JP2517353B2 - Descaling method for stainless steel strip - Google Patents

Descaling method for stainless steel strip

Info

Publication number
JP2517353B2
JP2517353B2 JP63058207A JP5820788A JP2517353B2 JP 2517353 B2 JP2517353 B2 JP 2517353B2 JP 63058207 A JP63058207 A JP 63058207A JP 5820788 A JP5820788 A JP 5820788A JP 2517353 B2 JP2517353 B2 JP 2517353B2
Authority
JP
Japan
Prior art keywords
stainless steel
steel strip
descaling
hydrofluoric acid
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63058207A
Other languages
Japanese (ja)
Other versions
JPH01234600A (en
Inventor
一生 桜井
宏二 後藤
昭正 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP63058207A priority Critical patent/JP2517353B2/en
Publication of JPH01234600A publication Critical patent/JPH01234600A/en
Application granted granted Critical
Publication of JP2517353B2 publication Critical patent/JP2517353B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、スケール除去に使用される薬液の管理及び
その廃液処理が簡単であり、スケール除去能力が大きく
てラインスピードが高速化されても追従可能であり、ラ
インで発生する廃液やスラツジについて環境汚染などの
公害上の問題も心配すること無く、そして何よりも最終
製品の表面品質を良好にさせるステンレス鋼帯の脱スケ
ール方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention makes it easy to manage a chemical solution used for scale removal and to treat the waste solution thereof, and even if the scale removal capacity is large and the line speed is increased. It relates to a descaling method for stainless steel strips that can be followed, without worrying about pollution problems such as environmental pollution regarding waste liquid and sludge generated in the line, and above all, improving the surface quality of the final product. .

〔従来の技術〕[Conventional technology]

一般に、JISG4306「熱間圧延ステンレス鋼帯」に規定
されるNo.1仕上(表面仕上)などの熱間圧延ステンレス
鋼帯製品は、熱間圧延されたステンレス鋼帯を素材とし
てこれを焼鈍などを含む熱処理,酸洗又はこの酸洗に準
じる処理を施すために一連のライン化された焼鈍酸洗工
程を通板されて製造されている。この焼鈍酸洗工程を経
て製造された熱間圧延ステンレス鋼帯を剪断してJISG43
04「熱間圧延ステンレス鋼帯」に規定される熱間圧延ス
テンレス鋼板製品が製造されている。
Generally, hot-rolled stainless steel strip products such as No. 1 finish (surface finish) specified in JIS G4306 "Hot-rolled stainless steel strip" are made from hot-rolled stainless steel strip, which is annealed. It is manufactured by passing through a series of annealing pickling steps that are lined up in order to perform a heat treatment including pickling or a treatment similar to this pickling. The hot rolled stainless steel strip produced through this annealing pickling process is sheared to JIS G43
04 Hot-rolled stainless steel sheet products specified in “Hot-rolled stainless steel strip” are manufactured.

また、JISG4307「冷間圧延ステンレス鋼帯」に規定さ
れるNo.2D,No.2B,BA等の各種研磨仕上(表面仕上)の冷
間圧延ステンレス鋼帯製品は、前記焼鈍酸洗工程を経て
製造された熱間圧延ステンレス鋼帯を素材とこれをそれ
ぞれライン化された冷間圧延工程,焼鈍酸洗工程を必要
に応じて繰り返し通板し、しかもこれらの工程間にあつ
て素材表面のスケール残や地疵を除去するために必要に
応じてライン化された中間研磨工程に通板され、更に調
質圧延工程,剪断や裁断処理等がなされる精整工程を経
て製造される。そして、このようにして製造された冷間
圧延ステンレス鋼帯を剪断してJISG4305「冷間圧延ステ
ンレス鋼帯」に規定される冷間圧延ステンレス鋼板製品
が製造されているのである。
In addition, cold-rolled stainless steel strip products with various polishing finishes (surface finish) such as No. 2D, No. 2B, BA, etc. specified in JIS G4307 “Cold-rolled stainless steel strip” are subjected to the above-mentioned annealing pickling process. The manufactured hot-rolled stainless steel strip is repeatedly passed through the material and the cold-rolling process and the annealing pickling process, which are each made into a line, and the scale on the surface of the material is applied between these processes. In order to remove residue and ground defects, it is passed through an intermediate polishing process which is lined as necessary, and further subjected to a temper rolling process and a refining process in which shearing and cutting are performed. The cold-rolled stainless steel strip thus produced is sheared to produce a cold-rolled stainless steel sheet product defined in JIS G4305 “Cold-rolled stainless steel strip”.

以上に述べた如く、ステンレス鋼帯製品及び同鋼板製
品は、熱間圧延,この熱間圧延後の焼鈍を含む熱処理及
び冷間圧延により加工硬化された素材の軟化焼鈍が施さ
れるので、程度の差こそあれその都度その素材表面に主
としてFeやCrなどの酸化物から成るスケールが生成す
る。この素材表面に生成したスケールを完全に除去して
各工程を推進しないと良好な表面品質の最終製品を得る
ことが出来ないので、その都度脱スケール処理が施され
るのである。
As described above, the stainless steel strip product and the steel plate product are subjected to the hot rolling, the heat treatment including the annealing after the hot rolling, and the softening annealing of the work hardened material by the cold rolling. In each case, a scale mainly composed of oxides such as Fe and Cr is generated on the surface of the material. Unless the scale formed on the surface of the material is completely removed and the respective steps are carried out, a final product having good surface quality cannot be obtained, so that a descaling treatment is performed each time.

しかしながら、ステンレス鋼帯の素材表面に生成する
スケールは一般に緻密なために他の普通鋼や特殊鋼など
のものと比べて非常に除去困難、すなわち脱スケール困
難なのである。
However, since the scale formed on the surface of the material of the stainless steel strip is generally dense, it is very difficult to remove, that is, descaling is difficult compared to other ordinary steel and special steel.

そこでこのステンレス鋼帯の素材表面に生成するスケー
ルの脱スケールに関して、従来から種々な脱スケール方
法が実施されたり提案されてりしている。
Therefore, with respect to the descaling of the scale formed on the surface of the material of the stainless steel strip, various descaling methods have been conventionally implemented or proposed.

先ず古くから最も基本的で且つ広く実施されてきた本
処理としての方法は、硫酸,硝酸,塩酸,弗酸又はこれ
らを混合した混酸薬液で処理して脱スケールを行い均一
で適度の不動態化を施す酸洗処理であつた。しかしなが
ら、この酸洗処理のみによる本処理方法では、ステンレ
ス鋼帯の高速処理による生産性の向上を図りながら尚且
つ完全な脱スケール処理を行い、最終製品として表面品
質の良好なものと得る要求に対応し切れなくなり、この
本処理である酸洗処理の前に、機械的,化学的又はこれ
らを組合せた前処理が併用されるようになつてきたので
ある。
First of all, the most basic and widely practiced method for this treatment has been to treat with sulfuric acid, nitric acid, hydrochloric acid, hydrofluoric acid, or a mixed acid chemical solution containing these to perform descaling to achieve uniform and appropriate passivation. It was a pickling treatment. However, in the present treatment method using only this pickling treatment, the stainless steel strip is subjected to a high-speed treatment to improve productivity and yet a complete descaling treatment is performed, and there is a demand for obtaining a good surface quality as a final product. It is no longer possible to deal with this, and mechanical treatment, chemical treatment, or a pretreatment combining these has come to be used in combination before the pickling treatment which is the main treatment.

すなわち、機械的前処理はスケール量の多い熱間圧延
材の場合に酸洗に先立つてシヨツトブラストやスケール
ブレーカーなどによつてスケール層に亀裂を生じさせて
脱スケールを容易にするための機械的処理であるが、こ
れらの機械的前処理にあつてはステンレス鋼帯の素地に
圧痕を残したり加工硬化を起こさせたりする欠点を有し
ていた。
That is, the mechanical pretreatment is a machine for facilitating descaling by causing cracks in the scale layer by a shot blast or a scale breaker prior to pickling in the case of hot-rolled material with a large amount of scale. However, these mechanical pretreatments have drawbacks of leaving indentations on the base material of the stainless steel strip and causing work hardening.

また、従来より行われているNa2SO4を電解質とする水
溶液中での電解や溶融苛性アルカリ処理等の化学的前処
理によつて一部の成分を溶質させてスケールの組成や素
地との結合力を弱める方法も実施されているが、スケー
ル量の比較的少ない冷間圧延材にあつては効果がある
が、スケール量の多い熱間圧延材に対しては効果が少な
かつた。
In addition, some components are solute by chemical pretreatment such as electrolysis in an aqueous solution using Na 2 SO 4 as an electrolyte and a molten caustic treatment, and the composition of the scale and the base material Although a method of weakening the bonding force is also implemented, it is effective for cold-rolled material with a relatively small amount of scale, but less effective for hot-rolled material with a large amount of scale.

このような経過があつて、化学的前処理としてNa2SO4
水溶液中で陽極電解をするか又は溶融苛性アルカリ処理
を行い、次いで硫弗酸,硝弗酸等による酸洗又はその代
わりにNaCl等の水溶液中で陽極電解する脱スケール方法
が行われるようになつた。
As a result of this process, Na 2 SO 4 was used as a chemical pretreatment.
A descaling method has been adopted in which anodic electrolysis is performed in an aqueous solution or molten caustic treatment is performed, and then pickling with sulfuric hydrofluoric acid, nitric hydrofluoric acid, or the like, or anodic electrolysis in an aqueous solution of NaCl or the like instead. It was

一方、ステンレス鋼帯の生産性向上のために圧延,焼
鈍と共に、脱スケールを高速化して高能率に実施するこ
とが要求され、そのためスケール除去能力の大きい脱ス
ケール方法の開発が望まれるようになつてきた。しかし
ながら、化学的前処理としてNa2SO4水溶液中で陽極電解
を行う場合にこの前処理方法は冷間圧延材に対しては効
果は大きいが、熱間圧延材に対しては元来それ程大きな
効果はなく、またCr+6イオンを溶出させるのでその廃液
処理が公害防止上甚だ厄介であつた。従つてNa2SO4水溶
液中での電解による前処理では熱間圧延材に対しては高
速化し難い上、熱間,冷間いずれの圧延材に対しても高
速化した場合はそれだけCr+6イオン溶出量が増して電解
液の老化を早めると共にその処理が一層厄介となる欠点
があつた。
On the other hand, in order to improve the productivity of stainless steel strips, it is required to perform descaling at high speed and with high efficiency along with rolling and annealing. Therefore, the development of a descaling method with a large scale removing capability is desired. Came. However, when performing anodic electrolysis in an aqueous Na 2 SO 4 solution as a chemical pretreatment, this pretreatment method has a large effect on cold-rolled material, but it is originally so large on hot-rolled material. It has no effect and elutes Cr +6 ions, so the treatment of the waste liquid is very troublesome in terms of pollution control. Therefore, pretreatment by electrolysis in Na 2 SO 4 aqueous solution is difficult to increase the speed for hot-rolled material, and Cr +6 is the same for both hot-rolled and cold-rolled material. There is a drawback that the amount of ion elution increases and the aging of the electrolyte solution is accelerated and the treatment becomes more troublesome.

また、化学的前処理の他の方法として溶融苛性アルカ
リ処理を行う場合は、溶融苛性アルカリが高粘性である
ことから高速化によつて液持出し量が大きくなり、ワイ
ピング装置によつても速度に追従して液持出し量の増加
を防止することが困難でコスト高となる欠点があつた。
そして上記の如く高速化することが困難である前処理を
弱体化してその弱体化分を強化するために酸濃度及び液
温を上げて酸洗を行う場合には酸洗液の老化が早まる結
果、酸濃度管理,追酸,廃液処理等にかかる労力,費用
が多大のものとなる欠点があつた。また酸洗の代わりに
NaClと硝酸塩等の混合物を電解質とする水溶液中で陽極
電解を行つてもそれが脱スケールの主体となる程に強く
行う場合はステンレス鋼帯にピツトを発生させ易い欠点
があつた。このように丁寧に低速で行つてこそ良い結果
を得る脱スケールとその高速化とは上記の如く従来両立
し難いものであつた。
In addition, when performing molten caustic treatment as another method of chemical pretreatment, the molten caustic has a high viscosity, so that the amount of liquid taken out increases due to high speed, and the speed is also reduced by the wiping device. There is a drawback that it is difficult to follow up to prevent an increase in the amount of liquid taken out, resulting in an increase in cost.
When the pickling is carried out by increasing the acid concentration and the liquid temperature in order to weaken the pretreatment which is difficult to increase the speed as described above and to strengthen the weakened portion, the aging of the pickling solution is accelerated. However, there is a disadvantage that the labor and cost for controlling the acid concentration, adding acid, treating waste liquid, and the like are great. Also instead of pickling
Even if anodic electrolysis is carried out in an aqueous solution containing a mixture of NaCl and nitrate as an electrolyte, if it is performed so strongly that it becomes the main descaler, there is a drawback that pits are easily generated in the stainless steel strip. As described above, it has been difficult to achieve both descaling that achieves good results by carefully performing at low speed and high speed.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

本発明は、上記従来技術の欠点なくスケール除去能力
が大きく従つて高速化が可能でしかも廃液処理の問題が
少なく、表面を品質良好にさせるステンレス鋼帯の脱ス
ケール方法の提供を目的とする。そのためには、前処理
とその後に行う本処理とにどのような処理方法をどのよ
うな条件で行うかについて解決困難な課題があつた。
It is an object of the present invention to provide a method for descaling a stainless steel strip which has a large scale removing ability without the drawbacks of the above-mentioned prior art, can be speeded up, has less problems of waste liquid treatment, and has a good surface quality. For that purpose, there is a problem that it is difficult to solve what kind of processing method is to be performed for the pre-processing and the main processing performed thereafter.

〔課題を解決するための手段〕[Means for solving the problem]

本発明者等はかかる課題を解決すべく鋭意検討の結
果、本処理としてはスケール直下の金属素地をも積極的
に除去して表面をきれいにする利点を有する酸洗を採用
し、酸洗の前記欠点を軽減するために前処理を行うこと
とし、その前処理としてはNa2SO4水溶液中での陽極電解
は電解液の自己再生能とスケールをスラツジとして分離
出来る分離能との利点を有するので、種々検討して前記
欠点が出ないような処理条件を求めようとしたが、その
ような条件は得られなかつた。
As a result of intensive studies to solve such problems, the present inventors have adopted, as the main treatment, pickling having the advantage of positively removing the metal base immediately below the scale to clean the surface, and the above-mentioned pickling. In order to reduce the drawbacks, pretreatment is performed.As pretreatment, anodic electrolysis in Na 2 SO 4 aqueous solution has advantages of self-regeneration ability of electrolyte and separation ability to separate scale as sludge. However, various investigations have been made to obtain processing conditions that do not cause the above-mentioned defects, but such conditions have not been obtained.

そこで、従来酸洗の代わりとして考えられていたNaCl
等の一塩基性無機酸塩を電解質とする水溶液中の陽極電
解による前処理について更に検討したところ、次のよう
なことが判つた。すなわち、NaFを使用した場合は脱ス
ケール能力はNa2SO4の場合よりは大きいが生成スラツジ
の粘性が高くてその除去が困難なこと、NaNO3を使用し
た場合は脱スケール能力はNa2SO4の場合と同程度である
こと、また電解液中にCr+6イオンが発生する点について
はNaF及びNaNO3の場合は共にNa2SO4の場合と同様であつ
てスラツジは水酸化第二鉄を主成分として茶色を呈して
いること、海水を使用した場合は陰極に白いスケールが
付着して通電不能となつたこと、これに対してNaClを使
用した場合は脱スケール能力はNa2SO4の場合よりも格段
に大きく、ステンレス鋼帯特にSUS304の表面に無数のピ
ツトが生じるが生成スラツジは青緑色を呈していて電解
液にはCr+6イオンが認められないことが判つた。そして
この場合の脱スケールの原理は非酸化性条件下での電気
化学的反応と推察された。このNaCl水溶液中での電解に
ついて更に検討を進めた結果、通常、焼鈍工程等の組み
込まれたラインのスピードによつて定まる電解槽通過時
間すなわち電解時間に応じて電流密度を調整することに
よつて所定範囲とならしめ得る電流密度(A/dm2)と電
解時間(秒)との積(A・秒/dm2)を、熱間及び冷間
各圧延材別に定められる一定値以下とする電解条件下に
電解することによつて前記ピツトの発生を防止すること
の出来ることが判明した。その結果、このようにしてNa
Clを電解質として使用する陽極電解で前処理した後に酸
洗をすることにより前記目的を達成出来ることを究明し
て本発明を完成したのである。
Therefore, NaCl, which was conventionally considered as an alternative to pickling,
Further studies on the pretreatment by anodic electrolysis in an aqueous solution containing a monobasic inorganic acid salt as an electrolyte revealed the following. That is, when NaF was used, the descaling capacity was larger than that of Na 2 SO 4 , but the viscosity of the produced sludge was high and it was difficult to remove it, and when NaNO 3 was used, the descaling capacity was Na 2 SO 4. In the case of NaF and NaNO 3 , both the same as in the case of No. 4 and the generation of Cr + 6 ions in the electrolyte solution are the same as in the case of Na 2 SO 4 . It had a brown color mainly composed of iron, and when seawater was used, white scale adhered to the cathode, making it impossible to carry electricity.On the other hand, when NaCl was used, the descaling ability was Na 2 SO. It was found that the number of pits was much larger than that in the case of 4 and the stainless steel strip, especially SUS304, had numerous pits, but the produced sludge was bluish green, and no Cr +6 ions were found in the electrolyte. The descaling principle in this case was speculated to be an electrochemical reaction under non-oxidizing conditions. As a result of further study of electrolysis in this NaCl aqueous solution, usually, by adjusting the current density according to the electrolytic cell passage time, that is, the electrolysis time, which is determined by the speed of the line in which the annealing process is incorporated. Electrolysis in which the product (A · sec / dm 2 ) of the current density (A / dm 2 ) and the electrolysis time (sec) that can be kept within the specified range is below a certain value determined for each hot and cold rolled material. It has been found that electrolysis under the conditions can prevent the generation of the pits. As a result, in this way Na
The present inventors have completed the present invention by discovering that the above object can be achieved by performing pre-treatment by anodic electrolysis using Cl as an electrolyte and then performing pickling.

以下、本発明方法を図面によつて詳細に説明する。 Hereinafter, the method of the present invention will be described in detail with reference to the drawings.

第1図は本発明方法の実施状態の1例を示す工程図、
第2図及び第3図は本発明方法において規定される電流
密度と電解時間との積の範囲の上限をそれぞれ熱間及び
冷間各圧延ステンレス鋼帯別に示すグラフである。
FIG. 1 is a process chart showing an example of an implementation state of the method of the present invention,
FIGS. 2 and 3 are graphs showing the upper limit of the product range of the current density and the electrolysis time defined in the method of the present invention for each hot and cold rolled stainless steel strip.

〔構成の説明〕[Description of configuration]

本発明方法においては、前処理として50〜200g/lのNa
Clの水溶液から成る電解液中でステンレス鋼帯を陽極と
して電解を行うのであるが、この陽極電解の電解液のNa
Cl濃度を最低50g/lとしたのは低濃度では電解液の導電
性が低くなつて電流効率が下がるからであり、NaCl濃度
は高い程好ましいが最高を200g/lとしたのはNaClの水へ
の溶解度を考慮したからである。この陽極電解の電解液
の液温は、脱スケール結果への影響が比較的小さいの
で、常温(20℃)でも差し支えはなく、そして高温の方
が導電性やNaCl溶解度が高くなつて好ましいが80℃を超
えると蒸発水量の増加に伴う濃度管理の煩雑化,エネル
ギーロス等の問題が起こるので、20〜80℃を適用範囲と
し、中でも60℃付近が最適である。
In the method of the present invention, 50 to 200 g / l of Na is used as a pretreatment.
Electrolysis is performed by using a stainless steel strip as an anode in an electrolytic solution consisting of an aqueous solution of Cl.
The minimum concentration of Cl is 50 g / l because at low concentrations the conductivity of the electrolyte is low and the current efficiency is reduced.The higher the concentration of NaCl is, the higher the concentration of 200 g / l is. This is because the solubility in water was taken into consideration. The temperature of the electrolyte solution for this anodic electrolysis has a relatively small effect on the descaling result, so normal temperature (20 ° C) is not a problem, and higher temperature is preferable because the conductivity and NaCl solubility are higher. If the temperature exceeds ℃, problems such as complicated concentration control and energy loss due to an increase in the amount of evaporated water will occur, so 20 to 80 ℃ is the applicable range, and around 60 ℃ is optimal.

熱間圧延ステンレス鋼帯(SUS304,SUS430)のNaClを
電解質とする陽極電解を液温,電流密度(A/dm2),電
解時間(秒)を変えて行い、処理後の減量とCr+6イオン
発生の有無及びピツト発生の有無とについて調べた結果
を第1表に示す。なお、液温が高い場合については後に
実施例の一部として第3表に示す。
Anode electrolysis using NaCl of hot-rolled stainless steel strip (SUS304, SUS430) as the electrolyte was performed by changing the liquid temperature, current density (A / dm 2 ) and electrolysis time (seconds), and the weight loss after treatment and Cr +6 Table 1 shows the results of examinations for the presence or absence of ion generation and the presence or absence of pit generation. In addition, when the liquid temperature is high, it is shown in Table 3 as a part of Examples later.

第1表及び第3表から、電解処理による減量の大小
(脱スケール能力に大きく関係する),Cr+6発生の有無
及びピツト発生の有無に対してはNaCl濃度や液温の影響
は大きくないことが判る。このような結果は冷間圧延ス
テンレス鋼帯についても同様であつた。
From Tables 1 and 3, the influence of NaCl concentration and liquid temperature is not significant for the amount of weight loss by electrolytic treatment (which is greatly related to the descaling ability), the presence or absence of Cr +6 , and the presence or absence of pits. I understand. Similar results were obtained for cold rolled stainless steel strip.

電解時の電流密度(A/dm2)と電解時間(秒)との積
(A・秒/dm2、以下単位面積当りの電気量と言うこと
がある)は脱スケール能力とピツトの発生に最も影響す
るものである。この単位面積当りの電気量の上限が、熱
間圧延ステンレス鋼帯の場合は800A・秒/dm2で、冷間
圧延ステンレス鋼帯の場合は400A・秒/dm2であり、そ
れぞれの場合に上記値を超えるときは、ステンレス鋼帯
がSUS304である場合にピツトが発生する。ステンレス鋼
帯がSUS430ではこの上限はもう少し上である。ここで熱
間圧延と冷間圧延との差違は、JISG4304及びJISG4305の
規定に従うものとする。第2図及び第3図は、ピツトの
発生し易いSUS304を使用しそれぞれ熱間圧延ステンレス
鋼帯及び冷間圧延ステンレス鋼帯を種々な電流密度(A/
dm2)と電解時間(秒)とを組み合わせた条件(他の条
件:NaCl濃度200g/l,液温60℃は一定)下に陽極電解した
ときのピツト発生の状況をグラフとしたものであつて、
上記範囲がSUS340とSUS430とに共通して規定するときの
単位面積当りの電気量範囲の上限であることを示してい
る。
The product of the current density (A / dm 2 ) during electrolysis and the electrolysis time (seconds) (A · second / dm 2 , hereinafter sometimes referred to as the quantity of electricity per unit area) determines the descaling ability and the generation of pits. It has the most impact. The upper limit of the amount of electricity per unit area is at 800A · sec / dm 2 in the case of hot-rolled stainless steel strip, in the case of cold-rolled stainless steel strip is 400A · sec / dm 2, in each case If the above value is exceeded, pits will be generated when the stainless steel strip is SUS304. This upper limit is a little higher when the stainless steel strip is SUS430. Here, the difference between hot rolling and cold rolling is in accordance with the regulations of JIS G4304 and JIS G4305. Figures 2 and 3 show that hot-rolled stainless steel strips and cold-rolled stainless steel strips with various current densities (A /
dm 2 ) and electrolysis time (sec) are combined (other conditions: NaCl concentration is 200 g / l, liquid temperature is constant at 60 ° C), and a graph shows the situation of pit generation during anodic electrolysis. hand,
It is shown that the above range is the upper limit of the electric quantity range per unit area when it is specified in common for SUS340 and SUS430.

一方、NaClを電解質とする陽極電解による前処理は、
スケールの大部分を除去して酸洗の負担を軽減しようと
する処理であるから、この役割を果たすのに充分な単位
面積当りの電気量範囲の下限は種々な試験の結果、熱間
圧延ステンレス鋼帯では200A・秒/dm2で、冷間圧延ス
テンレス鋼帯では100A・秒/dm2であつた。脱スケール
は通常鋼帯の形態で焼鈍工程と同じラインを走行しなが
ら行われるから、焼鈍に必要な処理時間すなわち焼鈍炉
通過時間を板厚の大小によつて変えるために調整された
通板速度がそのまま電解槽通過時間すなわち電解時間を
決めてしまうことになるが、電流密度(A/dm2)を調整
することにより単位面積当りの電気量を上記範囲内とす
ることによりピツトの発生を防止して且つ充分な前処理
を行うことが出来るのである。NaCl水溶液中の陽極電解
によれば、陽極に生成する酸との反応の他に塩素イオン
の作用も加わるので、スケール除去能力は大きい。
On the other hand, the pretreatment by anodic electrolysis using NaCl as the electrolyte is
Since this is a treatment that removes most of the scale to reduce the burden of pickling, the lower limit of the amount of electricity per unit area that is sufficient to fulfill this role is the result of various tests. It was 200 A · sec / dm 2 for the steel strip and 100 A · sec / dm 2 for the cold rolled stainless steel strip. Since descaling is usually performed in the form of a steel strip while traveling in the same line as the annealing process, the stripping speed adjusted to change the processing time required for annealing, that is, the annealing furnace passage time, depending on the size of the sheet thickness. Will directly determine the passage time of the electrolytic cell, that is, the electrolysis time, but by adjusting the current density (A / dm 2 ) to keep the amount of electricity per unit area within the above range, the occurrence of pits can be prevented. In addition, sufficient pretreatment can be performed. According to the anodic electrolysis in a NaCl aqueous solution, the action of chlorine ions is added in addition to the reaction with the acid generated at the anode, so that the scale removing ability is large.

本発明方法においてNaCl水溶液中の電解処理の後に行
う酸洗処理に使用する酸としては、スケール層の直下の
金属素地までも除去するために少なくとも弗酸の混入さ
れた硫弗酸と硝弗酸とのいずれかを使用するのであり、
硝弗酸酸洗液ではHF濃度5〜50g/l,HNO3濃度50〜100g/l
が適当であり、硫弗酸酸洗液ではHF濃度5〜50g/l,H2SO
4濃度150〜250g/lが適当であり、上記範囲中でもHF濃度
が高い方が好ましい。
In the method of the present invention, as the acid used in the pickling treatment after the electrolytic treatment in the NaCl aqueous solution, there are at least hydrofluoric acid and sulfuric hydrofluoric acid mixed with at least hydrofluoric acid to remove even the metal base immediately below the scale layer. And either of
HF concentration of 5 to 50g / l, HNO 3 concentration of 50 to 100g / l
Is suitable, and the sulfuric acid hydrofluoric acid pickling solution has an HF concentration of 5 to 50 g / l, H 2 SO
4 A concentration of 150 to 250 g / l is suitable, and a higher HF concentration is preferable in the above range.

一般に硝弗酸酸洗液か硫弗酸酸洗液かのいずれか一方
を使用する場合、及びいずれをも使用して2段の酸洗を
行う場合の後段で使用するものとしては、表面の仕上り
状態及び不働態化処理の観点から硝弗酸酸洗液を好まし
くは液温50〜70℃で使用するのが良い。このように前段
に硫弗酸を、後段に硝弗酸を使用する2段の酸洗をSUS3
04,SUS430等に適用する場合、硝弗酸による上記効果の
他に、先に使用する硫弗酸酸洗液の液温を70〜90℃とし
て酸洗すれば、硫弗酸による脱スケール及びエツチング
効果が加わつて大変良い結果が得られる。第2表は熱間
圧延ステンレス鋼帯(SUS304,SUS430)を硝弗酸,硫
酸,硫弗酸各単独使用の酸洗液で処理したときの減量を
調べた結果である。
Generally, when either one of the nitric hydrofluoric acid pickling solution and the sulfur hydrofluoric acid pickling solution is used, and when the two steps of pickling using both of them are used, From the viewpoint of the finished state and the passivation treatment, the nitric hydrofluoric acid pickling solution is preferably used at a liquid temperature of 50 to 70 ° C. In this way, SUS3 is used for the two-step pickling using sulfuric hydrofluoric acid in the first step and nitric hydrofluoric acid in the second step.
When applied to 04, SUS430, etc., in addition to the above effect by nitric hydrofluoric acid, if the acid temperature of the sulfuric acid hydrofluoric acid pickling solution used before is pickled at 70 to 90 ° C, descaling by sulfuric acid hydrofluoric acid and Very good results can be obtained by adding the etching effect. Table 2 shows the results of examining the weight loss when hot-rolled stainless steel strips (SUS304, SUS430) were treated with a pickling solution containing nitric hydrofluoric acid, sulfuric acid, and sulfur hydrofluoric acid alone.

第2表から硫弗酸酸洗液が前段の酸洗液として特に優
れていることが判る。冷間圧延ステンレス鋼帯について
も同様な結果が得られた。H2SO4単独使用の酸洗液によ
る前段酸洗処理は、SUS304の場合は減量は大きいがスマ
ツトを生じさせることがあるため行わない方が好まし
く、SUS430の場合は実施しても良い。
It can be seen from Table 2 that the sulfuric acid hydrofluoric acid pickling solution is particularly excellent as the pre-stage pickling solution. Similar results were obtained with cold rolled stainless steel strip. The pre-stage pickling treatment with a pickling solution using H 2 SO 4 alone is preferably not carried out in the case of SUS 430 because it causes a large amount of weight loss in the case of SUS 304, but it may be carried out in the case of SUS 430.

次に電解や酸洗に付帯して行われる操作も含めて、本
発明方法による脱スケール工程の具体例を第1図により
説明する。
Next, a specific example of the descaling step according to the method of the present invention will be described with reference to FIG. 1, including the operations that are performed in addition to electrolysis and pickling.

焼鈍炉(図示なし)の通過速度のまま走行して来たス
テンレス鋼帯1は、送板ロール15を経て電解槽2内に送
板され、前後への浸漬ロール14,14によつて電解槽2内
に満たされているNaCl水溶液から成る電解液中に浸漬さ
れた状態で通過し、その間に電解用電源5に接続された
陽極板3と陰極板4とステンレス鋼帯1との間にこのス
テンレス鋼帯1が陽極板3の間を通過するときには陰極
に、陰極板4の間を通過するときには陽極にそれぞれ帯
電するように形成される回路によつてステンレス鋼帯1
は陽極電解作用を受けて、表面のスケールの大部分は電
解液中に溶解除去される。このように電解液中に溶解し
たスケールは陰極板4の作用で生成した水酸イオンと結
合して金属水酸化物から主として成るスラツジに変化す
る。このスラツジはステンレス鋼帯1に付着して送板中
に表面に疵を付けるので逐次スラツジ液貯槽7に抜き出
し、更に遠心分離機8でスラツジを電解液から分離して
排出し、電解液は液送ポンプ9及び6によつて電解槽2
に戻す。電解槽2中のNaClは絶えず自己再生しており且
つCr+6イオンの生成も無いので電解液の老化は無い。電
解条件として電流密度(A/dm2)をステンレス鋼帯1の
電解槽2の通過時間に従つて規定範囲に調整することは
前記説明の通りである。
The stainless steel strip 1 that has been running at the passing speed of the annealing furnace (not shown) is fed into the electrolytic bath 2 via the feed roll 15 and is fed back and forth by the dipping rolls 14 and 14. 2 passes between the anode plate 3 and the cathode plate 4 and the stainless steel strip 1 which are immersed in an electrolytic solution consisting of an aqueous NaCl solution and are connected to an electrolysis power source 5 while being immersed in the electrolytic solution. The stainless steel strip 1 is formed by a circuit formed so that the stainless steel strip 1 is charged to the cathode when passing between the anode plates 3 and the anode when passing between the cathode plates 4.
Undergoes anodic electrolysis, and most of the surface scale is dissolved and removed in the electrolytic solution. In this way, the scale dissolved in the electrolytic solution is combined with the hydroxide ions generated by the action of the cathode plate 4 and converted into sludge mainly composed of metal hydroxide. Since this sludge adheres to the stainless steel strip 1 and scratches the surface of the plate during feeding, it is successively withdrawn to the sludge liquid storage tank 7, and the sludge is separated from the electrolytic solution by the centrifugal separator 8 and discharged. Electrolyzer 2 by means of pumps 9 and 6
Return to. Since NaCl in the electrolytic cell 2 is constantly self-regenerating and does not generate Cr +6 ions, the electrolytic solution is not aged. As described above, as the electrolysis conditions, the current density (A / dm 2 ) is adjusted to the specified range according to the passage time of the stainless steel strip 1 through the electrolytic cell 2.

電解槽2を通過したステンレス鋼帯1は送板ロール15
を経てブラツシロール12とバツクアツプロール13との間
を通過する。このとき陽極電解によつて金属素地との結
合力が弱まっているが未だ付着残存しているスケールの
大半が除去される。
The stainless steel strip 1 that has passed through the electrolytic cell 2 is a plate feeding roll 15
And passes between the brush roll 12 and the back roll 13. At this time, the anodic electrolysis weakens the bonding force with the metal substrate, but most of the scale still adhering and remaining is removed.

次いでステンレス鋼帯1は送板ロール15を経て酸洗槽
10内に送板され、前後の浸漬ロール14,14によつて前記
説明の酸洗液に浸漬された状態で通過し、その間に僅か
に残存しているスケールの全部が溶解除去されると共
に、スケール層の直下に存在する金属素地の金属素地を
溶解させる。スケール層の大部分は前記電解処理で除去
しているから、その分だけ酸洗槽10で酸洗液の老化は少
ないから、酸洗液の脱スケール及びエツチング能の維持
管理は容易である。
Next, the stainless steel strip 1 is passed through the plate feed roll 15 and then pickled.
The plate is sent in 10, passed by the front and rear dipping rolls 14, 14 while being immersed in the above-mentioned pickling solution, while all the scale slightly remaining during the dissolution is removed, The metal base existing directly below the scale layer is melted. Since most of the scale layer is removed by the electrolytic treatment, the aging of the pickling solution in the pickling tank 10 is small by that much, so that descaling of the pickling solution and maintenance of the etching ability are easy.

酸洗槽10を通過したステンレス鋼帯1は送板ロール15
を経てブラツシロール12とバツクアツプロール13との間
を通過し、このとき僅かなスケールや金属素地が金属素
地との結合力が弱い状態で残存していたとしても除去さ
れると共に、美麗な素地が表出する。
The stainless steel strip 1 that has passed the pickling tank 10 is a plate feed roll 15
After passing between the brush roll 12 and the back-up roll 13 through, even if a small scale or metal base remains in a state where the bonding force with the metal base is weak, it is removed and a beautiful base material is obtained. Show up.

酸洗に前記2種類の酸洗液を使用するときは、上記酸
洗を前段とし、これに続いて第1図に示す如く更に上記
と同様の送板ロール15と浸漬ロール14を備えた酸洗槽11
とブラツシロール12,バツクアツプロール13とを通過さ
せてもう1種の酸洗液による後段の酸洗処理とブラツシ
処理とを行えば良い。この2段の酸洗処理の場合、1段
だけの場合に比べて更にエツチング効果を増強出来ると
共に各段毎に酸濃度の調整が可能なことから酸洗能力の
維持が容易となる。前後段の酸洗液として何を使用する
のが好ましいかは前記説明の通りである。このようにし
て本発明方法による脱スケール工程は終了する。
When the above-mentioned two types of pickling solutions are used for pickling, the above-mentioned pickling is carried out in the preceding stage, and subsequently, as shown in FIG. Wash tank 11
After passing through the brush roll 12 and the back-up roll 13, the subsequent pickling treatment and brushing treatment with another pickling solution may be performed. In the case of the two-step pickling treatment, the etching effect can be further enhanced as compared with the case of only one step, and the acid concentration can be adjusted for each step, so that the pickling ability can be easily maintained. What is preferably used as the front and rear pickling solution is as described above. Thus, the descaling step according to the method of the present invention is completed.

〔実施例〕〔Example〕

以下、本発明を実施例及び比較例により具体的に説明
する。
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples.

焼鈍工程を経て走行して来る熱間圧延ステンレス鋼帯
(板厚3.8mmのSUS304,板厚3.6mmのSUS340)を実験のた
め一旦コイルに巻き取り、第1図に示す工程により種々
な送板速度で、つまり電解時間及び酸洗時間を種々に変
えて脱スケールを行つた。電解液としてNaClの他、Na2S
O4,NaNO3,NaFの水溶液を使用し、種々な電解条件で前処
理を行つた。これらの電解液及び電解条件を第3表に示
す。引き続く2段の酸洗処理に使用した酸洗としては前
段の酸洗にはH2SO4濃度が228g/lでHF濃度が10g/lの硫弗
酸酸洗液を液温75℃で使用し、後段の酸洗にはHNO3濃度
が70g/lでHF濃度が10g/lの硝弗酸酸洗液を液温60℃で使
用した。この実験に使用した電解槽2,酸洗槽10及び11に
おけるステンレス鋼帯の浸漬長はいずれも同じであるか
ら前段,後段の各酸洗処理時間は電解時間と同じであ
り、それ以外の酸洗処理の条件は各実験に共通であるか
ら次表に示すことは省略した。
A hot rolled stainless steel strip (SUS304 with a plate thickness of 3.8 mm, SUS340 with a plate thickness of 3.6 mm) that has traveled through the annealing process is temporarily wound around a coil for the purpose of experiment, and various feeding plates are carried out by the process shown in FIG. The descaling was carried out at various speeds, that is, by varying the electrolysis time and the pickling time. Other than NaCl as electrolyte, Na 2 S
Pretreatments were carried out using various aqueous solutions of O 4 , NaNO 3 and NaF under various electrolysis conditions. Table 3 shows these electrolytic solutions and electrolysis conditions. As the pickling used in the subsequent two-step pickling treatment, the sulfuric acid hydrofluoric acid pickling solution with a H 2 SO 4 concentration of 228 g / l and an HF concentration of 10 g / l was used at a liquid temperature of 75 ° C for the previous pickling. Then, for the subsequent pickling, a nitric hydrofluoric acid pickling solution having a HNO 3 concentration of 70 g / l and an HF concentration of 10 g / l was used at a liquid temperature of 60 ° C. Since the immersion lengths of the stainless steel strips in the electrolytic bath 2, pickling baths 10 and 11 used in this experiment were the same, the pre- and post-stage pickling treatment times were the same as the electrolysis time, and other pickling times were the same. Since the conditions of washing treatment are common to each experiment, they are omitted in the following table.

上記脱スケール実験において、陽極電解(処理1),
前段の酸洗(処理2),後段の酸洗(処理3)各処理後
の減量(mg/dm2)を測定すると共にそれらを合計し、各
処理段階での脱スケール能及び工程全体の脱スケール能
力を表わした。この減量の測定方法は、予め重量,幅,
長さの判つているコイルに処理条件の変更を含む処理1,
処理2及び処理3を施した後、再びその重量,幅,長さ
を測定し、その重量差を板幅(dm)と処理長さ(dm)の
積で除して単位長さ当りの減量を求める方法と、処理条
件の変更を含む処理1,処理2及び処理3を施す前にコイ
ルより10cm角(1dm角)のサンプルを採取し、各処理後
にもその条件下でのサンプルを同様に採取し、その重量
差をサンプル面積で除して単位長さ当りの減量を算出す
る方法とのいずれかにより測定した。また、工程終了後
に目視によりスケール残存の有無を観察した。以上の他
に電解中における電解液中のCr+6イオンの検出作業を行
つてその発生の有無を調べた。更にピツトの発生の有無
も調べたが、有の場合は陽極電解で発生したものであ
る。これらの結果を第3表に示す。
In the above descaling experiment, anodic electrolysis (treatment 1),
The weight loss (mg / dm 2 ) after each treatment of the first-stage pickling (treatment 2) and the second-stage pickling (treatment 3) was measured and totaled, and the descaling ability at each treatment stage and the total removal of the process were performed. Expressed scale ability. This weight loss is measured in advance by weight, width,
Processing that involves changing the processing conditions for a coil of known length 1,
After the treatment 2 and the treatment 3, the weight, width and length are measured again, and the weight difference is divided by the product of the plate width (dm) and the treatment length (dm) to reduce the weight per unit length. Method, and before performing treatment 1, treatment 2 and treatment 3 including changes in treatment conditions, a 10 cm square (1 dm square) sample is taken from the coil, and after each treatment the sample under that condition is also the same. The weight difference was divided by the sample area, and the weight loss per unit length was calculated. In addition, after the process was completed, the presence or absence of scale residue was visually observed. In addition to the above, detection work of Cr +6 ions in the electrolytic solution during electrolysis was performed to examine the presence or absence of the generation. Furthermore, the presence or absence of pits was also examined, and if pits were present, they were generated by anodic electrolysis. The results are shown in Table 3.

第3表から、陽極電解(処理1)での減量については
NaClを電解質とする場合が他の場合に比べて最も多くて
酸洗における酸洗液の老化をそれだけ軽減させ得ること
が判り、またCr+6イオンの発生も他の場合(但し海水の
場合を除く)に認められるのに対し、NaClの場合には無
いことが判る。そしてNaClの場合の中では、単位面積当
りの電気量(a×b)が本発明方法に規定する範囲の上
限以下にある場合はピツトは発生しないが、そうでない
場合はピツトが発生していることが判る。また、Naclを
電解質とする陽極電解における単位面積当りの電気量
(a×b)が本発明方法に規定する範囲にある場合は第
3表に示す如く処理1での減量がかなり大きく、電解時
間と同じ時間の酸洗で美麗な表面のステンレス鋼帯が得
られたが、単位面積当りの電気量(a×b)が本発明方
法に規定する範囲にの下限よりも小さい場合は電解時間
よりも多くの時間をかけて酸洗を行わねばならず、酸洗
液の老化を早めてその管理が厄介となることが判る。海
水を使用して電解した場合は電極に白色スケールが付い
て実施困難であつたので、酸洗は省略した。
From Table 3, for weight loss in anodic electrolysis (treatment 1),
It was found that the use of NaCl as the electrolyte was the largest compared to other cases, and it was possible to reduce the aging of the pickling solution during pickling by that much, and the generation of Cr + 6 ions was also found in other cases (however, in the case of seawater, However, in the case of NaCl, it is not. In the case of NaCl, no pit is generated when the amount of electricity per unit area (a × b) is less than or equal to the upper limit of the range specified in the method of the present invention, but otherwise pit is generated. I understand. When the amount of electricity per unit area (a × b) in the anode electrolysis using Nacl as the electrolyte is within the range specified in the method of the present invention, as shown in Table 3, the weight loss in Treatment 1 is considerably large and the electrolysis time is long. Although a stainless steel strip with a beautiful surface was obtained by pickling for the same time as above, when the amount of electricity per unit area (a x b) was smaller than the lower limit of the range specified in the method of the present invention, It has been found that pickling requires a lot of time, and the aging of the pickling solution is accelerated and its management becomes troublesome. When electrolysis was performed using seawater, it was difficult to carry out because the electrode had a white scale, so pickling was omitted.

以上、上記表から本発明方法が脱スケール方法として
非常に優れたものであることが判る。
As described above, it can be seen from the above table that the method of the present invention is extremely excellent as a descaling method.

〔効果〕〔effect〕

以上詳述した如き本発明に係るステンレス帯の脱スケ
ール方法は、以下に列挙するような種々の利点を有して
おり、その工業的価値は非常に大きなもがある。
The descaling method for a stainless steel strip according to the present invention as described in detail above has various advantages as listed below, and its industrial value is very large.

1.前処理によつて大部分の脱スケールが可能であること
から、酸洗槽における脱スケール負荷が軽減されること
になり、酸洗液の寿命も延び脱スケール能力が安定し
た。従つて、酸洗液の濃度管理及び追酸に要する労力,
費用も軽減されると同時に脱スケールの高速化が可能と
なつた。
1. Since most of the descaling is possible by pretreatment, the descaling load in the pickling tank is reduced, the life of the pickling solution is extended, and the descaling ability is stable. Therefore, the labor required for the concentration control of the pickling solution and the additional acid,
The cost can be reduced and the descaling can be speeded up.

2.熱間圧延材,冷間圧延材のいずれであつて同じライン
で兼用して充分は脱スケール能力が得られるようになつ
たことから、生産能力の向上が図られる。
2. Both hot-rolled material and cold-rolled material can be used on the same line to obtain sufficient descaling capacity, which will improve the production capacity.

3.前処理方法として、塩化ナトリウム水溶液を使用した
陽極電解を採用したことで、電解槽より排出される廃液
中のCr+6イオンの処理が不要となりその処理費用が軽減
された。また、電解液中にCr+6イオンの生成がないこと
及び除去されたスケールは金属水酸化物よりなるスラツ
ジとして、液相より分離することから液の劣化も少な
く、また電解質である塩化ナトリウムも比較的安価であ
ることから低コストでしかも安定した前処理が可能とな
つた。
3. By adopting anodic electrolysis using sodium chloride solution as a pretreatment method, treatment of Cr +6 ions in the waste liquid discharged from the electrolytic cell is not necessary and the treatment cost is reduced. Further, since there is no generation of Cr + 6 ions in the electrolytic solution and the removed scale is a sludge made of a metal hydroxide, it is separated from the liquid phase, so that deterioration of the liquid is small, and sodium chloride which is an electrolyte is also included. Since it is relatively inexpensive, stable pretreatment is possible at low cost.

4.本発明方法における前処理は充分な脱スケール能力を
有し、しかも溶融塩の如く粘性が高くなくて液持出しが
少ないことから、コスト的にも優れている。
4. The pretreatment in the method of the present invention has a sufficient descaling ability, and since it does not have high viscosity like molten salt and little liquid is taken out, it is excellent in cost.

5.前処理にて、大部分のスケール除去が可能となつたこ
とから、酸洗処理においては残存するスケールの除去は
為されると同時に、スケール直下の金属素地をも溶解す
ることになるので、脱スケールが不十分であることに起
因するステンレス鋼帯の表面欠陥である肌荒れや光沢む
らが減少出来た。
5.Because most of the scale can be removed by the pretreatment, the residual scale is removed by the pickling treatment, and at the same time, the metal base directly under the scale is also dissolved. , The surface defects of the stainless steel strip due to insufficient descaling, such as rough skin and uneven gloss, could be reduced.

6.本発明方法を実施するときの設備面に関しては、電解
槽及び酸洗槽のいずれも従来のものをそのまま使用する
ことが出来るから、殆んど設備改造を要せず、しかも脱
スケール能力の向上が図れた。
6. Regarding the facility side when carrying out the method of the present invention, since both the electrolytic bath and the pickling bath can use the conventional ones as they are, almost no facility remodeling is required, and the descaling ability is high. Was improved.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明方法の実施状態の1例を示す工程図、第
2図及び第3図は本発明方法において規定される電流密
度と電解時間との積の範囲の上限をそれぞれ熱間及び冷
間各圧延ステンレス鋼帯別に示すグラフである。 1……ステンレス鋼帯 2……電解槽 3……陽極板 4……陰極板 5……電解用電極 6……液送ポンプ 7……スラツジ液貯槽 8……遠心分離機 9……液送ポンプ 10……酸洗槽 11……酸洗槽 12……ブラツシロール 13……バツクアツプロール 14……浸漬ロール 15……送板ロール
FIG. 1 is a process chart showing an example of an implementation state of the method of the present invention, and FIGS. 2 and 3 show the upper limit of the product range of the current density and the electrolysis time defined in the method of the present invention, respectively, for hot and It is a graph shown for each cold rolled stainless steel strip. 1 …… Stainless steel strip 2 …… Electrolysis tank 3 …… Anode plate 4 …… Cathode plate 5 …… Electrolysis electrode 6 …… Liquid feeding pump 7 …… Sludge liquid storage tank 8 …… Centrifuge 9 …… Liquid feeding Pump 10 …… Pickling tank 11 …… Pickling tank 12 …… Brush roll 13 …… Back up roll 14 …… Immersion roll 15 …… Plate roll

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭61−266588(JP,A) 特開 昭54−142140(JP,A) 特公 昭53−23245(JP,B2) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-61-266588 (JP, A) JP-A-54-142140 (JP, A) JP-B-53-23245 (JP, B2)

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】50〜200g/lのNaClの水溶液から成る電解液
中で液温が20〜80℃,電流密度と電解時間との積が200
〜800A・秒/dm2の条件下に熱間圧延ステンレス鋼帯を
陽極として電解処理を行い、次いで少なくとも硝弗酸と
硫弗酸とのいずれかにより酸洗処理してスケール直下の
金属素地まで除去することを特徴とするステンレス鋼帯
の脱スケール方法。
1. A liquid temperature of 20 to 80 ° C. and a product of a current density and an electrolysis time of 200 in an electrolytic solution composed of an aqueous solution of NaCl of 50 to 200 g / l.
Electrolytic treatment is performed using hot rolled stainless steel strip as an anode under the condition of ~ 800 A · sec / dm 2 , and then at least either nitric hydrofluoric acid or sulfur hydrofluoric acid is pickled to reach the metal substrate directly under the scale. A method for descaling a stainless steel strip characterized by removing.
【請求項2】酸洗処理を、先に硫弗酸で次いで硝弗酸で
の2段処理で行う請求項1に記載のステンレス鋼帯の脱
スケール方法。
2. The method for descaling a stainless steel strip according to claim 1, wherein the pickling treatment is carried out by a two-stage treatment of first with sulfur hydrofluoric acid and then with nitric hydrofluoric acid.
【請求項3】硫弗酸として、H2SO4濃度が150〜250g/lで
HF濃度が5〜50g/lのものを液温70〜90℃で使用する請
求項1又は2に記載のステンレス鋼帯の脱スケール方
法。
3. A hydrofluoric acid having a H 2 SO 4 concentration of 150 to 250 g / l.
The method for descaling a stainless steel strip according to claim 1 or 2, wherein an HF concentration of 5 to 50 g / l is used at a liquid temperature of 70 to 90 ° C.
【請求項4】硝弗酸として、HNO3濃度が50〜100g/lでHF
濃度が5〜50g/lのものを液温50〜70℃で使用する請求
項1又は2に記載のステンレス鋼帯の脱スケール方法。
4. HF as nitric hydrofluoric acid having a HNO 3 concentration of 50 to 100 g / l
The method for descaling a stainless steel strip according to claim 1 or 2, wherein a solution having a concentration of 5 to 50 g / l is used at a liquid temperature of 50 to 70 ° C.
【請求項5】50〜200g/lのNaClの水溶液から成る電解液
中で液温が20〜80℃,電流密度と電解時間との積が100
〜400A・秒/dm2の条件下に冷間圧延後に焼鈍を施され
たステンレス鋼帯を陽極として電解処理を行い、次いで
少なくとも硝弗酸と硫弗酸とのいずれかにより酸洗処理
してスケール直下の金属素地まで除去することを特徴と
するステンレス鋼帯の脱スケール方法。
5. A liquid temperature of 20 to 80 ° C. and a product of current density and electrolysis time of 100 in an electrolytic solution composed of an aqueous solution of NaCl of 50 to 200 g / l.
Electrolytic treatment was performed using a stainless steel strip annealed after cold rolling under the condition of ~ 400 A · sec / dm 2 as an anode, and then subjected to pickling treatment with at least either nitric hydrofluoric acid or sulfur hydrofluoric acid. A descaling method for a stainless steel strip, which is characterized by removing even the metal base immediately below the scale.
【請求項6】酸洗処理を、先に硫弗酸で次いで硝弗酸で
の2段処理で行う請求項5に記載のステンレス鋼帯の脱
スケール方法。
6. The method of descaling a stainless steel strip according to claim 5, wherein the pickling treatment is carried out by a two-step treatment of first with sulfuric hydrofluoric acid and then with nitric hydrofluoric acid.
【請求項7】硫弗酸として、H2SO4濃度が150〜250g/lで
HF濃度が5〜50g/lのものを液温70〜90℃で使用する請
求項5又は6に記載のステンレス鋼帯の脱スケール方
法。
7. A hydrofluoric acid having a H 2 SO 4 concentration of 150 to 250 g / l.
The method for descaling a stainless steel strip according to claim 5 or 6, wherein an HF concentration of 5 to 50 g / l is used at a liquid temperature of 70 to 90 ° C.
【請求項8】硝弗酸として、HNO3濃度が50〜100g/lでHF
濃度が5〜50g/lのものを液温50〜70℃で使用する請求
項5又は6に記載のステンレス鋼帯の脱スケール方法。
8. HF as nitric hydrofluoric acid having a HNO 3 concentration of 50 to 100 g / l
The method for descaling a stainless steel strip according to claim 5 or 6, wherein a solution having a concentration of 5 to 50 g / l is used at a liquid temperature of 50 to 70 ° C.
JP63058207A 1988-03-14 1988-03-14 Descaling method for stainless steel strip Expired - Lifetime JP2517353B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63058207A JP2517353B2 (en) 1988-03-14 1988-03-14 Descaling method for stainless steel strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63058207A JP2517353B2 (en) 1988-03-14 1988-03-14 Descaling method for stainless steel strip

Publications (2)

Publication Number Publication Date
JPH01234600A JPH01234600A (en) 1989-09-19
JP2517353B2 true JP2517353B2 (en) 1996-07-24

Family

ID=13077597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63058207A Expired - Lifetime JP2517353B2 (en) 1988-03-14 1988-03-14 Descaling method for stainless steel strip

Country Status (1)

Country Link
JP (1) JP2517353B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200065418A (en) * 2018-11-30 2020-06-09 주식회사 포스코 Method for improving the surface of stainless steel

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4694048B2 (en) * 2001-06-15 2011-06-01 株式会社パーカーコーポレーション High-speed descaling method for stainless steel
CN106521525A (en) * 2016-11-30 2017-03-22 佛山市高明区诚睿基科技有限公司 Stainless steel surface treating agent as well as preparation method thereof and using method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5323245A (en) * 1976-08-14 1978-03-03 Fujitsu Ltd Multiprocessor system having sensory memory
JPS61266588A (en) * 1985-05-22 1986-11-26 Nisshin Steel Co Ltd Method for descaling stainless steel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200065418A (en) * 2018-11-30 2020-06-09 주식회사 포스코 Method for improving the surface of stainless steel
KR102209596B1 (en) 2018-11-30 2021-01-28 주식회사 포스코 Method for improving the surface of stainless steel

Also Published As

Publication number Publication date
JPH01234600A (en) 1989-09-19

Similar Documents

Publication Publication Date Title
US2115005A (en) Electrochemical treatment of metal
US3420760A (en) Process for descaling steel strip in an aqueous organic chelating bath using alternating current
EP0367112B1 (en) Method of descaling stainless steel and apparatus for same
CN1451058A (en) Continuous electrolytic pickling method for metallic products using alternate current suplied cells
JP2517353B2 (en) Descaling method for stainless steel strip
US4711707A (en) Method for removal of scale from hot rolled steel
JP2003286592A (en) Pickling process for stainless steel strip
US3632490A (en) Method of electrolytic descaling and pickling
JP2577619B2 (en) Method and apparatus for descaling alloy steel strip
WO1999039028A1 (en) Method for treating a metal product
JP3792335B2 (en) Finishing electrolytic pickling method in descaling of stainless steel strip
US3027310A (en) Cleaning bath and method of cleaning moving metal strip
JP2577618B2 (en) Method and apparatus for descaling alloy steel strip
US6837973B1 (en) Apparatus for electrically coating a hot-rolled steel substrate
JPH0713320B2 (en) Electrolytic pickling method for strips of special steel
KR100368207B1 (en) Electrolytic pickling solution for cold annealed austenitic stainless steel sheet
JP2501220B2 (en) Heat-scratch-free stainless cold-rolled steel sheet manufacturing method
JP2003119551A (en) Cold-rolled stainless steel strip having extremely satisfactory surface glossiness
JP4804657B2 (en) A descaling method for austenitic stainless steel cold-rolled annealed steel sheets
JPS6160920B2 (en)
JP2585444B2 (en) Method and apparatus for descaling stainless steel strip
KR950004239B1 (en) Electrolytic cleaning method of austenite cold roled annealing stainless sted sheets
JP3112257B2 (en) Method for electrolytic descaling of Ni annealed plate or Ni alloy annealed plate
JPH1161500A (en) Descaling of stainless steel strip and heat resistant steel strip
JP2023503143A (en) Electric assisted pickling of steel