は酸液中での処理によ
つて該Zn―Ni合金メツキ層表面におけるZn分の
優先溶解を行わしめることを特徴とする、自動車
用防錆鋼板の製造方法。
[Claims] 1. Intermediate Zn--Ni with a Ni content of 30% by weight or more and a plating adhesion amount of 10 mg/m 2 to 1 g/m 2 on a base steel plate.
Through the plating layer, the Ni content is 8 to 16% by weight.
A Zn—Ni alloy plating outer layer is provided, and the Zn—
The Ni alloy plating outer layer is coated with a plating bath or acid solution.
A rust-proof steel sheet for automobiles, characterized by having a Ni-enriched surface. 2. In a plating equipment equipped with multiple treatment tanks, Zn with a plating amount of 3 g/m 2 or less is first applied to the steel plate to be treated.
―After applying Ni alloy plating, the Zn―
By preferentially dissolving Zn in the Ni alloy plating layer, the Ni content is 30% by weight or more and the adhesion amount is 10mg/ m2 to 1g/ m2 .
Leave the Zn-Ni plating layer and then apply Ni on top of it.
Apply Zn-Ni alloy plating with a content of 8 to 16% by weight, and then perform preferential dissolution of Zn on the surface of the Zn-Ni alloy plating layer by treatment in a plating bath or acid solution. A method for manufacturing a rust-proof steel plate for automobiles, characterized by:
JP13486986A 1986-06-12 1986-06-12 Rustproof steel sheet for automobile and its production Granted JPS62294198A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13486986A JPS62294198A (en) 1986-06-12 1986-06-12 Rustproof steel sheet for automobile and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13486986A JPS62294198A (en) 1986-06-12 1986-06-12 Rustproof steel sheet for automobile and its production

Publications (2)

Publication Number Publication Date
JPS62294198A JPS62294198A (en) 1987-12-21
JPH0256437B2 true JPH0256437B2 (en) 1990-11-30

Family

ID=15138375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13486986A Granted JPS62294198A (en) 1986-06-12 1986-06-12 Rustproof steel sheet for automobile and its production

Country Status (1)

Country Link
JP (1) JPS62294198A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6335793A (en) * 1986-07-31 1988-02-16 Nippon Kokan Kk <Nkk> Steel plate electrically plated with zinc-nickel alloy and excellent in impact adhesion
JPS6393879A (en) * 1986-10-06 1988-04-25 Nkk Corp Production of zinc-nickel alloy electroplated steel sheet having superior suitability to chemical treatment
JPH0211792A (en) * 1988-06-30 1990-01-16 Nippon Steel Corp Production of zn-ni alloy plated steel sheet having excellent chipping resistance and corrosion resistance of weld zone
FR2704560B1 (en) * 1993-04-28 1995-08-11 Lorraine Laminage METHOD FOR ELECTRODEPOSITION ON A SURFACE OF A STEEL SUBSTRATE OF A LAYER OF A COATING OF A ZINC-BASED ALLOY AND MATERIAL OF STEEL COATED WITH A COATING LAYER OF A ZINC-BASED ALLOY.
JP4492364B2 (en) * 2005-01-25 2010-06-30 Jfeスチール株式会社 Method for producing electrogalvanized steel sheet with excellent plating appearance

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5845382A (en) * 1981-09-10 1983-03-16 Sumitomo Metal Ind Ltd Surface treatment of alloy electroplated steel plate
JPS58130299A (en) * 1982-01-26 1983-08-03 Nisshin Steel Co Ltd Production of zn-ni alloy electroplated steel plate having high corrosion resistance in worked part
JPS58210194A (en) * 1982-06-02 1983-12-07 Nippon Steel Corp Production of surface treated steel plate
JPS5985884A (en) * 1982-11-10 1984-05-17 Nisshin Steel Co Ltd Production of steel plaie plated with zn-ni alloy for improving corrosion resistance in worked part
JPS59129793A (en) * 1983-01-13 1984-07-26 Sumitomo Metal Ind Ltd Steel sheet electroplated with zn-ni on one side and its production

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5845382A (en) * 1981-09-10 1983-03-16 Sumitomo Metal Ind Ltd Surface treatment of alloy electroplated steel plate
JPS58130299A (en) * 1982-01-26 1983-08-03 Nisshin Steel Co Ltd Production of zn-ni alloy electroplated steel plate having high corrosion resistance in worked part
JPS58210194A (en) * 1982-06-02 1983-12-07 Nippon Steel Corp Production of surface treated steel plate
JPS5985884A (en) * 1982-11-10 1984-05-17 Nisshin Steel Co Ltd Production of steel plaie plated with zn-ni alloy for improving corrosion resistance in worked part
JPS59129793A (en) * 1983-01-13 1984-07-26 Sumitomo Metal Ind Ltd Steel sheet electroplated with zn-ni on one side and its production

Also Published As

Publication number Publication date
JPS62294198A (en) 1987-12-21

Similar Documents

Publication Publication Date Title
EP0047987B2 (en) Cationic electrodeposition lacquer-coated steel material
JPH0256437B2 (en)
JPH0225439B2 (en)
JPS62294197A (en) Rustproof steel sheet for automobile and its production
JPS6160153B2 (en)
JPS5867886A (en) Steel article coated with iron-zinc alloy plating layer having concentration gradient and manufacture thereof
JPH0121234B2 (en)
JPS6393891A (en) Production of rustproof steel sheet for automobile
JPS6213590A (en) Surface-treated steel sheet having excellent coating property, adhesion after coating and corrosion resistance and its production
JPS63307297A (en) Production of rustproof steel sheet for automobile
JPH01108396A (en) Production of galvannealed steel sheet for coating by cationic electrodeposition
JPS61257494A (en) Surface treated steel plate having high corrosion resistance
JPH0563558B2 (en)
JPH028036B2 (en)
JPH0142359B2 (en)
JP2930688B2 (en) Method for producing Zn-Ni-based alloy electroplated steel sheet having excellent chipping resistance
JPH0472077A (en) Improvement of low-temperature chipping resistance of plated steel sheet
JPS6213595A (en) Production of one-side electroplated steel sheet
JPS60131977A (en) Surface treated steel sheet having superior suitability to chemical conversion treatment
JPH01309993A (en) Production of zn-ni alloy plated steel sheet having superior chipping resistance at low temperature
JPH0328518B2 (en)
JPH01149990A (en) Surface treated steel sheet having superior workability and coating suitability
JPS6096790A (en) Preparation of surface treated steel plate excellent in corrosion resistance and water resistant film secondary close adhesiveness after painting
KR20050050174A (en) The process for high strength and high tensile steel sheet with good phosphate coating and painting properties
JPH0665760A (en) High corrosion resistance multi-ply electroplated steel sheet

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term