JPH02310398A - Method for electrolytically descaling cold-rolled stainless steel - Google Patents

Method for electrolytically descaling cold-rolled stainless steel

Info

Publication number
JPH02310398A
JPH02310398A JP1132232A JP13223289A JPH02310398A JP H02310398 A JPH02310398 A JP H02310398A JP 1132232 A JP1132232 A JP 1132232A JP 13223289 A JP13223289 A JP 13223289A JP H02310398 A JPH02310398 A JP H02310398A
Authority
JP
Japan
Prior art keywords
stainless steel
electrode
oxide
cold
electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1132232A
Other languages
Japanese (ja)
Inventor
Sadao Hasuno
貞夫 蓮野
Masaaki Ishikawa
正明 石川
Minoru Murabayashi
村林 実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP1132232A priority Critical patent/JPH02310398A/en
Publication of JPH02310398A publication Critical patent/JPH02310398A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/04Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for de-scaling, e.g. by brushing
    • B21B45/06Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for de-scaling, e.g. by brushing of strip material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F1/00Electrolytic cleaning, degreasing, pickling or descaling
    • C25F1/02Pickling; Descaling
    • C25F1/04Pickling; Descaling in solution
    • C25F1/06Iron or steel
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F7/00Constructional parts, or assemblies thereof, of cells for electrolytic removal of material from objects; Servicing or operating

Abstract

PURPOSE:To control the consumption of an anode and to electrolytically descale a cold-rolled stainless steel in an aq. neutral salt soln. over a long period by using the Ti coated with the oxide of a platinum-group element for the anode. CONSTITUTION:The oxide scales on a cold-rolled stainless steel sheet 3 are electrolytically removed. In this case, the sheet 3 is passed through an inlet-side chamber 5A contg. a 20% soln. 4 of the neutral salt of Na2SO4 and in which plural sets of anodes 1 are arranged above and below the sheet in the traveling direction and passed through an outlet-side chamber 5B contg. the same soln. 4 and in which plural sets of cathodes 2 are arranged above and below the sheet 3 in its traveling direction, and a current is applied to the cathode and anode to electrolytically remove the oxide scales on the surface of the sheet. In this case, an electrode of the Ti coated with the oxide of a platinum-family element such as IrO2 is used as the cathode, high-silicon cast iron is used for the cathode, the anode current density is controlled to 2-12A/dm<2>, the anode potential is adjusted to 2.1V based on a silver-silver chloride electrode, and electrolytic descaling is carried out.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ステンレス冷延鋼材の電解脱スケール法に関
し、特に長期間にわたり連続的にステンレス冷延鋼帯の
表面の酸化スケールを除去することが可能なステンレス
冷延鋼材の電解脱スケール法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an electrolytic descaling method for cold-rolled stainless steel, and in particular to a method for continuously removing oxidized scale on the surface of a cold-rolled stainless steel strip over a long period of time. This paper relates to an electrolytic descaling method for cold-rolled stainless steel materials.

〔従来の技術〕[Conventional technology]

ステンレス冷延鋼帯は酸化雰囲気で焼鈍や焼入れなどの
熱処理をおこなった場合、鋼帯表面に酸化スケールが形
成されるので、一般にこの酸化スケールを除去するため
の脱スケール処理が行われる。
When cold-rolled stainless steel strip is subjected to heat treatment such as annealing or quenching in an oxidizing atmosphere, oxide scale is formed on the surface of the steel strip, so descaling treatment is generally performed to remove this oxide scale.

脱スケール処理には、硫酸、塩酸、硝弗酸(硝酸と弗酸
の混合酸)などを用いた酸洗が一般に用いられているが
、ステンレス冷延鋼帯に形成される酸化スケールは緻密
で強固であるので完全に脱スケールするのはなかなか困
難である。そこで、酸洗を容易にする前処理として、溶
融アルカリ塩への浸漬処理(ソルト処理)、あるいは特
公昭3B−12162号公報に示される中性塩水溶液中
での電解脱スケール処理などが開発され実用化されてい
る。
Pickling using sulfuric acid, hydrochloric acid, nitric-fluoric acid (a mixed acid of nitric acid and hydrofluoric acid), etc. is generally used for descaling, but the oxide scale that forms on cold-rolled stainless steel strips is dense. Because it is so strong, it is difficult to completely descale it. Therefore, as pretreatment to facilitate pickling, methods such as immersion treatment in molten alkali salt (salt treatment) or electrolytic descaling treatment in a neutral salt aqueous solution as shown in Japanese Patent Publication No. 3B-12162 have been developed. It has been put into practical use.

上記中性塩水溶液中での電解脱スケール処理は、−殻に
第4図に示すような間接電解方式が採られている。すな
わち、電解槽5に満たされた中+1 JL溶液4中に、
ステンレス鋼帯3を上下から挟む形で陽電極lと陰電極
2を銅帯進行方向に配列し、両電極1,2間に直流電圧
を付加する方式である。
The electrolytic descaling treatment in the neutral salt aqueous solution employs an indirect electrolysis method as shown in FIG. That is, in the +1 JL solution 4 filled in the electrolytic tank 5,
In this method, a positive electrode 1 and a negative electrode 2 are arranged in the direction in which the copper strip moves, sandwiching the stainless steel strip 3 from above and below, and a DC voltage is applied between the electrodes 1 and 2.

電極材としては、鉛電極や高ケイ素(Si)鋳鉄電極な
どが用いられる。
As the electrode material, a lead electrode, a high silicon (Si) cast iron electrode, or the like is used.

中性塩水溶液中での電解脱スケール処理は、ツル斗処理
に比べ美麗な表面性状を得やすいこと、溶液が中性のた
め作業環境が優れていることなどの長所がある。
Electrolytic descaling treatment in a neutral salt aqueous solution has the advantage that it is easier to obtain beautiful surface textures than Tsuruto treatment, and because the solution is neutral, it provides an excellent working environment.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来の中性塩水溶液中での電解脱スケール処理法に
あっては、電解液中に常時浸漬されている両電極1. 
2のうち、陰電極2では主に水の電気分解に伴い水素が
発生するのみであり、電極自体の消耗は少ない。
In the conventional electrolytic descaling treatment method in a neutral salt aqueous solution, both electrodes 1.
Of these, at the negative electrode 2, only hydrogen is mainly generated due to the electrolysis of water, and the electrode itself suffers little wear.

しかしながら、陽電極lでは水の電気分解に伴う酸素発
生以外に、陽極材の溶解反応を生じるため電極自体の消
耗が著しく、1〜3力月程度で電極材の交換が必要であ
り、長期間にわたる安定した操業が難しいという問題点
があった。
However, in the anode electrode 1, in addition to the generation of oxygen accompanying the electrolysis of water, a dissolution reaction of the anode material occurs, so the electrode itself wears out considerably, and the electrode material needs to be replaced every 1 to 3 months, requiring a long period of time. The problem was that it was difficult to maintain stable operations over a long period of time.

対策として、陽電極の消耗を抑制するべ(、電解槽を複
数個に分割して陽電極の浸漬する電解液のみを、より腐
食性の低い液に替えることは可能であるが、設備の複雑
化、液の持ち込み等、他の難点が多く実用的ではない。
As a countermeasure, it is possible to suppress the consumption of the anode (it is possible to divide the electrolytic tank into multiple parts and replace only the electrolyte in which the anode is immersed with a less corrosive solution, but this would require complicated equipment. It is not practical due to many other difficulties, such as the need to carry in liquids and liquids.

そこで本発明は、上記従来の問題点に着目してなされた
ものであり、その目的とするところは、長期間にわたり
連続的に操業することが可能な、中性塩水溶液中でのス
テンレス冷延鋼材の電解脱スケール法を提供することに
ある。
Therefore, the present invention has been made by focusing on the above-mentioned conventional problems, and its purpose is to cold-roll stainless steel in a neutral salt aqueous solution, which can be operated continuously for a long period of time. The object of the present invention is to provide an electrolytic descaling method for steel materials.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的を達成する本発明は、ステンレス冷延鋼材の
電解脱スケール処理に際し、チタン材を白金族元素の酸
化物で被覆してなる陽電極を用いて、中性塩水溶液中で
電解処理することを特徴とす名。
The present invention achieves the above objects by electrolytically treating cold rolled stainless steel in a neutral salt aqueous solution using a positive electrode made of a titanium material coated with an oxide of a platinum group element. A name characterized by

陽電極の電流密度は2 A/ d m2〜12 A/ 
dm2の範囲にすることができる。
The current density of the positive electrode is 2 A/d m2 to 12 A/
dm2 range.

また陽電極の電極電位を銀・塩化銀電極を基準として2
.1 V以下にすることができる。
Also, the electrode potential of the positive electrode is set to 2 with respect to the silver/silver chloride electrode.
.. It can be lowered to 1 V or less.

[作用] チタン材を白金族元素の酸化物で被覆してなる陽極電極
を用いると、陽極電極の電流密度2A/dm2〜12A
/dm”の範囲、あるいは陽極電極の電極電位を銀・塩
化8m電極を基準として2.1v以下に維持することに
より、中性塩水溶液中からマンガン(Mn)酸化物が析
出する現象が抑制される。そのため、マンガン酸化物に
よる陽電極材の劣化、消耗を防止することができ、長期
の操業でも電極材が安定している。
[Function] When an anode electrode made of a titanium material coated with an oxide of a platinum group element is used, the current density of the anode electrode is 2 A/dm2 to 12 A.
/dm” range or by maintaining the electrode potential of the anode electrode at 2.1 V or less based on the silver/chloride 8m electrode, the phenomenon of precipitation of manganese (Mn) oxide from the neutral salt aqueous solution is suppressed. Therefore, deterioration and consumption of the positive electrode material due to manganese oxide can be prevented, and the electrode material remains stable even during long-term operation.

以下、本発明を更に詳細に説明する。The present invention will be explained in more detail below.

本発明の発明者らは、中性塩水溶液中でのステンレス冷
延鋼材の電解脱スケール処理において、陽電極材の消耗
を低減させるには、中性塩電解に適した陽電極材とその
適切な使用条件を見出す必要があることに着目した。
The inventors of the present invention have developed a positive electrode material suitable for neutral salt electrolysis and its appropriateness in order to reduce the consumption of the positive electrode material in the electrolytic descaling treatment of cold rolled stainless steel materials in a neutral salt aqueous solution. We focused on the need to find suitable usage conditions.

そこで先ず、各種の陽電極材で中性塩水溶液中での電解
脱スケール実験を行って、その陽電極材の消耗量を測定
した。第1表はその結果を示したものである。
First, we conducted an electrolytic descaling experiment in a neutral salt aqueous solution using various positive electrode materials, and measured the amount of consumption of the positive electrode materials. Table 1 shows the results.

上記の結果から、白金(pt)と白金族元素の酸化物で
ある酸化イリジウム(I ro□)を用いてチタン(T
 i )基板を被覆したものが極めて消耗量が少なく、
電極としての耐久性が良好であ、7゜ことが判明した。
From the above results, titanium (T
i) The amount of wear of the coated substrate is extremely low;
It was found that the durability as an electrode was good and was 7°.

そこで次に、Ti基板に白金箔をスポット溶接して形成
した白金箔溶接陽電極と、Ti基板を白金で被覆した白
金被覆陽電極を用意して、それぞれ6力月を目標にして
連続的にステンレス冷延鋼帯の中性塩水溶液中での電解
脱スケール処理を行ってみた。その結果、白金箔溶接陽
電極の方は、予想通りスボッ[8接部からの白金箔の剥
離が発生して、3力月で使用不可能になった。この白金
箔の剥・離は、スポット溶接部に電流が集中したために
生じたものである。
Therefore, we next prepared a platinum foil welded positive electrode formed by spot welding platinum foil onto a Ti substrate, and a platinum coated positive electrode formed by coating a Ti substrate with platinum. We performed electrolytic descaling treatment of cold-rolled stainless steel strip in a neutral salt aqueous solution. As a result, as expected, the platinum foil welded on the platinum foil welded positive electrode peeled off from the contact area and became unusable after three months. This peeling and peeling of the platinum foil occurred because current was concentrated at the spot weld.

一方、白金被覆陽電極の方は6力月間の連続操業が可能
と予想したが、実際は白金被覆材の表面が黒化し、3力
月経過後には電解電圧が30%も上昇するなどの現象が
生じ、結局長期使用に耐えなかった。又、電解電圧が上
昇した白金被覆面の一部は白金が剥離し、基板のTiが
露出していることが認められた。
On the other hand, it was expected that the platinum-coated positive electrode would be able to operate continuously for 6 months, but in reality, the surface of the platinum coating material turned black and the electrolytic voltage increased by 30% after 3 months. It ended up not being able to withstand long-term use. In addition, it was observed that the platinum was peeled off from a part of the platinum-coated surface where the electrolytic voltage increased, and the Ti of the substrate was exposed.

そこでその原因を解明するべく、白金被覆陽電極の黒化
部の成分分析を試みたところ、マンガン(Mn)と酸素
(0)が多量に検出された。このことから、ステンレス
鋼の脱スケール処理の過程で、ステンレス鋼のスケール
あるいは母材から徐々に電解液中に溶出したMnイオン
が長時間の電解のため陽極で発生した酸素で酸化され、
酸化マンガンとなって析出したものと推定される。
In order to find out the cause of this, an attempt was made to analyze the components of the blackened part of the platinum-coated positive electrode, and large amounts of manganese (Mn) and oxygen (0) were detected. From this, in the process of descaling stainless steel, Mn ions gradually eluted into the electrolyte from the stainless steel scale or base metal are oxidized by oxygen generated at the anode due to long-term electrolysis.
It is presumed that it precipitated as manganese oxide.

又、電解電圧の上昇については、以下のことが判明した
。すなわち、析出した酸化マンガンの堆積により、過剰
な力が白金被覆層に加わり、一部の白金が剥離して基板
のTiが露出する。この露出Tiの表面は、中性塩水溶
液中の電解で陽極に形成された電気絶縁性の酸化物で覆
われてしまい通電不能となる(第1表参照)。その結果
陽電極での実質電流密度が増大し、電解電圧が上昇する
Furthermore, regarding the increase in electrolytic voltage, the following was found. That is, due to the deposition of precipitated manganese oxide, excessive force is applied to the platinum coating layer, and part of the platinum is peeled off, exposing Ti on the substrate. The surface of this exposed Ti is covered with an electrically insulating oxide formed as an anode by electrolysis in a neutral salt aqueous solution, making it impossible to conduct electricity (see Table 1). As a result, the effective current density at the positive electrode increases and the electrolytic voltage increases.

結局、白金被覆陽電極の黒化と電解電圧の上昇の原因は
、いづれも中性塩水溶液中のMnイオンの陽極酸化反応
に起因するものである。ちなみに電解液としての中性塩
水m?(lにあっては、カリウム(K)あるいはナトリ
ウム(Na)の硫酸塩。
After all, the causes of the blackening of the platinum-coated anode and the increase in electrolytic voltage are both caused by the anodic oxidation reaction of Mn ions in the neutral salt aqueous solution. By the way, is neutral salt water used as an electrolyte? (For l, potassium (K) or sodium (Na) sulfate.

硝酸塩等が主に用いられており、建浴時にはMnイオン
は含まれていない。しかし、電解脱スケールを行ってい
る過程で、ステンレス冷延鋼材のスケールあるいは母材
から徐々に電解液中にMnイオンが析出して濃化する。
Nitrates and the like are mainly used, and Mn ions are not included at the time of bath preparation. However, during the process of electrolytic descaling, Mn ions are gradually precipitated and concentrated in the electrolytic solution from the scale or base material of the cold rolled stainless steel material.

かくして、ステンレス冷延鋼材について長期間の電解脱
スケールを行うかぎり、Mnイオンの電解液中への溶出
は避は得ないものであり、電解液中からのMn、イオン
の除去は困難である。
Thus, as long as long-term electrolytic descaling is performed on cold-rolled stainless steel materials, the elution of Mn ions into the electrolyte is unavoidable, and it is difficult to remove Mn and ions from the electrolyte.

そこで本発明者らは、上記第1表に示された諸電極材の
うち、消耗量が格段に少ないTi−Pt被覆材(白金被
覆電極材)とTi−1rO□被覆材(酸化イリジュウム
被覆電極材)とにつき、ステンレス冷延鋼の中性塩水溶
液中での電解脱スケール処理におけるMnイオンの陽極
酸化反応を更に詳細に研究して、第1図に示すような結
果を得゛た。
Therefore, among the various electrode materials shown in Table 1 above, the present inventors discovered a Ti-Pt coating material (platinum-coated electrode material) and a Ti-1rO□ coating material (iridium oxide-coated electrode material), which have significantly less consumption. The anodic oxidation reaction of Mn ions during the electrolytic descaling treatment of cold-rolled stainless steel in a neutral salt aqueous solution was studied in more detail, and the results shown in Figure 1 were obtained.

すなわち、中性塩電解液中から陽電極板面へMn酸化物
が析出するのに、各電極材ごとに特定の電流密度の範囲
があることが判明した。電極電位についてみれば、中性
塩電解液中から陽電撞板へMn酸化物が析出するのは、
恨・塩化銀電極を基準電極として2.1〜2.9■の範
囲である。その範囲外であれば、Mn酸化物は析出しな
い。又、白金被覆電極材と酸化イリジュウム被覆電極材
とでは、陽電極に使用したときの電極電位にかなりに差
異があり、酸化イリジュウム被覆電極材の場合は、6力
月間の電解脱スケール処理に使用した後の中性塩電解液
中においても電流密度12A/dm2以下で使用すれば
Mn酸化物は生じないことが判明した。
That is, it has been found that there is a specific range of current density for each electrode material in order for Mn oxide to precipitate from the neutral salt electrolyte onto the surface of the positive electrode plate. Regarding the electrode potential, the precipitation of Mn oxide from the neutral salt electrolyte to the positive electrode plate is due to the following:
It ranges from 2.1 to 2.9 square meters using a silver chloride electrode as a reference electrode. Outside this range, Mn oxide will not precipitate. In addition, there is a considerable difference in electrode potential between platinum-coated electrode materials and iridium oxide-coated electrode materials when used as positive electrodes, and in the case of iridium oxide-coated electrode materials, it is difficult to use electrolytic descaling treatment for 6 months. It was found that Mn oxides were not produced even in the neutral salt electrolyte after the reaction, if the current density was 12 A/dm2 or less.

これに対して、白金被覆電極材の場合は、同じく6力月
間の電解脱スケール処理に使用した後の中性塩電解液中
において、電流密度を6 A / d m 2以下に抑
えないとMn酸化物の発生を防止することができないこ
とが判明した。しかして電極板では一般に端部での電流
集中が生じやすいため、結局、白金被覆電極材では長期
にわたる安定した操業は困難であると結論できる。
On the other hand, in the case of platinum-coated electrode materials, if the current density is not suppressed to 6 A/d m2 or less in a neutral salt electrolyte after being used for electrolytic descaling treatment for 6 months, Mn It was found that the generation of oxides could not be prevented. However, since current concentration is generally likely to occur at the ends of electrode plates, it can be concluded that stable operation over a long period of time is difficult with platinum-coated electrode materials.

上記の研究結果に基づく本発明の具体的構成について、
以下に説明する。
Regarding the specific configuration of the present invention based on the above research results,
This will be explained below.

本発明の中性塩水溶液に用いられる中性塩の種類、中性
塩水溶液の濃度、ならびに電解処理の温度、電流密度な
どの諸条件については、従来の条件が本発明にも適用し
得る。
Regarding various conditions such as the type of neutral salt used in the neutral salt aqueous solution of the present invention, the concentration of the neutral salt aqueous solution, and the temperature and current density of the electrolytic treatment, conventional conditions can also be applied to the present invention.

すなわち、中性塩の種類としては、硫酸、硝酸などのN
a塩、に塩を単独または複合して使用することができる
。もっとも経済性および表面仕上りの点から1.硫酸ナ
トリウムの使用が好ましい。
In other words, types of neutral salts include N such as sulfuric acid and nitric acid.
A salt and a salt can be used alone or in combination. From the point of view of economy and surface finish, 1. Preference is given to using sodium sulfate.

中性塩水溶液の濃度としては、100〜300g/iが
適正であり、液温度としては70〜90°Cが適正であ
る。
The appropriate concentration of the neutral salt aqueous solution is 100 to 300 g/i, and the appropriate liquid temperature is 70 to 90°C.

また電流密度については、ステンレス冷延鋼帯を処理す
る場合のアノード反応電流密度、カソード反応電流密度
ともに2〜12A/dm”が適正範囲である。2A/d
m”未満の電流密度にすると、所要の電極長が長(なり
、設備上不利になる。
Regarding the current density, the appropriate range for both the anode reaction current density and the cathode reaction current density when processing cold rolled stainless steel strip is 2 to 12 A/dm. 2A/d.
If the current density is less than m'', the required electrode length becomes long, which is disadvantageous in terms of equipment.

一方、12A/dm”を越えると次第に酸化マンガンを
堆積し、電極被覆層の剥離をもたらす。
On the other hand, if it exceeds 12 A/dm'', manganese oxide is gradually deposited, resulting in peeling of the electrode coating layer.

電気化学的に表せば、陽極の電極電位を銀・塩化銀電極
を基準電極として2.1v以下で使用することにより、
酸化マンガンの析出を防止し、長期間にわたり陽電極材
の消耗を防止することができる(第1図参照)。
Expressed electrochemically, by using the electrode potential of the anode at 2.1 V or less using a silver/silver chloride electrode as a reference electrode,
Precipitation of manganese oxide can be prevented, and consumption of the positive electrode material can be prevented over a long period of time (see Figure 1).

電極材としては、陽電極についてはTiを基材とし、白
金族元素の酸化物である酸化ルテニウム(RuO□)、
酸化ロジウム(Rhzo:+ )、酸化パラジウム(P
dO)、酸化オスミウム(Os04)、酸化イリジウム
(IrO2)等で被覆してなる電極材を使用する。基材
にTiを用いると、白金族元素の酸化物を表面に焼成し
た際に、酸化物との高い密着性が得られる利点がある。
As the electrode material, for the positive electrode, Ti is used as the base material, and ruthenium oxide (RuO□), which is an oxide of a platinum group element, is used as the positive electrode.
Rhodium oxide (Rhzo:+), palladium oxide (P
An electrode material coated with osmium oxide (Os04), iridium oxide (IrO2), etc. is used. When Ti is used as the base material, there is an advantage that high adhesion with the oxide of a platinum group element can be obtained when the oxide of the platinum group element is fired onto the surface.

又更に、白金族元素の酸化物の一部が万一剥離した場合
には、陽極酸化のためTiの酸化物で再被覆されるから
、溶解を防ぐことができる。
Furthermore, if a part of the oxide of the platinum group element were to peel off, it would be re-coated with the oxide of Ti due to the anodic oxidation, thereby preventing dissolution.

陰電極としては、高ケイ素鋳鉄とか各種ステンレス鋼な
どが使用される。
High-silicon cast iron or various types of stainless steel are used as the negative electrode.

電極配列については、特に制限はされない。There are no particular restrictions on the electrode arrangement.

なお、比較的脱スケール性の良いステンレス鋼の場合は
、中性塩水溶液中での電解だけで脱スケールが可能であ
るが、不十分の場合は引き続いて酸洗処理を行うことに
より、完全にスケールを除去することが可能となる。
In the case of stainless steel, which has relatively good descaling properties, it is possible to descale it simply by electrolysis in a neutral salt aqueous solution, but if this is insufficient, it can be completely removed by subsequent pickling treatment. It becomes possible to remove scale.

中性塩水溶液中の電解処理後の酸洗は、従来と同様の処
理すなわちフェライト系、マルテンサイト系のステンレ
ス鋼に対しては、主として硝酸浸漬または硝酸電解が適
用される。オーステナイト系ステンレス鋼にたいしては
、主として硝弗酸浸漬が適用される。
For pickling after electrolytic treatment in a neutral salt aqueous solution, the same treatment as conventional methods is applied, that is, nitric acid immersion or nitric acid electrolysis is mainly applied to ferritic and martensitic stainless steels. Nitrofluoric acid immersion is mainly applied to austenitic stainless steel.

〔実施例] ステンレス冷延鋼帯焼鈍酸洗設備における中性塩電解脱
スケール処理をおこない、長期間にわたる電解電圧(電
解摺電圧)の変化を、Ti−PL被覆材(白金被覆電極
材)とTi−1rOz被覆材(酸化イリジュウム被覆電
極材)とにつき比較検討した。
[Example] Neutral salt electrolytic descaling treatment was carried out in stainless steel cold rolled steel strip annealing and pickling equipment, and changes in electrolytic voltage (electrolytic sliding voltage) over a long period of time were measured between Ti-PL coating material (platinum-coated electrode material) and A comparative study was conducted with Ti-1rOz coating material (iridium oxide coated electrode material).

電解槽は、第2図に示すものを用いた。すなわち、電解
槽5内は被処理物であるステンレス冷延鋼帯3の進行方
向に2分割した。入り側5Aには、ステンレス冷延鋼帯
3を挟む形で複数の対向¥5電極1を鋼帯進行方向に配
列した。出側5Bには、ステンレス冷延鋼帯3を挟む形
で複数の対向陰電極2を同じく配列した。陰電極2にお
いて発生する水素の還元作用と、放出水素による電解液
撹拌に伴うスケール剥離作用で、ステンレス冷延鋼帯3
の脱スケールが行われる。
The electrolytic cell shown in FIG. 2 was used. That is, the inside of the electrolytic cell 5 was divided into two parts in the direction of movement of the cold-rolled stainless steel strip 3 as the object to be treated. On the entry side 5A, a plurality of opposing ¥5 electrodes 1 were arranged in the steel strip traveling direction so as to sandwich the stainless steel cold rolled steel strip 3 therebetween. On the outlet side 5B, a plurality of opposing negative electrodes 2 were arranged in the same manner with cold-rolled stainless steel strips 3 interposed therebetween. Due to the reduction action of hydrogen generated at the negative electrode 2 and the scale exfoliation action caused by the electrolyte stirring caused by released hydrogen, the cold rolled stainless steel strip 3
is descaled.

電解液4は、槽5A、5Bともに20%硫酸ナトリウム
の中性塩水溶液とし、液温度は80°Cに維持した。電
解液4は、循環式で混合した。
The electrolyte solution 4 in both tanks 5A and 5B was a 20% neutral salt aqueous solution of sodium sulfate, and the solution temperature was maintained at 80°C. Electrolyte 4 was mixed in a circulation manner.

電流密度はステンレス冷延鋼帯3のサイズ、鋼種に応じ
て変動するが、陽電極1では6〜12A/ d m ”
とし、陰電極2では3〜6 A / d m ”とした
The current density varies depending on the size and steel type of the cold-rolled stainless steel strip 3, but for the positive electrode 1 it is 6 to 12 A/dm.
and 3 to 6 A/dm'' for the negative electrode 2.

試験は、まず陽電極1を全てTi−PC被覆材(白金被
覆電極材)として3力月実施した。その後、陽電極lを
全てTi−1rO□被覆材(酸化イリジュウム被覆電極
材)に置換して行った。
The test was first conducted for three months using all the positive electrodes 1 as Ti-PC coating materials (platinum-coated electrode materials). Thereafter, the positive electrode 1 was entirely replaced with a Ti-1rO□ coating material (iridium oxide-coated electrode material).

試験時の電解電圧の経時変化を第3図に示す。Figure 3 shows the change in electrolytic voltage over time during the test.

いづれの場合も同一サイズ、同一鋼種を処理していると
きの電圧を測定採取したものである。
In each case, the voltage was measured and collected while processing the same size and steel type.

第3図から明らかなように、白金被覆電極材の場合は、
40日経過以降は顕著に電解電圧が上昇した。90日経
過後は、電源の電圧限界値に達して使用不能になった。
As is clear from Figure 3, in the case of platinum-coated electrode material,
After 40 days, the electrolytic voltage increased significantly. After 90 days, the voltage limit of the power supply was reached and it became unusable.

その後、電解槽5から陽電極1を引き上げて観察したと
ころ、全面が黒化し、電極端部には著しい消耗が認めら
れた。
Thereafter, when the positive electrode 1 was pulled up from the electrolytic cell 5 and observed, the entire surface turned black and significant wear was observed at the electrode end.

一方、酸化イリジュウム被覆電極材の場合は、180日
経過後も顕著な黒化はなく、電極端部にもなんら損傷は
認められなかった。
On the other hand, in the case of the iridium oxide coated electrode material, there was no significant blackening even after 180 days, and no damage was observed at the electrode end.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、ステンレス冷延
鋼帯の電解脱スケール処理において、チタン材を白金族
元素の酸化物で被覆してなる陽電極を用いて、電流密度
を2A/dm2〜12A/dm”の範囲、あるいは陽電
極の電極電位を銀・塩化銀電極を基準として2.1v以
下に保って中性塩水溶液中で電解処理するものとした。
As explained above, according to the present invention, in electrolytic descaling treatment of cold-rolled stainless steel strip, a positive electrode made of a titanium material coated with an oxide of a platinum group element is used to increase the current density to 2 A/dm2. Electrolytic treatment was carried out in a neutral salt aqueous solution while maintaining the electrode potential of the positive electrode at 2.1 V or less with respect to the silver/silver chloride electrode.

これにより、陽電極の損傷をもたらすマンガン(Mn)
酸化物の発生が抑止されて、その結果、V期間にわたり
連続的操業が可能な、中性塩水溶液中ごのステンレス冷
延鋼材の電解脱スケール法を提供することができるとい
う効果が得られる。
This causes manganese (Mn) damage to the positive electrode.
The generation of oxides is suppressed, and as a result, it is possible to provide an electrolytic descaling method for cold-rolled stainless steel in a neutral salt aqueous solution that can be operated continuously over a period of V.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の脱スケール処理の一例におけるマンガ
ン酸化物の発生条件を従来のものと比較して示すグラフ
、第2図は本発明の電解槽の一実施例の模式断面図、第
3図は本発明の長期脱スケール処理試験における電解電
圧の推移の一例を従来と比較して表したグラフ、第4図
は従来の電解槽の模式断面図である。 ■は陽電極、2は陰電極、3はステンレス冷延鋼帯、4
は中性塩電解液、5は電解槽。
Fig. 1 is a graph showing the generation conditions of manganese oxide in an example of the descaling treatment of the present invention in comparison with conventional ones, Fig. 2 is a schematic sectional view of an example of the electrolytic cell of the present invention, and Fig. 3 The figure is a graph showing an example of the change in electrolytic voltage in a long-term descaling treatment test of the present invention in comparison with a conventional electrolytic cell, and FIG. 4 is a schematic cross-sectional view of a conventional electrolytic cell. ■ is positive electrode, 2 is negative electrode, 3 is stainless steel cold rolled steel strip, 4
is a neutral salt electrolyte, and 5 is an electrolytic cell.

Claims (3)

【特許請求の範囲】[Claims] (1)ステンレス冷延鋼材の電解脱スケール処理に際し
、チタン材を白金族元素の酸化物で被覆してなる陽電極
を用いて、中性塩水溶液中で電解処理することを特徴と
するステンレス冷延鋼材の電解脱スケール法。
(1) During the electrolytic descaling treatment of cold-rolled stainless steel, a positive electrode made of a titanium material coated with an oxide of a platinum group element is used to conduct the electrolytic treatment in a neutral salt aqueous solution. Electrolytic descaling method for rolled steel.
(2)陽電極の電流密度を2A/dm^2〜12A/d
m^2の範囲にすることを特徴とする請求項(1)記載
のステンレス冷延鋼材の電解脱スケール法。
(2) The current density of the positive electrode is 2A/dm^2~12A/d
The electrolytic descaling method for cold-rolled stainless steel material according to claim 1, wherein the descaling method is performed in a range of m^2.
(3)陽電極の電極電位を銀・塩化銀電極を基準として
2.1V以下にすることを特徴とする請求項(1)又は
(2)記載のステンレス冷延鋼材の電解脱スケール法。
(3) The electrolytic descaling method for cold-rolled stainless steel material according to claim (1) or (2), characterized in that the electrode potential of the positive electrode is set to 2.1 V or less with respect to the silver/silver chloride electrode.
JP1132232A 1989-05-25 1989-05-25 Method for electrolytically descaling cold-rolled stainless steel Pending JPH02310398A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1132232A JPH02310398A (en) 1989-05-25 1989-05-25 Method for electrolytically descaling cold-rolled stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1132232A JPH02310398A (en) 1989-05-25 1989-05-25 Method for electrolytically descaling cold-rolled stainless steel

Publications (1)

Publication Number Publication Date
JPH02310398A true JPH02310398A (en) 1990-12-26

Family

ID=15076462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1132232A Pending JPH02310398A (en) 1989-05-25 1989-05-25 Method for electrolytically descaling cold-rolled stainless steel

Country Status (1)

Country Link
JP (1) JPH02310398A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005068523A (en) * 2003-08-27 2005-03-17 Nippon Steel Corp Method of producing stainless steel sheet
JP2014162974A (en) * 2013-02-27 2014-09-08 Jfe Steel Corp Electrode life evaluation method in electrolytic pickling equipment and electrolytic pickling equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005068523A (en) * 2003-08-27 2005-03-17 Nippon Steel Corp Method of producing stainless steel sheet
JP2014162974A (en) * 2013-02-27 2014-09-08 Jfe Steel Corp Electrode life evaluation method in electrolytic pickling equipment and electrolytic pickling equipment

Similar Documents

Publication Publication Date Title
US6565735B1 (en) Process for electrolytic pickling using nitric acid-free solutions
KR0173975B1 (en) Method of descaling stainless steel and apparatus for the same
EP0430893B1 (en) Method for the electrolytic pickling or degreasing of steel plate
JPH0827600A (en) Descaling method and device for stainless steel strip
JP2885913B2 (en) Anode for chromium plating and method for producing the same
JPH02310398A (en) Method for electrolytically descaling cold-rolled stainless steel
JP3792335B2 (en) Finishing electrolytic pickling method in descaling of stainless steel strip
US4236977A (en) Method for preplating steel surfaces
JP2000204499A (en) Electrolytical descaling of stainless steel strip
JPH0559999B2 (en)
JPH0240751B2 (en)
JPH01100291A (en) Chromium plating method
JPH05295600A (en) Continuous descaling method for stainless steel strip and its device
JP2868589B2 (en) Neutral salt electrolytic treatment method for stainless steel strip
JP3873335B2 (en) Electrolytic descaling method for steel strip
JPH0324299A (en) Method for pickling band stainless steel
JPH10121298A (en) Method for removing colored film of stainless steel
JP4189053B2 (en) High speed electrolytic descaling method for stainless steel
JPH0534439B2 (en)
JPH0196398A (en) Method for electrolytically descaling cold rolled stainless steel strip with neutral salt
JPH02173300A (en) Method for electrolytically descaling cold rolled stainless steel strip with neutral salt
JP3406403B2 (en) Electrode for strong acid water
JPH03215700A (en) Lead dioxide-coated electrode
JPH0254787A (en) Method and device for descaling band alloy steel
JPH1161500A (en) Descaling of stainless steel strip and heat resistant steel strip