JPH0196398A - Method for electrolytically descaling cold rolled stainless steel strip with neutral salt - Google Patents

Method for electrolytically descaling cold rolled stainless steel strip with neutral salt

Info

Publication number
JPH0196398A
JPH0196398A JP25233587A JP25233587A JPH0196398A JP H0196398 A JPH0196398 A JP H0196398A JP 25233587 A JP25233587 A JP 25233587A JP 25233587 A JP25233587 A JP 25233587A JP H0196398 A JPH0196398 A JP H0196398A
Authority
JP
Japan
Prior art keywords
neutral salt
descaling
reaction
electrolysis
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25233587A
Other languages
Japanese (ja)
Other versions
JPH0534438B2 (en
Inventor
Masaaki Ishikawa
正明 石川
Takumi Ugi
工 宇城
Minoru Murabayashi
村林 実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP25233587A priority Critical patent/JPH0196398A/en
Publication of JPH0196398A publication Critical patent/JPH0196398A/en
Publication of JPH0534438B2 publication Critical patent/JPH0534438B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To effectively and continuously remove oxide scale on the surface of a steel sheet by successively causing cathode reaction and anode reaction on the surface of the steel sheet in an aq. neutral salt soln. having a specified concn. of sexivalent Cr ions and a specified pH. CONSTITUTION:A cold rolled stainless steel strip 3 is continuously passed through an aq. neutral salt soln. 4 having <=8g/l concn. of sexivalent Cr ions and 2-6pH in an electrolytic cell 5. Cathode reaction is first caused once or plural times on the surface of the strip 3 with only anodes 1 and then anode reaction is caused once or plural times with only cathodes 2. The efficiency of descaling of the strip 3 by indirect electrolysis is increased, electric energy required is reduced and the electrolysis time is shortened.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はステンレス冷延鋼帯表面の酸化スケールを連続
的に除去するための効率のよい脱スケール方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an efficient descaling method for continuously removing oxidized scale from the surface of a cold-rolled stainless steel strip.

〔従来の技術〕[Conventional technology]

一般にステンレス冷延鋼帯は酸化性雰囲気で焼鈍や焼入
れなどの熱処理を行うと銅帯表面に酸化スケールが形成
されるため酸化スケールを除去するための脱スケール処
理が行われる。
Generally, when a cold rolled stainless steel strip is subjected to heat treatment such as annealing or hardening in an oxidizing atmosphere, oxide scale is formed on the surface of the copper strip, so a descaling treatment is performed to remove the oxide scale.

脱スケール処理にはl&酸、塩酸、硝弗酸(硝酸と弗酸
の混合酸)などを用いた酸洗が一般に用いられているが
、ステンレス冷延鋼帯に形成される酸化スケールは緻密
で強固であるので完全に脱スケールするのは仲々困難で
ある。これに対し、酸洗を容易にするための前処理法と
して、溶融アルカリ1′!1への浸漬処理(ソルト処理
)あるいは特公昭38−12162に示される中性塩水
溶液中での電解処理などが開発され実用化されている。
Pickling using l&acid, hydrochloric acid, nitric-fluoric acid (a mixed acid of nitric acid and hydrofluoric acid), etc. is generally used for descaling treatment, but the oxide scale that forms on cold-rolled stainless steel strips is dense. Because it is so strong, it is difficult to completely descale it. On the other hand, as a pretreatment method to facilitate pickling, molten alkali 1'! 1 immersion treatment (salt treatment) or electrolytic treatment in a neutral salt aqueous solution as shown in Japanese Patent Publication No. 38-12162 has been developed and put into practical use.

〔発明が解決しようとする闇題点〕[The dark problem that the invention attempts to solve]

中性塩水溶液中での電解処理はンルト処理に比べ美麗な
表面性状を得やすいこと、溶液が中性のため作業環境が
優れていることなどの長所がある。しかしながら、脱ス
ケール使方が優れているソルト処理と同等の効果を得る
ためには、゛電解に多ム;sの電気エネルギーを必要と
すること、また長時間の電解を要することから長大な電
解槽を必要とすることなどの欠点がある。
Electrolytic treatment in a neutral salt aqueous solution has the advantage that it is easier to obtain a beautiful surface quality compared to liquid treatment, and because the solution is neutral, it provides an excellent working environment. However, in order to obtain the same effect as salt treatment, which is superior in descaling, it requires a large amount of electrical energy for electrolysis, and requires a long electrolysis time, so long electrolysis is required. There are disadvantages such as the need for a tank.

本発明は中性塩水溶液中での電解処理について、その長
所を損なうことなく、脱スケール効率を一部げて所要電
気エネルギーを減少させ、かつ電解時間を短縮させるこ
とを目的になされたものである。
The present invention has been made for the purpose of partially increasing the descaling efficiency, reducing the required electrical energy, and shortening the electrolysis time without sacrificing the advantages of electrolytic treatment in a neutral salt aqueous solution. be.

〔闇題点を解決するための手段〕[Means for solving dark issues]

一般に第2図の模式図に示すように、ステンレス冷延鋼
帯の中性塩水溶液4中における電解は、ステンレス鋼帯
3を上下から挟む形で陽電極1と陰電極2とを電解槽5
内に鋼イ1F進行方向に配列し1両極間に直流電圧を付
加する間接電解方式が採用されている。ステンレス鋼帯
は陰電極間を通過する際、銅帯表面ではアノード反応が
生じ、陽電極間を通過する際、銅帯表面ではカソード反
応が生じ、この両者の反応を交互に受けながら、脱スケ
ール処理がなされている。
Generally, as shown in the schematic diagram of FIG. 2, electrolysis in a neutral salt aqueous solution 4 of a cold-rolled stainless steel strip is performed by placing an anode 1 and a cathode 2 in an electrolytic tank 5 with the stainless steel strip 3 sandwiched from above and below.
An indirect electrolysis method is adopted in which the steel plates are arranged in the direction of movement on the 1st floor and a DC voltage is applied between the two poles. When the stainless steel strip passes between the negative electrodes, an anodic reaction occurs on the surface of the copper strip, and when it passes between the positive electrodes, a cathodic reaction occurs on the surface of the copper strip, and descaling occurs as the stainless steel strip undergoes both reactions alternately. Processing is being done.

7ノ一ド反応では酸化スケールを構成している主な金属
元素であるCrおよびFeがそれぞれ6価のCrイオン
と3価のFeイオンに酸化され溶液中に溶出することに
より脱スケールが進行する。
In the 7-node reaction, Cr and Fe, the main metal elements that make up the oxide scale, are oxidized to hexavalent Cr ions and trivalent Fe ions, respectively, and are eluted into the solution, which progresses descaling. .

一方、カソード反応は間接電解方式のために必然的に生
じるものであるが、従来は水素ガスの発生反応のみが生
じ、水素ガス気泡による酸化スケール除去作用が僅かな
がら期待できるものの。
On the other hand, the cathode reaction inevitably occurs due to the indirect electrolysis method, but conventionally only a hydrogen gas generation reaction occurs, and a slight oxidation scale removal effect by hydrogen gas bubbles can be expected.

脱スケールには殆ど寄与しないものと考えられていた。It was thought that it would make little contribution to descaling.

本発明者らは工業的に中性塩水溶液中での電解を行った
場合のカソード反応に着目し、その反応挙動を詳細に調
査研究した結果、従来実施している電解処理条件のもと
ではカソード反応が脱スケールを大きく阻害していると
いう重大な発見をなすに至った。
The present inventors focused on the cathode reaction when electrolysis is carried out industrially in a neutral salt aqueous solution, and as a result of detailed investigation and research into the reaction behavior, we found that under the conventional electrolytic treatment conditions, An important discovery was made that the cathode reaction greatly inhibits descaling.

すなわち工業的に脱スケール処理を行っている中性塩水
溶液中にはアノード反応で溶出したCr、Feなとの金
属イオンが含まれており、このような溶液中におけるカ
ソード反応では水素ガス発生反応以外にCr、Feなと
の金属イオンが還元され、銅帯表面に析出し、スケール
状の物質(Cr、Feなどの酸化物あるいは水利酸化物
と思われる)が付着する反応が生じていることを見い出
した。
In other words, the neutral salt aqueous solution that is industrially descaled contains metal ions such as Cr and Fe eluted in the anode reaction, and the cathode reaction in such a solution causes a hydrogen gas generation reaction. In addition, a reaction occurs in which metal ions such as Cr and Fe are reduced and deposited on the surface of the copper strip, and scale-like substances (possibly oxides of Cr and Fe or water-use oxides) are attached. I found out.

従って、従来の方法ではアノード反応における脱スケー
ル反応と、カソード反応におけるスケール状の物質の析
出付着反応が交互に生じているため、脱スケールに要す
る電気エネルギーが多大となり、かつ電解時間も長時間
を要していたと言える。
Therefore, in the conventional method, the descaling reaction in the anode reaction and the precipitation and adhesion reaction of scale-like substances in the cathodic reaction occur alternately, so the electrical energy required for descaling is large and the electrolysis time is also long. It can be said that it was necessary.

また、カソード反応におけるCr、Feなとの金属イオ
ンの還元析出はそのほどんどがCrイオンによって生じ
ていることも明らかとなった。
It has also been found that most of the reduction and precipitation of metal ions such as Cr and Fe in the cathode reaction is caused by Cr ions.

そこで本発明者らはカソード反応における脱スケール阻
害反応を軽減させる方法について研究した結果、特定の
電解順序と中性塩水溶液中の6価のCrイオン量の限定
および中性塩水溶液のpH値の限定とを組合わせること
により、カソード反応における脱スケール阻害反応を大
幅に軽減させ得ることを見い出した。
Therefore, the present inventors researched methods to reduce the descaling inhibition reaction in the cathode reaction, and found that the specific electrolysis order, the limitation of the amount of hexavalent Cr ions in the neutral salt aqueous solution, and the pH value of the neutral salt aqueous solution. It has been found that by combining this with limitation, the descaling inhibition reaction in the cathode reaction can be significantly reduced.

本発明は前述の新たに得られた知見に基づいて構成され
たものである。
The present invention is constructed based on the above-mentioned newly obtained knowledge.

即ち、中性塩水溶液中での間接電解によりステンレス冷
延鋼帯の脱スケール処理を行うに当り、最初に銅帯表面
にカソード反応のみを1回または複数回生じさせ1次い
で銅帯表面に7ノ一ド反応のみを1回または複数回生じ
させる電解順序をとり、かつ中性塩水溶液中の6価Cr
イオン濃度を8g/文以下とし、中性塩水溶液のpH&
jを2以七6以下とすることを特徴とするステンレス冷
延鋼帯の脱スケール方法である。
That is, when descaling a cold-rolled stainless steel strip by indirect electrolysis in a neutral salt aqueous solution, first a cathodic reaction is caused on the surface of the copper strip one or more times. The electrolytic sequence is such that only the nod reaction occurs once or multiple times, and hexavalent Cr in the neutral salt aqueous solution is used.
The ion concentration is 8g/state or less, and the pH &
This is a method for descaling a cold-rolled stainless steel strip, characterized in that j is 2 or more and 76 or less.

〔作用〕[Effect]

電解順序を本発明のようにした理由は。 What is the reason for the electrolysis order as in the present invention?

■ 表面が緻密な酸化スケールで覆われた状ff、でカ
ソード反応を受け、Crを主体とした金属イオンが還元
され、酸化スケールの上にスケール状の物質が析出付着
した場合は1次のアノード反応で比較的容易に酸化スケ
ールと共に除去される。
■ If the cathode reaction occurs in a state where the surface is covered with a dense oxide scale, metal ions mainly consisting of Cr are reduced, and scale-like substances are precipitated and attached on the oxide scale, the primary anode It is relatively easily removed along with oxide scale by reaction.

■ アノード反応を受けて酸化スケールがかなり除去さ
れ、酸化スケール下の地鉄の一部が露出した状態でカソ
ード反応を受は地鉄表面にスケール状の物質が析出付若
した場合は次のアノード反応で除去が非常に困難になる
■ After undergoing the anode reaction, a considerable amount of the oxide scale has been removed, and when the cathode reaction is performed with a part of the base iron under the oxide scale exposed, if scale-like substances are precipitated on the surface of the base metal, the next anode is applied. Reaction makes removal very difficult.

という新しい知見によるものである。This is based on new knowledge.

すなわち−旦アノード反応を受けた後にはカソード反応
を受けさせないことが本発明の重要なポイントである0
本発明の電解順序を実現する電極配列の一例を模式的に
第1図に示す。
In other words, an important point of the present invention is not to allow the cathode reaction to occur after the anode reaction.
An example of an electrode arrangement realizing the electrolysis sequence of the present invention is schematically shown in FIG.

陰電極2および陽電極1の寸法、本数は本発明では特に
限定しない。それらは脱スケール設備の生産規模、対象
鋼種、通板速度、電解回路抵抗などを考慮して適切に設
定すれば良い、要は酸化スケールの付いたステンレス鋼
帯3に対し、電解槽5内でまずカソード反応を生じさせ
1次いでアノード反応を生じさせ、アノード反応の後に
はカソード反応を生じさせないことが重要である。
The dimensions and number of the negative electrode 2 and the positive electrode 1 are not particularly limited in the present invention. They should be set appropriately by considering the production scale of the descaling equipment, target steel type, strip speed, electrolytic circuit resistance, etc. In short, for the stainless steel strip 3 with oxidized scale, It is important to first cause a cathodic reaction, then to cause an anodic reaction, and not to cause a cathodic reaction after the anodic reaction.

中性塩水溶液4中の6価のCrイオン濃度を8g/l以
下に限定したのは8g/lを越えると本発明の電解順序
を採用してもカソード反応におけるスケール状物質の析
出が過大となること、およびアノード反応における脱ス
ケール反応が抑制されることにより、第3図に示すごと
く、脱スケール能力が大幅に低下するためである。
The reason for limiting the hexavalent Cr ion concentration in the neutral salt aqueous solution 4 to 8 g/l or less is that if it exceeds 8 g/l, even if the electrolysis sequence of the present invention is adopted, the precipitation of scale-like substances in the cathode reaction will be excessive. This is because, as a result of this and the suppression of the descaling reaction in the anode reaction, the descaling ability is significantly reduced as shown in FIG.

第3図は後述の実施例第2表のN’o、7の条件の内、
6価Crイオン濃度を変化させた場合の脱スケール状況
を示したものである。縦軸の脱スケール指数1.2,3
.4はそれぞれスケール残り大、スケール残り中、スケ
ール残り小、完全に脱スケールを表わす指数である。
FIG. 3 shows the conditions of N'o and 7 in Table 2 of Examples described below.
This figure shows the descaling situation when the hexavalent Cr ion concentration is changed. Vertical axis descaling index 1.2, 3
.. 4 is an index representing large remaining scale, medium remaining scale, small remaining scale, and complete descaling, respectively.

中性塩水溶液中のCr以外のFe、’Ni、Mn笠の金
属イオン濃度も低いに越したことはないが、溶解績も少
ないため、6価Crイオンに比べ影響は軽微であるので
特に限定はしない。
Although it is better to have a low concentration of metal ions other than Cr in a neutral salt aqueous solution, such as Fe, Ni, and Mn ions, they have little dissolution history, so the influence is minor compared to hexavalent Cr ions, so it is especially limited. I don't.

中性塩水溶液のPH値上限を6としたのは6を越えると
6価Cr6+イオン濃度が8g/文を越えた場合と同様
な理由で第4図に示すように脱スケール能力が大幅に低
下するためである。
The reason why the upper limit of the pH value of the neutral salt aqueous solution was set at 6 is that when the pH value exceeds 6, the descaling ability decreases significantly as shown in Figure 4 for the same reason as when the hexavalent Cr6+ ion concentration exceeds 8 g/liter. This is to do so.

第4図は後述の実施例第2表のN007の条件の内、溶
液のpH値を変化させた場合の脱スケール状況を示した
ものである。またPH値の下限を2としたのは2以下に
なると特にフェライト系およびマルテンサイト系のステ
ンレス表面の平滑度が悪くなり脱スケール後の表面の美
麗さが失われるためである。
FIG. 4 shows the descaling situation when the pH value of the solution was changed under the conditions of N007 in Table 2 of Examples described below. The lower limit of the pH value is set to 2 because if it is less than 2, the smoothness of the surface of ferritic and martensitic stainless steel in particular deteriorates and the beauty of the surface after descaling is lost.

溶液中の6価Crイオン濃度を本発明の上限値以下に調
節する方法は自由であるが、例えば脱スケール処理量の
増加により6価Crイオン量の高くなった溶液の一部を
排出して新液を投入する方法や、還元剤を投入して3価
Crイオンに還元し沈殿物を除去する方法などを適用す
ることができる。なお従来の中性塩水溶液中での電解に
おいては溶液中の6価のCrイオン量の影響が知られて
いなかったため、公知の値はないが、本発明者らが測定
した所、定常状態ではほぼl Og/1以上の値を示し
ていた。
There is no limit to the method of adjusting the concentration of hexavalent Cr ions in the solution to below the upper limit of the present invention, but for example, by discharging a part of the solution in which the amount of hexavalent Cr ions has increased due to an increase in the amount of descaling. A method of introducing a new solution, a method of introducing a reducing agent to reduce the amount to trivalent Cr ions, and removing a precipitate can be applied. In addition, in conventional electrolysis in a neutral salt aqueous solution, the influence of the amount of hexavalent Cr ions in the solution was not known, so there is no known value, but according to measurements by the present inventors, in a steady state It showed a value of approximately 1 Og/1 or more.

また溶液のpH値の調節は硫酸または水酸化ナトリウム
を用いて行うのが好ましい。
Further, the pH value of the solution is preferably adjusted using sulfuric acid or sodium hydroxide.

中性塩水溶液中での電解処理において、上記の電解順序
、水溶液中の6価Crイオン濃度、溶液のpH値の限定
により、カソード反応における脱スケール抑制作用を大
幅に軽減させ、アノード反応における脱スケール反応を
促進させる効果が発揮され、脱スケールス敵力が大きく
向、ヒする。
In electrolytic treatment in a neutral salt aqueous solution, the above-mentioned electrolysis order, concentration of hexavalent Cr ions in the aqueous solution, and limitation of the pH value of the solution greatly reduce the descaling inhibitory effect in the cathodic reaction and reduce the descaling effect in the anode reaction. It has the effect of promoting scale reactions, greatly increasing the ability of descaling enemies.

中性塩の種類、中性塩水溶液の濃度と温度、電流密度な
どの他の諸条件は従来の条件が本発明にも適用される。
Regarding other conditions such as the type of neutral salt, the concentration and temperature of the neutral salt aqueous solution, and the current density, conventional conditions are also applied to the present invention.

中性塩は硫酸、硝酸、塩酸などのNa塩、K塩を単独ま
たは複合して使用することができるが、経済性、表面仕
上りの点から硫酸ナトリウムの使用が適している。中性
n工水溶液の濃度と温度はそれぞれ100〜300 g
/見、70790℃が適正である。
As the neutral salt, Na salts and K salts such as sulfuric acid, nitric acid, and hydrochloric acid can be used alone or in combination, but sodium sulfate is suitable from the viewpoint of economy and surface finish. The concentration and temperature of the neutral aqueous solution are 100 to 300 g, respectively.
/ 70790°C is appropriate.

電流密度はアノード反応電流密度、カソード反応電流密
度ともに2〜15A/drn’が適正である。
Appropriate current densities are 2 to 15 A/drn' for both the anode reaction current density and the cathode reaction current density.

比較的脱スケール性の良いステンレス鋼の場合は、中性
塩水溶液中での電解だけで脱スケールが町1七であるが
、不十分な場合は引続いて酸洗処理を行うことにより完
全に脱スケールすることが可能となる。
In the case of stainless steel, which has relatively good descaling properties, it is possible to descale it by electrolysis alone in a neutral salt aqueous solution, but if this is insufficient, it can be completely removed by subsequent pickling treatment. It becomes possible to descale.

中性塩水溶液中の電解処理後の酸洗は従来と同様の処理
、すなわちフェライト系、マルテンサイト系のステンレ
スに対しては主として硝#浸漬または硝酸電解が適用さ
れ、オーステナイト系ステンレスに対しては主として硝
弗酸浸漬が適用される。
Pickling after electrolytic treatment in a neutral salt aqueous solution is carried out in the same way as conventional methods. For ferritic and martensitic stainless steels, nitric acid immersion or nitric acid electrolysis is mainly applied, and for austenitic stainless steels, Nitrofluoric acid immersion is mainly applied.

〔実施例〕〔Example〕

酸化性雰囲気で焼鈍を行った板厚0.8 m mの5U
S410,5US430およびSUS 304について
、種々の条件の中性塩水溶液中の電解とそれに引続いた
酸洗処理を脱スケール実験装置を用いて行い、脱スケー
ル状況の観察を行った。
5U plate with a thickness of 0.8 mm annealed in an oxidizing atmosphere
For S410, 5US430, and SUS 304, electrolysis in a neutral salt aqueous solution under various conditions and subsequent pickling treatment were performed using a descaling experimental device, and the descaling status was observed.

なお、5US410については酸洗処理を省略した場合
も調査した。
Regarding 5US410, a case where the pickling treatment was omitted was also investigated.

中性塩水溶液中での電解順序は、従来例については第2
図の電極配列とし、実施例および比較例については第1
図の電極配列を想定してそれぞれ実施した。カソード反
応電流密度は全て12A/drr!′、アノード反応電
流密度は全て6A/drn’−定とした。
The order of electrolysis in a neutral salt aqueous solution is the second order for the conventional example.
The electrode arrangement shown in the figure is used, and the first
Each experiment was carried out assuming the electrode arrangement shown in the figure. All cathode reaction current densities are 12A/drr! ', and the anode reaction current density was all set to 6 A/drn'-constant.

中性塩水溶液としてはNa2SO4の水溶液を使用し、
中性塩の濃度は約200 g/1.溶液温度は85°C
一定とし、pHの調整にはH2SO4およびNaOHを
使用した。
As the neutral salt aqueous solution, an aqueous solution of Na2SO4 is used,
The concentration of neutral salt is approximately 200 g/1. Solution temperature is 85°C
The pH was kept constant and H2SO4 and NaOH were used to adjust the pH.

実施例−1 SUS410について得られた結果を第1表に示す。Example-1 Table 1 shows the results obtained for SUS410.

第2図の電極配列を用いた従来のNo、1は電解時間総
合計36秒、電気量144クーロン/dゴの中性塩水溶
液電解と硝酸侵情処理で脱スケールがuf能であったΦ それに対し本発明の電解順序で6価Crイオン濃度と溶
液のpH値を本発IJ1の範囲内にある実施例のN00
3は電解時間総合計12秒、電気量48クーロン/dm
’の中性塩水溶液電解のみで酸洗を必要とすることもな
く脱スケールが可能であった。
In the conventional No. 1 using the electrode arrangement shown in Figure 2, the total electrolysis time was 36 seconds, the amount of electricity was 144 coulombs/d, and descaling was achieved through neutral salt aqueous electrolysis and nitric acid attack treatment.Φ In contrast, N00 of the example in which the hexavalent Cr ion concentration and the pH value of the solution are within the range of IJ1 of the present invention in the electrolysis sequence of the present invention.
3 has a total electrolysis time of 12 seconds and an amount of electricity of 48 coulombs/dm.
Descaling was possible using only neutral salt aqueous electrolysis without the need for pickling.

また本発明法と同一の電解時間総合計と電気量の条件で
上記従来法で処理したNo、2 (比較例)はかなりの
スケール残りが発生した。
Further, in No. 2 (comparative example), which was treated by the above-mentioned conventional method under the same total electrolysis time and electricity amount conditions as the method of the present invention, a considerable amount of scale remained.

実施例−2 SUS430について得られた結果を第2表に示す。Example-2 Table 2 shows the results obtained for SUS430.

従来例のNo、4は電解時間総合計43.2秒、電気量
172.8クーロン、/ d rrr’の中性塩水溶液
電解と硝酸浸漬処理で脱スケールが可能であった。
Conventional example No. 4 could be descaled by electrolysis in a neutral salt aqueous solution with a total electrolysis time of 43.2 seconds, an amount of electricity of 172.8 coulombs, and a nitric acid immersion treatment.

それに対し実施例の電解順序で6価のCrイオン濃度と
溶液のpH値を本発明の範囲内で種々変化させた実施例
No、6、No、7、N008は電解時間総合計16.
8秒以内、電気量67.2ク一ロン/dm’以内の中性
塩水溶液電解と硝酸浸漬処理で脱スケールが可能であっ
た。
On the other hand, in Examples No. 6, No. 7, and No. 008, in which the concentration of hexavalent Cr ions and the pH value of the solution were variously changed within the range of the present invention in the electrolysis order of Examples, the total electrolysis time was 16.
Descaling was possible within 8 seconds with neutral salt aqueous electrolysis and nitric acid immersion treatment within 67.2 corons/dm' of electricity.

一方、実施例N016と同一の電解時間総合計と電気量
の条件で従来法で処理した比較例N065はかなりのス
ケール残りが発生した。
On the other hand, in Comparative Example No. 065, which was processed by the conventional method under the same total electrolysis time and electricity amount conditions as Example No. 016, a considerable amount of scale remained.

また溶液のpH値が本発明の下限を下回った比較例N0
99はスケール残りは発生しなかったが脱スケール後の
表面光沢が本発明法、従来法に比べて劣っていた・ 実施例−3 SUS 304について得られた結果を第3表に示す。
Comparative example No. 0 in which the pH value of the solution was below the lower limit of the present invention.
In No. 99, no scale remained, but the surface gloss after descaling was inferior to that of the method of the present invention and the conventional method. Example 3 The results obtained for SUS 304 are shown in Table 3.

従来例のNo、10は電解時間総合計28.8秒、電気
量11.5−2クーロン/drr?の中性塩水溶液電解
と硝弗酸浸漬で脱スケールが可能であった。
Conventional example No. 10 has a total electrolysis time of 28.8 seconds and an amount of electricity of 11.5-2 coulombs/drr? Descaling was possible with neutral salt aqueous electrolysis and nitric-fluoric acid immersion.

それに対し本発明の電解順序で6価のCrイオン濃度と
溶液のpH値を本発明の範囲内とした実施例No、12
は電解時間総合計12秒、電気量48クーロン/dm′
の中性塩水溶液電解と硝弗酸浸漬で脱スケールが可能で
あった。
On the other hand, Example No. 12 in which the concentration of hexavalent Cr ions and the pH value of the solution were within the range of the present invention in the electrolysis sequence of the present invention.
The total electrolysis time is 12 seconds, and the amount of electricity is 48 coulombs/dm'.
Descaling was possible with neutral salt aqueous electrolysis and nitric-fluoric acid immersion.

また本発明と同一の電解総時間と電気量の条件で従来法
で処理した比較例No、11はスケール残りが発生した
Further, in Comparative Example No. 11, which was treated by the conventional method under the same conditions of the total electrolysis time and amount of electricity as those of the present invention, scale remained.

〔発明の効果〕〔Effect of the invention〕

本発明のスレンレス冷延鋼帯の脱スケール方法を適用す
ることにより、従来よりも脱スケール処理(H+j間の
大幅な′J8Ci縮による生産性の大幅な陶土と使用電
気エネルギーの大幅な低減による経済効果を得ることが
可能となる。
By applying the descaling method of the stainless steel cold rolled steel strip of the present invention, the descaling process (greater 'J8Ci shrinkage between H + j) is more economical than the conventional method due to a significant reduction in productivity due to a significant reduction in china clay and electrical energy consumption. It becomes possible to obtain the effect.

また本発明の脱スケール方法はフェライト系。Further, the descaling method of the present invention is based on ferrite.

マルテンサイト系、オーステナイト系、2相系のいずれ
のステンレス鋼にも適用することができるという汎用性
も備えている。
It also has the versatility of being applicable to any of martensitic, austenitic, and two-phase stainless steels.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の中性塩水溶液電解方法を具現する装置
の例を模式的に示した図、第2図は従来の中性塩水溶液
電解処理装置の代表的な例を模式的に示した図、第3図
は本発明の電解順序を使用して脱スケールを行った場合
の中性塩水溶液中の6価のCrイオン濃度の影響を示し
たグラフであり、第4図は中性塩水溶液のpH値の影響
を示したグラフである。 l・・・陽電極 2・・・陰電極 3・・・ステンレス冷延鋼帯 4・・・中性塩水溶液 5・・・電解槽
Fig. 1 is a diagram schematically showing an example of an apparatus embodying the neutral salt aqueous solution electrolysis method of the present invention, and Fig. 2 is a diagram schematically showing a typical example of a conventional neutral salt aqueous solution electrolysis treatment apparatus. Figure 3 is a graph showing the influence of the hexavalent Cr ion concentration in a neutral salt aqueous solution when descaling is performed using the electrolysis sequence of the present invention, and Figure 4 is a graph showing the influence of the concentration of hexavalent Cr ions in a neutral salt aqueous solution. It is a graph showing the influence of the pH value of a salt aqueous solution. l...Positive electrode 2...Cathode electrode 3...Stainless steel cold rolled steel strip 4...Neutral salt aqueous solution 5...Electrolytic cell

Claims (1)

【特許請求の範囲】[Claims] 1 中性塩水溶液中での間接電解によりステンレス冷延
鋼帯を脱スケールするに当り、該電解における鋼帯表面
の反応を最初にカソード反応、次いでアノード反応で終
結させるとともに、該中性塩水溶液の6価Crイオン濃
度を8g/l以下、pH値を2〜6とすることを特徴と
するステンレス冷延鋼帯の脱スケール方法。
1. When descaling a cold rolled stainless steel strip by indirect electrolysis in a neutral salt aqueous solution, the reaction on the surface of the steel strip during the electrolysis is first terminated by a cathodic reaction, then an anode reaction, and the neutral salt aqueous solution is A method for descaling a cold-rolled stainless steel strip, characterized in that the concentration of hexavalent Cr ions is 8 g/l or less and the pH value is 2 to 6.
JP25233587A 1987-10-08 1987-10-08 Method for electrolytically descaling cold rolled stainless steel strip with neutral salt Granted JPH0196398A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25233587A JPH0196398A (en) 1987-10-08 1987-10-08 Method for electrolytically descaling cold rolled stainless steel strip with neutral salt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25233587A JPH0196398A (en) 1987-10-08 1987-10-08 Method for electrolytically descaling cold rolled stainless steel strip with neutral salt

Publications (2)

Publication Number Publication Date
JPH0196398A true JPH0196398A (en) 1989-04-14
JPH0534438B2 JPH0534438B2 (en) 1993-05-24

Family

ID=17235836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25233587A Granted JPH0196398A (en) 1987-10-08 1987-10-08 Method for electrolytically descaling cold rolled stainless steel strip with neutral salt

Country Status (1)

Country Link
JP (1) JPH0196398A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1079846C (en) * 1994-07-28 2002-02-27 株式会社日立制作所 Method and apparatus for processing neutral salt electolysing liquid
KR20180070136A (en) * 2016-12-16 2018-06-26 주식회사 포스코 Method for acid pickling lean duplex stainless steel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5347336A (en) * 1976-10-12 1978-04-27 Kogyo Gijutsuin Method descaling band steel by electrolysis
JPS5710200A (en) * 1980-06-20 1982-01-19 Matsushita Electric Ind Co Ltd Voice synthesizer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5347336A (en) * 1976-10-12 1978-04-27 Kogyo Gijutsuin Method descaling band steel by electrolysis
JPS5710200A (en) * 1980-06-20 1982-01-19 Matsushita Electric Ind Co Ltd Voice synthesizer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1079846C (en) * 1994-07-28 2002-02-27 株式会社日立制作所 Method and apparatus for processing neutral salt electolysing liquid
KR20180070136A (en) * 2016-12-16 2018-06-26 주식회사 포스코 Method for acid pickling lean duplex stainless steel

Also Published As

Publication number Publication date
JPH0534438B2 (en) 1993-05-24

Similar Documents

Publication Publication Date Title
KR0173975B1 (en) Method of descaling stainless steel and apparatus for the same
US9580831B2 (en) Stainless steel pickling in an oxidizing, electrolytic acid bath
KR20010089247A (en) Process for electrolytic pickling using nitric acid-free solutions
KR100696850B1 (en) A descaling method for low Cr ferritic stainless steel
KR20100073407A (en) Method for pickling low chrome ferritic stainless steel
JPH0196398A (en) Method for electrolytically descaling cold rolled stainless steel strip with neutral salt
JP2721053B2 (en) Pickling method for high-grade steel
JP3792335B2 (en) Finishing electrolytic pickling method in descaling of stainless steel strip
JPH0196399A (en) Method for descaling cold-rolled band stainless steel by neutral salt electrolysis
KR101145601B1 (en) A descaling method for austenite stainless steel
JPS5959899A (en) Method for electrolytic descaling of stainless steel strip
JPH0196400A (en) Method for descaling cold-rolled band stainless steel
US5840173A (en) Process for treating the surface of material of high-grade steel
JPS6160920B2 (en)
JP2000204499A (en) Electrolytical descaling of stainless steel strip
JP2517353B2 (en) Descaling method for stainless steel strip
JPH05295600A (en) Continuous descaling method for stainless steel strip and its device
JPH02173300A (en) Method for electrolytically descaling cold rolled stainless steel strip with neutral salt
JP3873335B2 (en) Electrolytic descaling method for steel strip
JP2585444B2 (en) Method and apparatus for descaling stainless steel strip
JP2640565B2 (en) Continuous production equipment for stainless steel sheets
KR100368207B1 (en) Electrolytic pickling solution for cold annealed austenitic stainless steel sheet
JP4132973B2 (en) Manufacturing method of stainless steel plate with smooth surface
JPS63130800A (en) Method for descaling austenitic cold-rolled band stainless steel
JP2003027295A (en) Method for pickling stainless steel strip

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees