JPH01100291A - Chromium plating method - Google Patents

Chromium plating method

Info

Publication number
JPH01100291A
JPH01100291A JP25474587A JP25474587A JPH01100291A JP H01100291 A JPH01100291 A JP H01100291A JP 25474587 A JP25474587 A JP 25474587A JP 25474587 A JP25474587 A JP 25474587A JP H01100291 A JPH01100291 A JP H01100291A
Authority
JP
Japan
Prior art keywords
lead
electrodes
plating
electrode
noble metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25474587A
Other languages
Japanese (ja)
Inventor
Kaoru Hirakata
平形 薫
Akihiko Fujii
昭彦 藤井
Shinichi Shimoda
慎一 下田
Koji Koma
小間 弘司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Carlit Co Ltd
Original Assignee
Japan Carlit Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Carlit Co Ltd filed Critical Japan Carlit Co Ltd
Priority to JP25474587A priority Critical patent/JPH01100291A/en
Publication of JPH01100291A publication Critical patent/JPH01100291A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroplating And Plating Baths Therefor (AREA)

Abstract

PURPOSE:To carry out stable, high quality Cr plating by using lead-based electrodes and noble metal electrodes in combination in a tervalent Cr preparation tank and regulating the ratio between the working area of the former electrodes and that of the latter electrodes. CONSTITUTION:One or more kinds of lead-based electrodes 5 selected among lead, lead alloy and lead dioxide electrodes are placed in a tervalent Cr preparation tank 2 and noble metal electrodes 3 each having a coat contg. a Pt family metal or the oxide thereof are placed in a plating tank 1. The ratio between the working area of the electrodes 5 and that of the electrodes 3 is regulated to 1:1-1:10. The electrodes 5, 3 may be arranged in the same tank. Thus, stable, high quality Cr plating can be carried out.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、クロムの電気メッキ方法に関し、特に2種以
上のメッキ用電極を用いてクロムメッキを行なう方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a chromium electroplating method, and particularly to a chromium plating method using two or more types of plating electrodes.

(従来の技術) クロムメッキに用いられる電極として、白金、鉄、鉛、
鉛合金あるいは二酸化鉛等の電極が知られている。前記
電極の中で、白金は高価であること、鉄はメッキ液中に
比較的多量に溶出してメ・ンキ浴を汚染すること、鉛は
柔らか(たわみやす(極間を一定(こ保ちに(い等゛の
理由により、現今では鉛合金または二酸化鉛電極が一般
的に用いられている。特に、チタン等の導電性基体上に
白金族金属およびそれらの酸化物の中間層を介して二酸
化鉛を被覆した電極は、鉛合金に比べ電解消耗量が少な
く、スラッジの生成が僅かであることによりメッキ業界
で広く使用されている。
(Conventional technology) Platinum, iron, lead,
Electrodes made of lead alloys or lead dioxide are known. Among the electrodes mentioned above, platinum is expensive, iron elutes in relatively large amounts into the plating solution and contaminates the coating bath, and lead is soft (flexible). (For these reasons, lead alloy or lead dioxide electrodes are now commonly used. In particular, lead alloys or lead dioxide electrodes are commonly used on conductive substrates such as titanium through interlayers of platinum group metals and their oxides. Lead-coated electrodes are widely used in the plating industry because they have less electrolytic wear and less sludge formation than lead alloys.

しかし、この鉛合金電極あるいは二酸化鉛電極は重いた
め電極交換時の作業性が悪いこと、クロムメッキ浴中で
高い分極電位を示すため電力を多(消費すること、また
、特に鉛合金電極の場合、生成するスラッジの主成分で
あるクロム酸鉛を公害規制上安全に廃液処理する必要が
あるなどの欠点を有している。
However, these lead alloy electrodes or lead dioxide electrodes are heavy and have poor workability when replacing the electrodes.They also consume a lot of power because they exhibit a high polarization potential in a chromium plating bath. However, lead chromate, which is the main component of the sludge produced, has drawbacks such as the need to safely dispose of lead chromate as a waste liquid due to pollution regulations.

一方、チタン等の導電性金属基体表面に白金、イリジウ
ム、ロジウムなどの白金族金属およびそれらの酸化物の
1種以上を熱分解法により被覆した貴金属電極は、クロ
ムメッキ浴中で鉛合金、二酸化鉛等の鉛系電極に比べて
極めて低い分極電位を示すことが知られている。しがし
、この電極は三価クロムを六価クロムに酸化する能力が
低し良好なりロムメッキを連続して行なうことができな
い。このためこの電極を主体としたクロムメッキ方法は
行なわれておらず、僅かに被メッキ物のつきまわり不良
を生じる部分にメッキ電流を通じるための補助メッキ電
極として使用されているのみである。
On the other hand, noble metal electrodes, in which the surface of a conductive metal substrate such as titanium is coated with one or more platinum group metals such as platinum, iridium, and rhodium, and one or more of their oxides, are coated with lead alloys and dioxide in a chromium plating bath. It is known that it exhibits an extremely low polarization potential compared to lead-based electrodes such as lead. However, this electrode has a low ability to oxidize trivalent chromium to hexavalent chromium and cannot perform continuous chromium plating. For this reason, chromium plating methods using this electrode as the main material have not been carried out, and it is only used as an auxiliary plating electrode for passing plating current to a portion of the object to be plated that has slight throwing problems.

(発明が解決しようとする問題点) クロムの電着にさいし、クロムメッキ浴内にはクロム酸
および硫酸根、7ツ化物などの触媒種の池に、少量の三
価クロムを含有させることが重要であり、良質のメッキ
を行なうにはこの三価クロム濃度を調整することが必要
である。クロムメッキ浴でメッキを行なうと、陰極では
三価クロムが生成し、陽極において酸化されて再び六価
クロムすなわちクロム酸になる。この還元および酸化作
用は用いる電極材料により一様でなく、三価クロムはあ
る濃度で平衡に達する。貴金属電極は前述したように三
価クロムを酸化する能力が少なく、メッキを続けると浴
中の三価クロム濃度が増大してメッキネ良となる。また
鉛系電極は酸素過電圧が高(、前記酸化能力が優れてい
るので、メッキを続けると六価クロム濃度が増大し、三
価クロム濃度が減少しすぎ良質のメッキを行なうことが
できなくなる。
(Problem to be Solved by the Invention) When electrodepositing chromium, it is possible to contain a small amount of trivalent chromium in the chromium plating bath in a pool of catalytic species such as chromic acid, sulfuric acid, and heptadide. It is important to adjust the concentration of trivalent chromium in order to achieve good quality plating. When plating is carried out in a chromium plating bath, trivalent chromium is produced at the cathode, which is oxidized at the anode to become hexavalent chromium, that is, chromic acid. This reduction and oxidation effect varies depending on the electrode material used, and trivalent chromium reaches equilibrium at a certain concentration. As mentioned above, the noble metal electrode has little ability to oxidize trivalent chromium, and if plating continues, the trivalent chromium concentration in the bath will increase, resulting in poor plating. Furthermore, since lead-based electrodes have a high oxygen overvoltage (and excellent oxidation ability), if plating is continued, the concentration of hexavalent chromium will increase and the concentration of trivalent chromium will decrease too much, making it impossible to perform high-quality plating.

このような現状において、前記問題点を解決し消費電力
量が小さく、スラッジの生成が少なく、また、三価クロ
ム濃度を@繁に調整することなく長期間安定したクロム
メッキを行なうことのできる方法の開発が望まれていた
Under these circumstances, a method that solves the above problems, consumes less electricity, generates less sludge, and provides stable chromium plating for a long period of time without frequently adjusting the trivalent chromium concentration. development was desired.

(問題点を解決するための手段) 本発明者等は、鋭意検討した結果、鉛系電極および貴金
属電極を併用し、両電極の電極作用面積比を一定範囲に
保ち、両電極の有する特性を有効に利用することにより
前記問題点を解決できることを見出し本発明を完成する
に至った。
(Means for Solving the Problems) As a result of intensive study, the inventors of the present invention used a lead-based electrode and a noble metal electrode in combination, kept the ratio of the electrode action areas of both electrodes within a certain range, and improved the characteristics of both electrodes. The present inventors have discovered that the above-mentioned problems can be solved by effectively utilizing the present invention.

すなわち本発明は、鉛、鉛合金および二酸化鉛電極から
選ばれた1種以上の鉛系電極と、白金族金属および/ま
たはそれらの酸化物を被覆した貴金属電極との電極作用
面積比を1:1〜1:10とし、鉛系電極と貴金属電極
とを併用してメッキを行なうクロムメッキ方法である。
That is, the present invention provides an electrode active area ratio of one or more lead-based electrodes selected from lead, lead alloys, and lead dioxide electrodes to a noble metal electrode coated with platinum group metals and/or their oxides of 1:1. This is a chromium plating method in which plating is performed using a lead-based electrode and a noble metal electrode in combination with a ratio of 1 to 1:10.

本発明で使用される貴金属電極は、例えば特公昭57−
54555号公報に開示されたような水電解、金属の電
解採取用の電極を挙げることかで慇、白金、イリジウム
、ロジウム等の白金族金属およびそれらの酸化物の1種
以上を熱分解、電気メッキ、プラズマ溶射、焼結等の方
法によりチタン、タンタル、ニオブ、シルコニツムまた
はそれらの合金基体上に被覆して得られるいわゆる酸素
発生用不溶性電極である。これらの貴金属電極は任意に
1種あるいは2種以上組み合わせて用いられる。
The noble metal electrode used in the present invention is, for example,
Examples of electrodes for water electrolysis and electrowinning of metals as disclosed in Japanese Patent No. 54555 include thermal decomposition and electrolysis of platinum group metals such as platinum, iridium, rhodium, and one or more of their oxides. This is a so-called insoluble electrode for oxygen generation obtained by coating a titanium, tantalum, niobium, silconium, or alloy substrate thereof by a method such as plating, plasma spraying, or sintering. These noble metal electrodes may be used alone or in combination of two or more.

また、鉛系電極としては、たとえば特公昭58−309
57号公報及び特公昭58−31396号公報にみられ
るようなチタン等のバルブ金属基体上に白金、イリジウ
ム等の白金族金属、およびそれらの酸化物の1種以上を
熱分解法により薄く被覆した中間層を設け、さらにその
上に硝酸鉛浴あるいは一酸化鉛浴などから電着した二酸
化鉛電極を挙げることができる。また銀、カルシウム、
錫、アンチモン等の1種以上を数%含む鉛合金電極ある
いは鉛電極等の、金属の電解精錬に用いられる酸素発生
用電極が使用される。これらの鉛系電極は任意に1種あ
るいは2種以上組み合わせて用いられる。
In addition, as a lead-based electrode, for example,
57 and Japanese Patent Publication No. 58-31396, a valve metal substrate made of titanium or the like is thinly coated with platinum, iridium, or other platinum group metals, and one or more of their oxides by a thermal decomposition method. For example, an intermediate layer is provided, and a lead dioxide electrode electrodeposited thereon from a lead nitrate bath or a lead monoxide bath can be mentioned. Also silver, calcium,
Oxygen generating electrodes used in electrolytic refining of metals, such as lead alloy electrodes or lead electrodes containing several percent of one or more of tin, antimony, etc., are used. These lead-based electrodes may be used alone or in combination of two or more.

本発明に用いるクロムメッキ浴には、サージェント浴あ
るいは7ツ化アンモニウム、ケイ7フ化物、ホウ7ツ化
物を含む7フ化浴、ホウ酸浴などが使用できる。
As the chromium plating bath used in the present invention, a Sargent bath, a heptafluoride bath containing ammonium heptadide, silicate heptafluoride, or borate heptafluoride, a boric acid bath, or the like can be used.

次に本発明の一実施例を図面により説明する。Next, one embodiment of the present invention will be described with reference to the drawings.

第1図において、メッキ槽(1)に設けられた貴金属電
極(3)から被メッキ物(8)1こ電流が流れるとメッ
キ浴中の三価クロムは増大するが、メッキ液は配管(9
)を通じて三価クロム調整槽(2)に送られ、ここで陰
極(4)との間で鉛系電極(5)により酸化される。酸
化されて三価クロム濃度が減少したメッキ液は、循環ポ
ンプ(6)によりフィルター(7)を経て配管(9′)
を通りメッキ槽(1)に戻るようになっている。この場
合、浴中の三価クロム濃度は鉛系電極(5)に通じる電
流により三価クロムイオンとして1〜7g/lの適正な
濃度に制御される。なお三価クロム調整槽(2)に設け
る陰極(4)には、鉄、ステンレススチール、チタン、
鉛、アルミニウム等が用いられ、調整電解中にクロム金
属が付着する場合には適宜かき落として使用する。
In Fig. 1, when a current flows from the noble metal electrode (3) provided in the plating bath (1) to the object to be plated (8), trivalent chromium in the plating bath increases, but the plating solution is transferred to the piping (9).
) is sent to the trivalent chromium adjustment tank (2), where it is oxidized by a lead-based electrode (5) between it and the cathode (4). The plating solution, which has been oxidized and has a reduced trivalent chromium concentration, is passed through a filter (7) by a circulation pump (6) to a pipe (9').
It returns to the plating tank (1) through the In this case, the trivalent chromium concentration in the bath is controlled to an appropriate concentration of 1 to 7 g/l as trivalent chromium ions by means of an electric current passing through the lead-based electrode (5). The cathode (4) provided in the trivalent chromium adjustment tank (2) may be made of iron, stainless steel, titanium,
Lead, aluminum, etc. are used, and if chromium metal adheres during adjustment electrolysis, scrape it off as appropriate before use.

第1図では、鉛系電極が三価クロム調整槽(2)に、貴
金属電極がメッキ槽(1)にそれぞれ別個に設置されて
いるが、同一槽内に画電極を混合して取り付けてメッキ
を行なうこともできる。この場合、使用する電極は種類
が偏らないようにし、均等に分散して取り付けることが
望ましい。また、メッキ槽を深くして鉛系電極の消耗に
より生成するクロム酸鉛のスラッジがメッキ槽下部に堆
積するようにする。
In Figure 1, the lead-based electrode is installed separately in the trivalent chromium adjustment tank (2) and the precious metal electrode is installed in the plating tank (1), but the picture electrodes are mixed and installed in the same tank and plated. You can also do this. In this case, it is desirable that the types of electrodes used are uniform and that they are evenly distributed and attached. In addition, the plating tank is made deep so that lead chromate sludge, which is generated due to consumption of the lead-based electrode, is deposited at the bottom of the plating tank.

本発明の電極作用面積比とは、例えば第1図において、
三価クロム調整槽(2)に設けた鉛系電極(5)の陰極
(4)と対向して電解に供せられるメッキ液面下にある
幾何学的面積と、メッキ槽(1)のメッキ液面下にあっ
て被メッキ物と対向してメッキに供せられる貴金属電極
の幾何学的面積の比を意味し、被メッキ物と対向する面
の反対側の電極面は含まれない。従って第1図の場合、
各電極板の寸法が同じと仮定して、鉛系電極と貴金属電
極の電極作用面積比は1:4となる。
The electrode action area ratio of the present invention is, for example, in FIG.
The geometric area under the surface of the plating liquid that is subjected to electrolysis and facing the cathode (4) of the lead-based electrode (5) provided in the trivalent chromium adjustment tank (2), and the plating area in the plating tank (1). It means the ratio of the geometric area of a noble metal electrode that is under the liquid level and is used for plating while facing the object to be plated, and does not include the electrode surface on the opposite side of the surface facing the object to be plated. Therefore, in the case of Figure 1,
Assuming that the dimensions of each electrode plate are the same, the electrode active area ratio of the lead-based electrode and the noble metal electrode is 1:4.

(実施例) 次に本発明を実施例に基づき具体的に説明する。(Example) Next, the present invention will be specifically explained based on examples.

実施例1〜7、比較例1〜3 電極の寸法を中50mLIlx長さ200ml11に統
一し、鉛系電極と貴金属電極の使用枚数を変えて電極作
用面積比を制御した。無水クロム酸250g/l、硫酸
2.5g/lのサージェント浴を用いて、同一浴槽内に
おいて浴温を40℃とし、電流は2台の直流電源を用い
て各電極の面積比に応じて通電し、中60+I1m×長
さ150mmの銅板にクロムメッキを行ない、目視によ
りメッキの良否を判定した。その結果を第1表に示す。
Examples 1 to 7, Comparative Examples 1 to 3 The dimensions of the electrodes were unified to medium 50 ml x length 200 ml 11, and the electrode action area ratio was controlled by changing the number of lead-based electrodes and noble metal electrodes used. Using a Sargent bath containing 250 g/l of chromic anhydride and 2.5 g/l of sulfuric acid, the bath temperature was set to 40°C in the same bath, and the current was applied according to the area ratio of each electrode using two DC power supplies. Then, chromium plating was performed on a copper plate measuring 60+I1m x 150mm in length, and the quality of the plating was visually determined. The results are shown in Table 1.

なお第1表中、pbは市販の純度99.5%の鉛電極、
Pb−8nは錫を7重量%含む鉛合金電極を表わす。P
 b O2は、サンドブラスト処理したチタン板の上に
線径0,4mm、24メツシユのチタン製金網をスポッ
ト溶接して陽極基体とし、この基体をトリクレンで脱脂
し、3%7ツ酸でエツチングを行ない、塩化イリジウム
酸のエタノール溶液をハケ塗りした後大気中で450℃
、30分間の加熱処理を3回繰り返して中間層を形成さ
せ、更にこの基体を陽極とし、ステンレス鋼板を陰極と
して硝酸鉛250g/l、硝酸銅25g/lからなる電
着液中で陽極電流密度2.5A/dm2、液温60℃、
pH4,0の条件下で12時間電着して製作しtこ二酸
化鉛電極を表わす。また貴金属電極はチタン板をトリク
レンで蒸気脱脂し、熱シュウ酸によりエツチングして表
面を粗面化した基体に、該当白金族金属の塩化物をイン
プロパツールに溶解した液をハケ塗りし、大気中でs 
o o ’c、1時間の焼成処理よりなる掻作を10回
繰り返し行なう熱分解法により製作したものである。I
rO2/Tiは二酸化イリジウムで、IrO2RuC)
2 ”rio2/ T iは二酸化イリジウム、二酸化
ルテニウムおよび二酸化チタンの混合物で、Pt  I
r0zは白金および二酸化イリジウムでそれぞれチタン
基体を被覆した電極を表わす。
In Table 1, pb is a commercially available lead electrode with a purity of 99.5%,
Pb-8n represents a lead alloy electrode containing 7% by weight of tin. P
b O2 was made by spot welding a 24-mesh titanium wire mesh with a wire diameter of 0.4 mm onto a sandblasted titanium plate to make an anode base, degreasing this base with trichlene, and etching it with 3% 7th acid. , after applying an ethanol solution of chloroiridic acid with a brush, at 450°C in the atmosphere.
The heat treatment for 30 minutes was repeated three times to form an intermediate layer, and the anode current density was increased in an electrodeposition solution consisting of 250 g/l of lead nitrate and 25 g/l of copper nitrate, using this substrate as an anode and a stainless steel plate as a cathode. 2.5A/dm2, liquid temperature 60℃,
This represents a lead dioxide electrode manufactured by electrodeposition for 12 hours under pH 4.0 conditions. For noble metal electrodes, a titanium plate is steam-degreased with trichlene, etched with hot oxalic acid to roughen the surface, and a solution prepared by dissolving the chloride of the platinum group metal in Improper Tool is brushed onto the base. inside s
o o 'c, manufactured by a pyrolysis method in which scratching consisting of firing treatment for 1 hour is repeated 10 times. I
rO2/Ti is iridium dioxide (IrO2RuC)
2”rio2/Ti is a mixture of iridium dioxide, ruthenium dioxide and titanium dioxide, PtI
r0z represents an electrode coated with platinum and iridium dioxide, respectively, on a titanium substrate.

実施例8 中1.OmX長さ2,5mX深さ1.5+Ilのクロム
メッキ槽内に、無水クロム酸230g/l、7ツ素イオ
ン700ppm、硫酸2.0g/lのサージェント浴を
仕込み、中10cIIX長さ100c+aの二酸化鉛電
極4体とI r O2/ T i電極20体を用い、メ
ッキ槽の左右にそれぞれ二酸化鉛電極2体とIrO2/
Ti電極10体計12体づつ左右同一のブスバーに取り
付けた。電極間の中心線上にクレッセント(アルミサツ
シの錠)を連続して通過させ、メッキ電流270OA、
浴温40℃にて自動連続メッキを行なった結果を第2表
に示す。
Example 8 Middle 1. A Sargent bath containing 230 g/l of chromic anhydride, 700 ppm of 7 ions, and 2.0 g/l of sulfuric acid was placed in a chromium plating tank with a length of 2.5 m and a depth of 1.5 + Il. Using 4 lead electrodes and 20 IrO2/Ti electrodes, 2 lead dioxide electrodes and 2 IrO2/Ti electrodes were placed on the left and right sides of the plating bath.
A total of 12 Ti electrodes (10 each) were attached to the same bus bar on the left and right sides. A crescent (aluminum sash lock) was passed continuously on the center line between the electrodes, and a plating current of 270OA was applied.
Table 2 shows the results of automatic continuous plating at a bath temperature of 40°C.

比較例4 貴金属電流を使用せず鉛−錫合金(錫含有量ニア重量%
)電極のみ24体を用いた以外は実施例8と同一の方法
でメッキを行なった結果を第2表に示す。
Comparative Example 4 Lead-tin alloy (tin content near weight%) without using noble metal current
) Table 2 shows the results of plating performed in the same manner as in Example 8, except that only 24 electrodes were used.

(発明の効果) 鉛系電極と貴金属電極とを併用し、かつ画電極の電極作
用面積比を規制・することにより、従来実施されなかっ
た貴金属電極をクロムメッキ用電極の主体とすることが
可能となり、三価クロム濃度を頻繁に調整することなく
安定して良質なりロムメッキができるようになった。貴
金属電極の使用により電力消費量を大巾に低減でき、ま
た、鉛系電極の使用を少な(なくすることができるので
スラッジの処理費用は殆どなくなった。
(Effects of the invention) By using a lead-based electrode and a noble metal electrode in combination and regulating the ratio of the electrode active area of the picture electrode, it is possible to use a noble metal electrode as the main electrode for chrome plating, which has not been done in the past. As a result, it is now possible to stably produce high-quality chromium plating without frequently adjusting the trivalent chromium concentration. By using noble metal electrodes, power consumption can be greatly reduced, and since the use of lead-based electrodes can be reduced (or eliminated), sludge treatment costs are almost eliminated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のクロムメッキ方法の一実施例を説明す
る図である。 1・・メッキ槽  2・・三価クロム調整槽3・・貴金
属電極 4・・陰極 5・・鉛系電極 特許出願人 日本カーリット株式会社 第10 5 4  ′J 手続補正書 昭和63年10月2s日
FIG. 1 is a diagram illustrating an embodiment of the chrome plating method of the present invention. 1. Plating tank 2. Trivalent chromium adjustment tank 3. Precious metal electrode 4. Cathode 5. Lead-based electrode Patent applicant Nippon Carlit Co., Ltd. No. 10 5 4 'J Procedural Amendment October 1988 2s Day

Claims (1)

【特許請求の範囲】[Claims] 鉛、鉛合金および二酸化鉛電極から選ばれた1種以上の
鉛系電極と、白金族金属および/またはそれらの酸化物
を被覆した貴金属電極との電極作用面積比を1:1〜1
:10とし、鉛系電極と貴金属電極とを併用してメッキ
を行なうことを特徴とするクロムメッキ方法。
The electrode active area ratio of one or more lead-based electrodes selected from lead, lead alloys, and lead dioxide electrodes and a noble metal electrode coated with platinum group metals and/or their oxides is 1:1 to 1.
:10, a chromium plating method characterized by plating using a lead-based electrode and a noble metal electrode in combination.
JP25474587A 1987-10-12 1987-10-12 Chromium plating method Pending JPH01100291A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25474587A JPH01100291A (en) 1987-10-12 1987-10-12 Chromium plating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25474587A JPH01100291A (en) 1987-10-12 1987-10-12 Chromium plating method

Publications (1)

Publication Number Publication Date
JPH01100291A true JPH01100291A (en) 1989-04-18

Family

ID=17269281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25474587A Pending JPH01100291A (en) 1987-10-12 1987-10-12 Chromium plating method

Country Status (1)

Country Link
JP (1) JPH01100291A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011019115A1 (en) 2009-08-10 2011-02-17 엘지전자 주식회사 Compressor
US8814546B2 (en) 2009-08-10 2014-08-26 Lg Electronics Inc. Compressor
US8858205B2 (en) 2009-08-10 2014-10-14 Lg Electronics Inc. Compressor having an inlet port formed to overlap with a roller and a cylinder-type rotor for compressing a refrigerant
US9181947B2 (en) 2009-08-10 2015-11-10 Lg Electronics Inc. Compressor
WO2020009096A1 (en) * 2018-07-03 2020-01-09 株式会社Jcu Trivalent chromium plating solution and chromium plating method using same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011019115A1 (en) 2009-08-10 2011-02-17 엘지전자 주식회사 Compressor
US8814546B2 (en) 2009-08-10 2014-08-26 Lg Electronics Inc. Compressor
US8858205B2 (en) 2009-08-10 2014-10-14 Lg Electronics Inc. Compressor having an inlet port formed to overlap with a roller and a cylinder-type rotor for compressing a refrigerant
US9181947B2 (en) 2009-08-10 2015-11-10 Lg Electronics Inc. Compressor
WO2020009096A1 (en) * 2018-07-03 2020-01-09 株式会社Jcu Trivalent chromium plating solution and chromium plating method using same

Similar Documents

Publication Publication Date Title
JP3188361B2 (en) Chrome plating method
US6251254B1 (en) Electrode for chromium plating
JP3914162B2 (en) Oxygen generating electrode
JP2514032B2 (en) Metal electrolytic treatment method
JPH01100291A (en) Chromium plating method
JP2885913B2 (en) Anode for chromium plating and method for producing the same
US3503799A (en) Method of preparing an electrode coated with a platinum metal
US3412000A (en) Cathodic protection of titanium surfaces
JP3654204B2 (en) Oxygen generating anode
JPS63270490A (en) Chromium plating method
JP2722263B2 (en) Electrode for electrolysis and method for producing the same
JP2908540B2 (en) Chrome plating method
JPH0240751B2 (en)
JP4299253B2 (en) Hexavalent chromium plating method
JPH07316874A (en) Chromium plating method
JPS5811000B2 (en) Manufacturing method of insoluble anode used for electrolysis of aqueous solution
JPH02294497A (en) Chromium plating method
JPH0417573Y2 (en)
JPH03260097A (en) Method of chromium plating using insoluble anode
JP2722262B2 (en) Electrode for electrolysis and method for producing the same
JPS6148596B2 (en)
JPH02310398A (en) Method for electrolytically descaling cold-rolled stainless steel
JPH05230682A (en) Electrolytic electrode
JPS62142798A (en) Production of anode having low oxygen overvoltage
JPH0483890A (en) Electrode for electrolysis and its production