JPH01234600A - Method for descaling band stainless steel - Google Patents

Method for descaling band stainless steel

Info

Publication number
JPH01234600A
JPH01234600A JP5820788A JP5820788A JPH01234600A JP H01234600 A JPH01234600 A JP H01234600A JP 5820788 A JP5820788 A JP 5820788A JP 5820788 A JP5820788 A JP 5820788A JP H01234600 A JPH01234600 A JP H01234600A
Authority
JP
Japan
Prior art keywords
stainless steel
pickling
descaling
steel strip
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5820788A
Other languages
Japanese (ja)
Other versions
JP2517353B2 (en
Inventor
Kazuo Sakurai
一生 桜井
Koji Goto
宏二 後藤
Akimasa Fujita
藤田 昭正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP63058207A priority Critical patent/JP2517353B2/en
Publication of JPH01234600A publication Critical patent/JPH01234600A/en
Application granted granted Critical
Publication of JP2517353B2 publication Critical patent/JP2517353B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To remove the scales on the surface of a band stainless steel with an excellent capacity and to clean the surface by anodizing a cold-rolled and annealed band stainless steel in an aq. NaCl soln., and then pickling the steel with sulfuric-hydrofluoric acid and nitric-hydrofluoric acid. CONSTITUTION:The cold-rolled and then annealed band stainless steel 1 is passed through an electrolytic cell 2 filled with an electrolyte contg. 50-200g/l of NaCl and kept at 20-80 deg.C, then passed between anode plates 3 and 3 and between cathode plates 4 and 4, and anodized to mostly dissolve and remove the scales on the surface in the electrolyte. The product of the current density and electrolyzing time in the anodization is controlled to 200-800A, sec/cm<2>. The steel is then passed through a brush roll 12, the inside of a first pickling tank 10, and a pickling soln. contg. 150-250g/l sulfuric acid and 5-50g/l hydrofluoric acid and kept at 70-90 deg.C. The steel is then introduced into a second pickling tank 11 through a brush roll 12, passed through the pickling soln. contg. 50-100g/l nitric acid and 5-50g/l hydrofluoric acid and kept at 50-70 deg.C to completely remove the remaining scales and to dissolve the base metal immediately under the scales, and the surface is cleaned.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、スケール除去に使用される薬液の管理及びそ
の廃液処理が簡単であり、スケール除去能力が大きくて
ラインスピードが高速化されても追従可能であり、ライ
ンで発生する廃液やスラッジについて環境汚染などの公
害上の問題も心配すること無く、そして何よりも最#製
品の表面品質を良好にさせるステンレス鋼帯の脱スケー
ル方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention allows easy management of the chemical solution used for scale removal and treatment of its waste liquid, and has a large scale removal ability and can be used even when the line speed is increased. This is a descaling method for stainless steel strips that can be traced, does not have to worry about pollution problems such as environmental pollution due to waste liquid and sludge generated in the line, and above all, improves the surface quality of the latest products. be.

〔従来の技術〕[Conventional technology]

一般に、JISG4306 r熱間圧延ステンレス鋼帯
Jに規定されるNα1仕上(表面仕上)などの熱間圧延
ステンレス鋼帯製品は、熱間圧延されたステンレス鋼帯
を素材としてこれを焼鈍などを含む熱処理、酸洗又はこ
の酸洗に準しる処理を施すために一連のライン化された
焼鈍酸洗工程を通板されて製造されている。この焼鈍酸
洗工程を経て製造された熱間圧延ステンレス鋼帯を剪断
してJISG43011「熱間圧延ステンレス鋼板」に
規定される熱間圧延ステンレス鋼板製品が製造されてい
る。
In general, hot-rolled stainless steel strip products such as Nα1 finish (surface finish) specified in JIS G4306 r hot-rolled stainless steel strip J are made from hot-rolled stainless steel strips that undergo heat treatment including annealing. In order to perform pickling or a treatment similar to pickling, the plate is manufactured by passing through a series of annealing and pickling processes in a line. A hot rolled stainless steel sheet product specified in JIS G43011 "Hot rolled stainless steel sheet" is manufactured by shearing the hot rolled stainless steel strip manufactured through this annealing and pickling process.

また、JISG4307 r冷間圧延ステンレス鋼帯」
に規定されるNα2D、 No、28. BA等の各種
研磨仕」−(表面仕」二)の冷間圧延ステンレス鋼帯製
品は、前記焼鈍酸洗工程を経て製造された熱間圧延ステ
ンレス鋼帯を素材とこれをそれぞれライン化された冷間
圧延工程、焼鈍酸洗工程を必要に応じて繰り返し通板し
、しかもこれらの工程間にあって素材表面のスケール残
や地底を除去するために必要に応じてライン化された中
間研磨工程に通板され、更に調質圧延工程、剪断や裁断
処理等がなされる精整工程を経て製造される。そして、
このようにして製造された冷間圧延ステンレス鋼帯を剪
断してJISG4305 r冷間圧延ステンレス鋼板」
に規定される冷間圧延ステンレス鋼板製品が製造されて
いるのである。
In addition, JIS G4307 r cold rolled stainless steel strip"
Nα2D defined by No. 28. Cold-rolled stainless steel strip products with various polishing finishes such as BA (surface finish 2) are produced using hot-rolled stainless steel strips produced through the annealing and pickling process as raw materials, and are made into lines. The cold rolling process, annealing and pickling process are repeated as necessary, and between these processes, an intermediate polishing process is conducted in line to remove scale residue and underground particles on the surface of the material. It is manufactured by being plated and then undergoing a refining process including a temper rolling process and a shearing and cutting process. and,
The cold-rolled stainless steel strip produced in this way is sheared to produce JIS G4305 r cold-rolled stainless steel sheet.
Cold-rolled stainless steel sheet products are manufactured as specified in the following.

以上に述べた如く、ステンレス鋼帯製品及び同鋼板製品
は、熱間圧延、この熱間圧延後の焼鈍を含む熱処理及び
冷間圧延により加工硬化された素材の軟化焼鈍が施され
るので、程度の差こそあれその都度その素材表面に主と
してFeやCrなどの酸化物から成るスケールが生成す
る。この素材表面に生成したスケールを完全に除去して
各工程を推進しないと良好な表面品質の最#製品を得る
ことが出来ないので、その都度脱スケール処理が施され
るのである。
As mentioned above, stainless steel strip products and steel sheet products are subjected to hot rolling, heat treatment including annealing after hot rolling, and softening annealing of the material that has been work hardened by cold rolling. Although there are some differences, scale mainly composed of oxides such as Fe and Cr is generated on the surface of the material each time. Unless the scale formed on the surface of the material is completely removed before proceeding with each process, it is not possible to obtain the highest quality product with good surface quality, so descaling treatment is performed each time.

しかしながら、ステンレス鋼帯の素材表面に生成するス
ケールは一般に緻密なために他の普通鋼や特殊鋼などの
ものと比へて非常に除去困難、すなわち脱スケール固壁
なのである。
However, the scale that forms on the material surface of stainless steel strips is generally dense and therefore extremely difficult to remove compared to other ordinary steels or special steels, that is, it is a solid wall for descaling.

そこでこのステンレスm帯の素材表面に生成するスケー
ルの脱スケールに関して、従来から種々な脱スケール方
法が実施されたり提案されたりしている。
Therefore, various descaling methods have been implemented or proposed in the past regarding the descaling of the scale generated on the surface of the stainless steel m-band material.

先ず古くから最も基本的で且つ広〈実施されてきた本処
理としての方法は、硫酸、硝酸、塩酸。
First of all, the most basic and widely practiced method for this treatment is sulfuric acid, nitric acid, and hydrochloric acid.

弗酸又はこれらを混合した混酸薬液で処理して脱=4− スケールを行い均一で適度の不動態化を施す酸洗処理で
あった。しかしながら、との酸洗処理のみによる本処理
方法では、ステンレス鋼帯の高速処理による生産性の向
上を図りながら尚且つ完全な脱スケール処理を行い、最
終製品として表面品質の良好なものを得る要求に対応し
切れなくなり、この本処理である酸洗処理の前に、機械
的、化学的又はこれらを組合せた前処理が併用されるよ
うになってきたのである。
This was a pickling treatment in which the sample was treated with hydrofluoric acid or a mixed acid solution containing these to remove 4-scale and uniformly and appropriately passivate it. However, with this treatment method, which uses only pickling treatment, it is necessary to improve productivity by high-speed processing of stainless steel strips, and at the same time, to perform complete descaling treatment and obtain a final product with good surface quality. Mechanical, chemical, or a combination of these pretreatments have come to be used in combination before the main treatment, which is pickling treatment.

すなわち、機械的前処理はスケール量の多い熱間圧延材
の場合に酸洗に先立ってショットプラス1−やスケール
ブレーカ−などによってスケール層に亀裂を生じさせて
脱スケールを容易にするための機械的処理であるが、こ
れらの機械的前処理にあってはステンレス鋼帯の素地に
圧痕を残したり加工硬化を起こさせたりする欠点を有し
ていた。
In other words, mechanical pretreatment is a machine that cracks the scale layer using Shot Plus 1 or a scale breaker prior to pickling in the case of hot-rolled materials with a large amount of scale to facilitate descaling. However, these mechanical pretreatments have the drawback of leaving impressions on the base of the stainless steel strip and causing work hardening.

また、従来より行われているNa2SO4を電解質とす
る水溶液中での電解や溶融苛性アルカリ処理等の化学的
前処理によって一部の成分を溶タデさせてスケールの組
成や素地との結合力を弱める方法も実施されているが、
スケール量の比較的少ない冷間圧延材にあっては効果が
あるが、スケール量の多い熱間圧延材に対しては効果が
少なかった。
In addition, conventional chemical pretreatments such as electrolysis in an aqueous solution using Na2SO4 as an electrolyte and molten caustic treatment can melt away some of the components and weaken the composition of the scale and its bonding strength with the substrate. Although methods have also been implemented,
Although it was effective for cold-rolled materials with a relatively small amount of scale, it was less effective for hot-rolled materials with a large amount of scale.

このような経過があって、化学的前処理としてNa2S
O4水溶液中で陽極電解をするか又は溶融苛性アルカリ
処理を行い、次いで硝弗酸、硝弗酸等による酸洗又はそ
の代わりにNaCl1等の水溶液中で陽極電解する脱ス
ケール方法が行われるようになった。
With this process, Na2S was used as a chemical pretreatment.
A descaling method is now performed in which anodic electrolysis is carried out in an O4 aqueous solution or molten caustic alkali treatment is carried out, followed by pickling with nitric-fluoric acid, nitric-fluoric acid, etc., or alternatively anodic electrolysis in an aqueous solution such as NaCl1. became.

一方、ステンレス鋼帯の生産性向上のために圧延、焼鈍
と共に、脱スケールを高速化して高能率に実施すること
が要求され、そのためスケール除去能力の大きい脱スケ
ール方法の開発が望まれるようになってきた。しかしな
がら、化学的前処理としてNa、SO4水溶液中で陽極
電解を行う場合にこの前処理方法は冷間圧延材に対して
は効果は大きいが、熱間圧延材に対しては元来それ程大
きな効果はなく、またCr”イオンを溶出させるのでそ
の廃液処理が公害防止上甚だ厄介であった。従ってNa
、S04水溶液中での電解による前処理では熱間圧延材
に対しては高速化し難い上、熱間、冷間いずれの圧延材
に対しても高速化した場合はそれだけCr”イオン溶出
量が増して電解液の老化を早めると共にその処理が一層
厄介となる欠点があった。
On the other hand, in order to improve the productivity of stainless steel strips, in addition to rolling and annealing, it is required to perform descaling at high speed and with high efficiency.Therefore, it has become desirable to develop a descaling method with high scale removal capacity. It's here. However, when performing anodic electrolysis in a Na, SO4 aqueous solution as a chemical pretreatment, this pretreatment method has a large effect on cold rolled materials, but it is originally less effective on hot rolled materials. Moreover, since Cr" ions were eluted, the waste liquid treatment was extremely troublesome in terms of pollution prevention.
, pretreatment by electrolysis in an S04 aqueous solution is difficult to increase the speed of hot rolled materials, and when speeding up both hot and cold rolled materials, the amount of Cr" ion elution increases accordingly. This has the drawback of accelerating the aging of the electrolyte and making its treatment more troublesome.

また、化学的前処理の他の方法として溶融苛性アルカリ
処理を行う場合は、溶融苛性アルカリが高粘性であるこ
とから高速化によって液持出し量が大きくなり、ワイピ
ング装置によっても速度に追従して液持出し量の増加を
防止することが困難でコスト高となる欠点があった。そ
して上記の如く高速化することが困難である前処理を弱
体化してその弱体化分を強化するために酸濃度及び液温
を上げて酸洗を行う場合には酸洗液の老化が早まる結果
、酸濃度管理、追酸、廃液処理等にかかる労力、費用が
多大のものとなる欠点があった。また酸洗の代わりにN
aCl等を電解質とする水溶液中で陽極電解を行っても
それが脱スケールの主体となる程に強く行う場合はステ
ンレス鋼帯にピットを発生させ易い欠点があった。この
ように丁寧に低速で行ってこそ良い結果を得る脱スケー
ルとその高速化とは」二記の如〈従来両立し難いもので
あった。
In addition, when performing molten caustic treatment as another method of chemical pretreatment, since the molten caustic is highly viscous, increasing the speed increases the amount of liquid taken out, and the wiping device also follows the speed and liquid It has the disadvantage that it is difficult to prevent an increase in the amount taken out, resulting in high costs. As mentioned above, when pickling is performed by increasing the acid concentration and liquid temperature in order to weaken the pretreatment and strengthen the weakened portion, which is difficult to speed up, the aging of the pickling solution is accelerated. However, there was a drawback that the labor and cost required for acid concentration management, acid addition, waste liquid treatment, etc. were enormous. Also, instead of pickling, N
Even if anodic electrolysis is carried out in an aqueous solution containing aCl or the like as an electrolyte, if it is carried out strongly enough to become the main descaling agent, there is a drawback that pits are likely to occur in the stainless steel strip. In the past, it was difficult to achieve both descaling and high-speed descaling, which only yields good results when done carefully and at low speeds.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、上記従来技術の欠点なくスケール除去能力が
大きく従って高速化が可能でしかも廃液処理の問題が少
なく、表面を品質良好にさせるステンレス鋼帯の脱スケ
ール方法の提供を目的とする。そのためには、前処理と
その後に行う本処理とにどのような処理方法をどのよう
な条件で行うかについて解決困難な課題があった。
The object of the present invention is to provide a method for descaling stainless steel strips, which does not have the disadvantages of the prior art described above, has a large scale removal ability, can be carried out at high speed, has fewer problems in waste liquid treatment, and has a good quality surface. To this end, there was a problem that was difficult to solve as to what kind of treatment method and conditions should be used for the pretreatment and the subsequent main treatment.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者等はかかる課題を解決すべく鋭意検討の結果、
本処理としてはスケール直下の金属素地をも積極的に除
去して表面をきれいにする利点を有する酸洗を採用し、
酸洗の前記欠点を軽減するために前処理を行うこととし
、その前処理としてはNa2SO4水溶液中での陽極電
解は電解液の自己再生能とスケールをスラッジとして分
離出来る分離能と−の利点を有するので、種々検討して
前記欠点が出ないような処理条件を求めようとしたが、
そのような条件は得られなかった。
As a result of intensive studies to solve such problems, the inventors of the present invention found that
This treatment uses pickling, which has the advantage of cleaning the surface by actively removing the metal base directly beneath the scale.
In order to alleviate the above-mentioned disadvantages of pickling, we decided to perform a pretreatment, and as the pretreatment, anodic electrolysis in an aqueous Na2SO4 solution has the advantages of the self-regeneration ability of the electrolyte and the separation ability of separating scale as sludge. Therefore, we conducted various studies and tried to find processing conditions that would avoid the above drawbacks.
No such conditions were obtained.

そこで、従来酸洗の代わりとして考えられていたNaω
等の一塩基性無機酸塩を電解質とする水溶液中の陽極電
解による前処理について更に検討したところ、次のよう
なことが判った。すなわち、NaFを使用した場合は脱
スケール能力はNa2SO4の場合よりは大きいが生成
スラッジの粘性が高くてその除去が困難なこと、NaN
O3を使用した場合は脱スケール能力はNa、SO4の
場合と同程度であること、また電解液中にCr”イオン
が発生する点についてはNaF及びNaNO3の場合は
共にNa2SO4の場合と同様であってスラッジは水酸
化第二鉄を主成分として茶色を呈していること、海水を
使用した場合は陰極に白いスケールが付看して通電不能
となったこと、これに対してNaClを使用した場合は
脱スケール能力はNa25O,の場合よりも格段に大き
く、ステンレス鋼帯特に5US304の表面に無数のビ
ットが生じるが生成スラッジは青緑色を呈していて電解
液にはCr”″6イオンが認められないことが判った。
Therefore, Naω, which was conventionally considered as an alternative to pickling,
Further investigation into pretreatment by anodic electrolysis in an aqueous solution using a monobasic inorganic acid salt as an electrolyte revealed the following. That is, when using NaF, the descaling ability is greater than when using Na2SO4, but the viscosity of the generated sludge is high and it is difficult to remove it.
When O3 is used, the descaling ability is comparable to that of Na and SO4, and the generation of Cr'' ions in the electrolyte is the same for both NaF and NaNO3 as for Na2SO4. The sludge was mainly composed of ferric hydroxide and had a brown color; when seawater was used, white scale appeared on the cathode, making it impossible to conduct electricity; on the other hand, when NaCl was used, The descaling ability is much greater than that of Na25O, and countless bits occur on the surface of the stainless steel strip, especially 5US304, but the generated sludge has a bluish-green color and Cr""6 ions are observed in the electrolyte. It turns out there isn't.

そしてこの場合の脱スケールの原理は非酸化性条外下て
の電気化学的反応と推察された。このNaCl水溶液中
での電解について更に検討を進めた結果、通常、焼鈍工
程等の組み込まれたラインのスピー1−によって定まる
電解槽通過時間すなわち電解時間に応じて電流密度を調
整することによって所定範囲とならしめ得る電流密度(
A/dIIりと電解時間(秒)とのM(A・秒/記)を
、熱間及び冷間各圧延材別に定められる一定値以下とす
る電解条件下に電解することによって前記ピッ1−の発
生を防止することの出来ることが判明した。その結果、
このようにしてNaClを電解質として使用する陽極電
解で前処理した後に酸洗をすることにより前記目的を達
成出来ることを究明して本発明を完成したのである。
The principle of descaling in this case was presumed to be an electrochemical reaction under non-oxidizing conditions. As a result of further studies on electrolysis in this NaCl aqueous solution, we found that the current density is usually adjusted within a predetermined range according to the electrolysis time, that is, the electrolysis time determined by the speed 1 of the line in which the annealing process is incorporated. The current density (
By electrolyzing under electrolytic conditions in which the sum of A/dII and the electrolysis time (seconds) is set to below a certain value determined for each hot-rolled and cold-rolled material, the P1- It has been found that it is possible to prevent the occurrence of the result,
In this way, the present invention was completed by discovering that the above object could be achieved by pre-treating with anodic electrolysis using NaCl as an electrolyte and then performing pickling.

以下、本発明方法を図面によって詳細に説明する。Hereinafter, the method of the present invention will be explained in detail with reference to the drawings.

第1図は本発明方法の実施状態の1例を示す工程図、第
2図及び第3図は本発明方法において規定される電流密
度と電解時間との積の範囲の上限をそれぞれ熱間及び冷
間各圧延ステンレス鋼帯別に示すグラフである。
FIG. 1 is a process diagram showing an example of the implementation state of the method of the present invention, and FIGS. 2 and 3 show the upper limits of the range of the product of current density and electrolysis time specified in the method of the present invention for hot and It is a graph shown for each cold rolled stainless steel strip.

〔構成の説明〕[Explanation of configuration]

本発明方法においては、前処理として50〜200g/
lのNaClを主成分とする水溶液から成る電解液中で
ステンレス鋼帯を陽極として電解を行うのであるが、こ
の陽極電解の電解液のNaCll14度を最低50g/
lとしたのは低濃度ではfrlM、液の導電性が低くな
って電流効率が下がるからであり、NaCl濃度は高い
程好ましいが最高を200 g / RとしたのはNa
Clの水への溶解度を考慮したからである。
In the method of the present invention, 50 to 200 g/
Electrolysis is carried out using a stainless steel strip as an anode in an electrolytic solution consisting of an aqueous solution containing NaCl as the main component.
The reason why the NaCl concentration was set at 200 g/R was because at low concentrations frlM, the conductivity of the liquid becomes low and the current efficiency decreases, and the higher the NaCl concentration, the better, but the maximum value was set at 200 g/R.
This is because the solubility of Cl in water was considered.

この陽極電解の電解液の液温は、脱スケール結果への影
響が比較的小さいので、常温(20°C)でも差し支え
はなく、そして高温の方が電導性やNaCl溶解度が高
くなって好ましいか80℃を超えると蒸発水量の増加に
伴う濃度管理の煩雑化、エネルギーロス等の問題が起こ
るので、20〜80°Cを適用範囲とし、中でも60℃
付近が最適である。
The temperature of the electrolyte in this anodic electrolysis has a relatively small effect on the descaling results, so room temperature (20°C) is acceptable, and higher temperatures are preferable because they increase conductivity and NaCl solubility. If the temperature exceeds 80°C, problems such as complicated concentration management and energy loss will occur due to an increase in the amount of evaporated water, so the applicable range is 20 to 80°C, and 60°C in particular.
The best location is nearby.

熱間圧延ステンレス鋼帯(SUS304. S、US4
30)のNaClを電解質とする陽極電解を液温、電流
密度(A/dイ)、電解時間(秒)を変えて行い、処理
後の減h(とC「゛6イオン発生の有無及びピット発生
の有無とについて調へた結果を第1表に示す。なお、液
温が高い場合については後に実施例の一部として第3表
に示す。
Hot rolled stainless steel strip (SUS304.S, US4
30) anodic electrolysis using NaCl as an electrolyte was carried out by varying the liquid temperature, current density (A/d), and electrolysis time (seconds), and the results were shown in Table 3. Table 1 shows the results of the investigation regarding the presence or absence of occurrence.The case where the liquid temperature is high is shown in Table 3 later as part of the Examples.

以下余白 第1表及び第3表から、電解処理による減量の大小(脱
スケール能力に大きく関係する) 、 Cr”発生の有
無及びピッ1ル発生の有無に対してはNaCρ濃度や液
温の影響は大きくないことが判る。このような結果は冷
間圧延ステンレス鋼帯についても同様であった。
From Tables 1 and 3 in the margin below, we can see the magnitude of weight loss due to electrolytic treatment (which is largely related to descaling ability), the influence of NaCρ concentration and liquid temperature on the presence or absence of Cr generation and the presence or absence of pill generation. It can be seen that this is not large.Similar results were also found for the cold-rolled stainless steel strip.

電解時の電流密度(A/龍)と電解時間(秒)との積(
A・秒/面、以下単位面積当りの電気量と言うことがあ
る)は脱スケール能力とピッ1−の発生に最も影響する
ものである。この単位面積当りの電気量の上限が、熱間
圧延ステンレス鋼帯の場合+1800A・秒/記で、冷
間圧延ステンレス鋼帯の場合は40OA・秒/dJであ
り、それぞれの場合に上記値を超えるときは、ステンレ
ス鋼帯が5US304である場合にピン1〜が発生する
。ステンレス鋼帯が5O5430ではこの一]二限はも
う少し上である。ここで熱間圧延と冷間圧延との差違は
、JISG4304及びJISG4305の規定に従う
ものとする。第2図及び第3図は、ピットの発生し易い
5O5304を使用しそれぞれ熱間圧延ステンレス鋼帯
及び冷間圧延ステンレス鋼帯を種々な電流密度(A/c
ull)と電解時間(秒)とを組み合わせた条件(他の
条件:NaCl濃度200g/l、、液温60℃は一定
)下に陽極電解したときのピッ1−発生の状況をグラフ
としたものであって、上記範囲が5IJS340と5U
S430とに共通して規定するときの単位面積当りの電
気量範囲の」二限であることを示している。
The product of the current density (A/dragon) during electrolysis and the electrolysis time (seconds) (
The amount of electricity per unit area (hereinafter sometimes referred to as the amount of electricity per unit area) has the greatest influence on the descaling ability and the occurrence of pips. The upper limit of this amount of electricity per unit area is +1800A・sec/dJ for hot-rolled stainless steel strips, and 40OA・sec/dJ for cold-rolled stainless steel strips, and the above values are set in each case. If the stainless steel strip is 5US304, then pin 1~ will occur. When the stainless steel strip is 5O5430, these limits are a little higher. Here, the difference between hot rolling and cold rolling shall comply with the provisions of JIS G4304 and JIS G4305. Figures 2 and 3 show hot-rolled stainless steel strips and cold-rolled stainless steel strips using 5O5304, which is prone to pitting, at various current densities (A/c).
This is a graph showing the occurrence of P1- during anodic electrolysis under the conditions combining the electrolysis time (seconds) and the electrolysis time (other conditions: NaCl concentration 200g/l, liquid temperature 60℃ constant). and the above range is 5IJS340 and 5U
This indicates that this is the second limit of the range of the amount of electricity per unit area as defined in common with S430.

一方、NaCαを電解質とする陽極電解による前処理は
、スケールの大部分を除去して酸洗の負担を軽減しよう
とする処理であるから、この役割を果たすのに充分な単
位面積当りの電気量範囲の下限は種々な試験の結果、熱
間圧延ステンレス鋼帯では200A・秒/面で、冷間圧
延ステンレス鋼帯では100A・秒/dIIlであった
。脱スケールは通常鋼帯の形態で焼鈍工程と同じライン
を走行しながら行われるから、焼鈍に必要な処理時間す
なわち焼鈍炉通過時間を板厚の大小によって変えるため
に調整された通板速度がそのまま電解槽通過時間すなわ
ち電解時間を決めてしまうことになるが、電流密度(A
、/、M)を調整することにより単位面積当りの電気量
を上記範囲内とすることによりピットの発生を防止して
且つ充分な前処理を行うことが出来るのである。NaC
l水溶液中の陽極電解によれば、陽極に生成する酸との
反応の他に塩素イオンの作用も加わるので、スケール除
去能力は大きい。
On the other hand, pretreatment by anodic electrolysis using NaCα as an electrolyte aims to remove most of the scale and reduce the burden of pickling, so the amount of electricity per unit area is sufficient to fulfill this role. As a result of various tests, the lower limit of the range was found to be 200 A·sec/plane for hot rolled stainless steel strip and 100 A·sec/dIIl for cold rolled stainless steel strip. Descaling is usually carried out in the form of a steel strip while it runs on the same line as the annealing process, so the processing time required for annealing, that is, the time it takes to pass through an annealing furnace, is adjusted to change the strip threading speed depending on the thickness of the strip. The time for passing through the electrolytic cell, that is, the electrolysis time, is determined by the current density (A
. NaC
According to anodic electrolysis in an aqueous solution, the action of chlorine ions is added in addition to the reaction with the acid generated at the anode, so the ability to remove scale is large.

本発明方法においてNaCl水溶液中の電解処理の後に
行う酸洗処理に使用する酸としては、スケール層の直下
の金属素地までも除去するために少なくとも弗酸の混入
された硝弗酸と硝弗酸とのいずれかを使用するのてあり
、硝弗酸酸洗液ではHFfi度5〜50g/l、HNO
3′a度50〜100g/lが適当であり、硝弗酸酸洗
液ではHFlli度5〜50g/l。
In the method of the present invention, the acids used in the pickling treatment performed after the electrolytic treatment in the NaCl aqueous solution include nitric-fluoric acid mixed with at least hydrofluoric acid and nitric-fluoric acid mixed with at least hydrofluoric acid in order to remove even the metal base directly under the scale layer. For the nitrofluoric acid pickling solution, the HFfi degree is 5 to 50 g/l, and the HNO
A suitable 3'a degree is 50 to 100 g/l, and a HFlli degree of 5 to 50 g/l for a nitrofluoric acid pickling solution.

112SO4′a度150−250 g / Qが適当
であり、上記範囲中でもHF濃度が高い方が好ましい。
112SO4'a degrees 150-250 g/Q is appropriate, and within the above range, higher HF concentrations are preferred.

一般しこ硝弗酸酸洗液か硝弗酸酸洗液かのいずれか一方
を使用する場合、及びいずれをも使用して2段の酸洗を
行う場合の後段で使用するものとしては、表面の仕上り
状態及び不働態化処理の観点から硝弗酸酸洗液を好まし
くは液温50〜70℃で使用するのが良い。このように
前段に硝弗酸を、後段に硝弗酸を使用する2段の酸洗を
5US304.5O5430等に適用する場合、硝弗酸
による上記効果の他に、先に使用する硝弗酸酸洗液の液
温を70〜90°Cとして酸洗すれば、硝弗酸による脱
スケール及びエツチング効果が加わって大変良い結果が
得られる。第2表は熱間圧延ステンレス鋼帯(SUS3
04 。
When using either the general nitric-fluoric acid pickling solution or the nitric-fluoric acid pickling solution, and when using either of them for two-stage pickling, the following are used: From the viewpoint of surface finish and passivation treatment, the nitric-fluoric acid pickling solution is preferably used at a temperature of 50 to 70°C. In this way, when applying two-stage pickling using nitric-fluoric acid in the first stage and nitric-fluoric acid in the second stage to 5US304.5O5430, etc., in addition to the above-mentioned effects of nitric-fluoric acid, the nitric-fluoric acid used first If pickling is carried out at a pickling solution temperature of 70 to 90°C, very good results can be obtained due to the added descaling and etching effects of nitric hydrofluoric acid. Table 2 shows hot rolled stainless steel strip (SUS3
04.

5IJS430)を硝弗酸、硫酸、硝弗酸各単独使用の
酸洗液で処理したときの減量を調べた結果である。
5IJS430) was treated with a pickling solution using nitric-fluoric acid, sulfuric acid, or nitric-fluoric acid alone.

第2表 第2表から硝弗酸酸洗液が前段の酸洗液として特に優れ
ていることが判る。冷間圧延ステンレス鋼帯についても
同様な結果が得られた。H2SO4単独使用の酸洗液に
よる前段酸洗処理は、S[l5304の場合は減量は大
きいがスマットを生じさせることがあるため行わない方
が好ましく 、 5US430の場合は実施しても良い
From Table 2, it can be seen that the nitric-fluoric acid pickling solution is particularly excellent as a first-stage pickling solution. Similar results were obtained for cold rolled stainless steel strip. The pre-stage pickling treatment using a pickling solution using only H2SO4 is preferably not carried out in the case of S[15304, since it may cause smut although the weight loss is large, but it may be carried out in the case of 5US430.

次に電解や酸洗に付帯して行われる操作も含めて、本発
明方法による脱スケール工程の具体例を第1図により説
明する。
Next, a specific example of the descaling process according to the method of the present invention will be explained with reference to FIG. 1, including operations performed incidental to electrolysis and pickling.

焼鈍炉(図示なし)の通過速度のまま走行して来たステ
ンレスtllF1は、送板ロール15を経て電解槽2内
に送板され、前後への浸漬ロール14.14によって電
解槽2内に満たされているNaCl水溶液から成る電解
液中に浸漬された状態で通過し、その間に電解用電源5
に接続された陽極板3と陰極板4とステンレス#I!8
1との間にこのステンレス鋼帯1が陽極板3の間を通過
するときには陰極に、陰極板4の間を通過するときには
陽極にそれぞれ帯電するように形成される回路によって
ステンレス鋼帯1は陽極電解作用を受けて、表面のスケ
ールの大部分は電解液中に溶解除去される。このように
電解液中に溶解したスケールは陰極板4の作用で生成し
た水酸イオンと結合して金属水酸化物から主として成る
スラッジに変化する。このスラッジはステンレス鋼帯1
に付着して送板中に表面に疵を付けるので逐次スラッジ
液貯槽7に抜き出し、更に遠心分離機8でスラッジを電
解液から分離して排出し、電解液は液送ポンプ9及び6
によって電解槽2に戻す。電解槽2中のNaClは絶え
ず自己再生しており且つCr′″6イオンの生成も無い
ので電解液の老化は無い。電解条件として電流密度(A
/dJ)をステンレス鋼帯1の電解槽2の通過時間に従
って規定範囲に調整することは前記説明の通りである。
The stainless steel tllF1, which has traveled at the same speed as it passes through the annealing furnace (not shown), is fed into the electrolytic cell 2 via the feeding roll 15, and is filled into the electrolytic cell 2 by dipping rolls 14 and 14 back and forth. The electrolytic power source 5
Anode plate 3 and cathode plate 4 connected to stainless steel #I! 8
1, the stainless steel strip 1 is charged as an anode by a circuit formed in such a way that when the stainless steel strip 1 passes between the anode plates 3, it becomes a cathode, and when it passes between the cathode plates 4, it becomes an anode. Under electrolytic action, most of the scale on the surface is dissolved and removed in the electrolytic solution. The scale thus dissolved in the electrolytic solution combines with hydroxide ions generated by the action of the cathode plate 4 and turns into sludge mainly composed of metal hydroxides. This sludge is made of stainless steel strip 1
The sludge adheres to the electrolyte and causes scratches on the surface during feeding, so the sludge is sequentially extracted into the liquid storage tank 7, and the sludge is separated from the electrolyte by a centrifuge 8 and discharged.
is returned to the electrolytic cell 2. NaCl in the electrolytic cell 2 is constantly self-regenerating and no Cr'''6 ions are generated, so there is no aging of the electrolytic solution.The electrolytic conditions include current density (A
/dJ) is adjusted to a specified range according to the passage time of the stainless steel strip 1 through the electrolytic cell 2, as described above.

電解槽2を通過したステンレス鋼帯1は送板ロール15
を経てブラツシロール12とバックアップロール13と
の間を通過する。このとき陽極電解によって金属素地と
の結合力が弱まっているが未だ付着残存しているスケー
ルの大半が除去される。
The stainless steel strip 1 that has passed through the electrolytic bath 2 is transferred to a feeding roll 15.
It then passes between the brush roll 12 and the backup roll 13. At this time, the anodic electrolysis removes most of the scale that still remains attached, although its bonding force with the metal base is weakened.

次いでステンレス鋼帯1は送板ロール15を経て酸洗槽
10内に送板され、前後の浸漬ロール14.14によっ
て前記説明の酸洗液に浸漬された状態で通過し、その間
に僅かに残存しているスケールの全部が溶解除去される
と共に、スケール層の直下に存在する金属素地の金属素
地を溶解させる。スケール層の大部分は前記電解処理で
除去しているから、その分だけ酸洗槽10での酸洗液の
老化は少ないから、酸洗液の脱スケール及びエツチング
能の維持管理は容易である。
Next, the stainless steel strip 1 is fed into the pickling tank 10 via the feeding rolls 15, and passes while being immersed in the above-described pickling solution by the front and rear dipping rolls 14, 14, during which time a small amount of the pickling liquid remains. In addition to dissolving and removing all of the scale that is present, the metal base that is present directly below the scale layer is also dissolved. Since most of the scale layer has been removed by the electrolytic treatment, the aging of the pickling solution in the pickling tank 10 is reduced accordingly, making it easy to maintain and manage the descaling and etching ability of the pickling solution. .

酸洗槽1.0を通過したステンレス鋼帯1は送板ロール
15を経てブラツシロール12とバックアップロール1
3との間を通過し、このとき僅かなスケールや金属素地
が金属素地との結合力が弱い状態で残存していたとして
も除去されると共に、美麗な素地が表出する。
The stainless steel strip 1 that has passed through the pickling tank 1.0 passes through the feed roll 15 and is transferred to the brush roll 12 and the backup roll 1.
3, and at this time, even if a slight scale or metal base remains with a weak bonding force with the metal base, it is removed and a beautiful base is exposed.

酸洗に前記2種類の酸洗液を使用するときは、上記酸洗
を前段とし、これに続いて第1図に示す如く更に」=記
と同様の送板ロール15と浸漬ロール】4を備えた酸洗
槽11とブラツシロール12.バックアップロール13
とを通過させてもう1種の酸洗液による後段の酸洗処理
とブラツシ処理とを行えば良い。この2段の酸洗処理の
場合、1段だけの場合に比べて更にエツチング効果を増
強出来ると共に各段毎に酸濃度の調整が可能なことがら
酸洗能力の維持が容易となる。前後段の酸洗液として何
を使用するのが好ましいかは前記説明の通りである。こ
のようにして本発明方法による脱スケール工程は終了す
る。
When using the above two types of pickling liquids for pickling, the above-mentioned pickling is performed as the first step, and then, as shown in FIG. A pickling tank 11 and a brush roll 12 are provided. Backup roll 13
It is sufficient that the pickling process and the brushing process are performed in the subsequent stage using another type of pickling liquid. In the case of this two-stage pickling treatment, the etching effect can be further enhanced compared to the case of only one stage, and since the acid concentration can be adjusted for each stage, the pickling ability can be easily maintained. What is preferable to be used as the pickling liquid in the front and rear stages is as explained above. In this way, the descaling process according to the method of the present invention is completed.

〔実施例〕〔Example〕

以下、本発明を実施例及び比較例により具体的に説明す
る。
Hereinafter, the present invention will be specifically explained with reference to Examples and Comparative Examples.

焼鈍工程を経て走行して来る熱間圧延ステンレス鋼帯(
板厚3.8mの5O5304、板厚3.6mmの5US
340)を実験のため一旦コイルに巻き取り、第1図に
示す工程により種々な送板速度で、つまり電解時間及び
酸洗時間を種々に変えて脱スケールを行った。
Hot rolled stainless steel strip (
5O5304 with a plate thickness of 3.8m, 5US with a plate thickness of 3.6mm
340) was once wound into a coil for an experiment, and descaling was performed at various plate feeding speeds, that is, by varying the electrolysis time and pickling time, according to the process shown in FIG.

電解液としてNaClの他、Na25o4. NaNO
3,NaFの水溶液を使用し、種々な電解条件で前処理
を行った。
In addition to NaCl, Na25o4. NaNO
3. Pretreatment was performed using an aqueous solution of NaF under various electrolytic conditions.

これらの電解液及び電解条件を第3表に示す。引き続く
2段の酸洗処理に使用した酸洗としては前117[iA
ニ+;1H7sOJi度カ228 g / Q テI+
F11度カ10g/lの硝弗酸酸洗液を液温75°Cで
使用し、後段の酸洗Lニー ハHNO31度カフ0 g
 / Q テHF濃度が10g/lの硝弗酸酸洗液を液
温60℃で使用した。この実験に使用した電解槽2.酸
洗槽10及び1]におけるステンレス鋼帯の浸漬長はい
ずれも同じであるから111i段、後段の各酸洗処理時
間は電解時間と同じであり、それ以外の酸洗処理の条件
は各実験に共通であるから次表に示すことは省略した。
These electrolytic solutions and electrolytic conditions are shown in Table 3. The pickling used in the subsequent two-stage pickling treatment was 117 [iA
Ni+; 1H7sOJi degree power 228 g/Q TeI+
Use a nitrofluoric acid pickling solution with F11 degrees F10 g/l at a liquid temperature of 75°C, and the subsequent pickling L knee HNO31 degrees Cuff 0 g.
/Q A nitric-fluoric acid pickling solution with an HF concentration of 10 g/l was used at a solution temperature of 60°C. Electrolytic cell used in this experiment 2. Since the immersion length of the stainless steel strip in the pickling tanks 10 and 1 is the same, the pickling treatment time in the 111i stage and the subsequent stage is the same as the electrolysis time, and the other pickling treatment conditions are the same for each experiment. Since these are common to all, they are omitted from the table below.

上記脱スケール実験において、陽pi電解(処理])、
前段の酸洗(処理2)、後段の酸洗(処理3)各処理後
の減量(■/dJ)を測定すると共にそれらを合計し、
各処理段階での脱スケール能及び]二程全体の脱スケー
ル能力を表わした。この減量の測定方法は、予め重量2
幅、長さの判っているコイルに処理条件の変更を含む処
理1.処理2及び処理3を施した後、再びその重量2幅
、長さを測定し、その重量差を板幅(dm)と処理長さ
(dm)の積で除して単位長さ当りの減量を求める方法
と、処理条件の変更を含む処理1.処理2及び処理3を
施す前にコイルより100m角(ldm角)のサンプル
を採取し、各処理後にもその条件下でのサンプルを同様
に採取し、その重量差をサンプル面積で除して単位長さ
当りの減量を算出する方法とのいずれかにより測定した
。また、工程終了後に目視によりスケール残存の有無を
観察した。以上の他に電解中における電解液中のCr”
イオンの検出作業を行ってその発生の有無を調べた。更
にピン1〜の発生の有無も調べたが、有の場合は陽極電
解で発生したものである。これらの結果を第3表に示す
In the above descaling experiment, positive pi electrolysis (treatment)),
Measure the weight loss (■/dJ) after each of the first-stage pickling (treatment 2) and the second-stage pickling (treatment 3), and add them up.
The descaling ability at each processing stage and the overall descaling ability were shown. This method of measuring weight loss is as follows:
Process 1 including changing processing conditions for a coil whose width and length are known. After applying treatment 2 and treatment 3, measure the weight, width, and length again, and divide the weight difference by the product of plate width (dm) and treatment length (dm) to calculate the weight loss per unit length. Process 1, which includes the method of determining the value and changing the processing conditions. Before applying treatment 2 and treatment 3, take a 100m square (ldm square) sample from the coil, and after each treatment take a sample under the same conditions, and divide the weight difference by the sample area to calculate the unit. It was measured by any method that calculates the weight loss per length. In addition, after the process was completed, the presence or absence of scale remaining was visually observed. In addition to the above, Cr” in the electrolyte during electrolysis
We performed ion detection work to determine whether or not they occur. Furthermore, the presence or absence of occurrence of pin 1~ was investigated, and if present, it was caused by anodic electrolysis. These results are shown in Table 3.

以下余白 第3表から、陽極電解(処理1)での減量についてはN
aClを電解質とする場合が他の場合に比べて最も多く
て酸洗における酸洗液の老化をそれだけ軽減させ得るこ
とが判り、またCr+Gイオンの発生も他の場合(但し
海水の場合を除く)に認められるのに対し、NaClの
場合には無いことが判る。
From Table 3 in the margin below, regarding the weight loss in anodic electrolysis (treatment 1), N
It was found that the use of aCl as an electrolyte is the most common compared to other cases, and the aging of the pickling solution during pickling can be reduced accordingly, and Cr+G ions are also generated in other cases (excluding seawater). It can be seen that this is observed in the case of NaCl, whereas it is absent in the case of NaCl.

そしてNaClの場合の中では、単位面積当りの電気量
(aXb)が本発明方法に規定する範囲の上限以下にあ
る場合はピットは発生しないが、そうでない場合はピッ
1〜が発生していることが判る。また、NaC1Aを電
解質とする陽極電解における単位面積当りの電気量(a
 X b)が本発明方法に規定する範囲にある場合は第
3表に示す如く処理1での減量がかなり大きく、電解時
間と同じ時間の酸洗で美麗な表面のステンレス鋼?fF
が得られたが、単位面積当りの電気量(a X b)が
本発明方法に規定する範囲の下限よりも小さい場合は電
解時間よりも多くの時間をかけて酸洗を行わねばならず
、酸洗液の老化を早めてその管理が厄介となることが判
る。海水を使用して電解した場合は電極に白色スケール
が付いて実施困難であったので、酸洗は省略した。
In the case of NaCl, if the amount of electricity per unit area (aXb) is below the upper limit of the range specified in the method of the present invention, no pits will occur, but if not, pits 1~ will occur. I understand that. In addition, the amount of electricity per unit area (a
When X b) is within the range specified in the method of the present invention, the weight loss in treatment 1 is quite large as shown in Table 3, and the stainless steel has a beautiful surface after pickling for the same time as the electrolysis time. fF
However, if the amount of electricity per unit area (a x b) is smaller than the lower limit of the range specified in the method of the present invention, pickling must take longer than the electrolysis time, It can be seen that the aging of the pickling solution is accelerated and its management becomes troublesome. When electrolysis was performed using seawater, white scale formed on the electrodes, making it difficult to carry out the electrolysis, so pickling was omitted.

以上、上記表から本発明方法が脱スケール方法として非
常に優れたものであることが判る。
From the above table, it can be seen that the method of the present invention is extremely excellent as a descaling method.

〔効果〕〔effect〕

以上詳述した如き本発明に係るステンレス帯の脱スケー
ル方法は、以下に列挙するような種々の利点を有してお
り、その工業的価値は非常に大きなもがある。
The method for descaling a stainless steel band according to the present invention as detailed above has various advantages as listed below, and its industrial value is extremely large.

1、前処理によって大部分の脱スケールが可能であるこ
とから、酸洗槽における脱スケール負荷が軽減されるこ
とになり、酸洗液の寿命も延び脱スケール能力が安定し
た。従って、酸洗液の濃度管理及び追酸に要する労力、
費用も軽減されると同時に脱スケールの高速化が可能と
なった。
1. Since most of the scale can be removed by pretreatment, the descaling load in the pickling tank is reduced, the life of the pickling solution is extended, and the descaling ability is stabilized. Therefore, the labor required for controlling the concentration of the pickling solution and adding acid,
This reduced costs and enabled faster descaling.

2、熱間圧延材、冷間圧延材のいずれであって同じライ
ンで兼用して充分な脱スケール能力が得られるようにな
ったことから、生産能力の向上が図られる。
2. Production capacity can be improved because it is now possible to obtain sufficient descaling ability for both hot-rolled and cold-rolled materials on the same line.

3、前処理方法として、塩化ナトリウム水溶液を使用し
た陽極電解を採用したことで、電解槽より排出される廃
液中のCr”イオンの処理が不要となりその処理費用が
軽減された。また、電解液中にCr”イオンの生成がな
いこと及び除去されたスケールは金属水酸化物よりなる
スラッジとして、液相より分離することから液の劣化も
少なく、また電解質である塩化ナトリウムも比較的安価
であることから低コストでしかも安定した前処理が可能
となった。
3. By adopting anodic electrolysis using an aqueous sodium chloride solution as a pretreatment method, it is no longer necessary to treat Cr" ions in the waste liquid discharged from the electrolytic tank, reducing the cost of treatment. There is no generation of Cr" ions in the process, and the removed scale is separated from the liquid phase as sludge made of metal hydroxide, so there is little deterioration of the liquid, and the electrolyte, sodium chloride, is relatively inexpensive. This has made possible low-cost and stable pretreatment.

4、本発明方法における前処理は充分な脱スケール能力
を有し、しかも溶融塩の如く粘性が高くなくて液持出し
が少ないことから、ゴス1−的にも優れている。
4. The pretreatment in the method of the present invention has a sufficient descaling ability, and is also excellent in terms of loss because it is not as viscous as molten salt and has little liquid carry-out.

5、前処理にて、大部分のスケール除去が可能となった
ことから、酸洗処理においては残存するスケールの除去
が為されると同時に、スケール直下の金属素地をも溶解
することになるので、脱スケールが不十分であることに
起=27− 因するステンレス鋼帯の表面欠陥である肌荒れや光沢む
らが減少出来た。
5. Since it is now possible to remove most of the scale during pre-treatment, the pickling process removes the remaining scale and at the same time dissolves the metal base directly under the scale. It was possible to reduce surface roughness and uneven gloss, which are surface defects of stainless steel strips caused by insufficient descaling.

6、本発明方法を実施するときの設備面に関しては、電
解槽及び酸洗槽のいずれも従来のものをそのまま使用す
ることが出来るから、殆んど設備改造を要せず、しかも
脱スケール能力の向上が図れた。
6. With regard to equipment when implementing the method of the present invention, conventional electrolytic cells and pickling tanks can be used as they are, so almost no equipment modification is required, and the descaling ability is improved. The results were improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の実施状態の1例を示す工程図、第
2図及び第3図は本発明方法において規定される電流密
度と電解時間との積の範囲の上限をそれぞれ熱間及び冷
間各圧延ステンレス鋼帯別に示すグラフである。 1・・ステンレス鋼帯 2・・電解槽 3・・・陽極板 4・・陰極板 5・・・電解用電極 6・・・液送ポンプ 7・・スラッジ液貯槽 8 遠心分離機 9・・・液送ポンプ 10・酸洗槽 11  酸洗槽 12・ブラツシロール 13・バックアップロール 14・・・浸漬ロール 15・・・送板ロール
FIG. 1 is a process diagram showing an example of the implementation state of the method of the present invention, and FIGS. 2 and 3 show the upper limits of the range of the product of current density and electrolysis time specified in the method of the present invention for hot and It is a graph shown for each cold rolled stainless steel strip. 1... Stainless steel strip 2... Electrolytic cell 3... Anode plate 4... Cathode plate 5... Electrolyte for electrolysis 6... Liquid feed pump 7... Sludge liquid storage tank 8 Centrifugal separator 9... Liquid feed pump 10, pickling tank 11, pickling tank 12, brush roll 13, backup roll 14... dipping roll 15... feed plate roll

Claims (1)

【特許請求の範囲】 1 50〜200g/lのNaClを主成分とする水溶
液から成る電解液中で液温が20〜80℃、電流密度と
電解時間との積が200〜800A・秒/dm^2の条
件下に熱間圧延ステンレス鋼帯を陽極として電解処理を
行い、次いで少なくとも硝弗酸と硫弗酸とのいずれかに
より酸洗処理してスケール直下の金属素地まで除去する
ことを特徴とするステンレス鋼帯の脱スケール方法。 2 酸洗処理を、先に硫弗酸で次いで硝弗酸での2段処
理で行う請求項1に記載のステンレス鋼帯の脱スケール
方法。 3 硫弗酸として、H_2SO_4濃度が150〜25
0g/lでHF濃度が5〜50g/lのものを液温70
〜90℃で使用する請求項1又は2に記載のステンレス
鋼帯の脱スケール方法。 4 硝弗酸として、HNO_3濃度が50〜100g/
lでHF濃度が5〜50g/lのものを液温50〜70
℃で使用する請求項1又は2に記載のステンレス鋼帯の
脱スケール方法。 5 50〜200g/lのNaClを主成分とする水溶
液から成る電解液中で液温が20〜80℃、電流密度と
電解時間との積が100〜400A・秒/dm^2の条
件下に冷間圧延後に焼鈍を施されたステンレス鋼帯を陽
極として電解処理を行い、次いで少なくとも硝弗酸と硫
弗酸とのいずれかにより酸洗処理してスケール直下の金
属素地まで除去することを特徴とするステンレス鋼帯の
脱スケール方法。 6 酸洗処理を、先に硫弗酸で次いで硝弗酸での2段処
理で行う請求項5に記載のステンレス鋼帯の脱スケール
方法。 7 硫弗酸として、H_2SO_4濃度が150〜25
0g/lでHF濃度が5〜50g/lのものを液温70
〜90℃で使用する請求項5又は6に記載のステンレス
鋼帯の脱スケール方法。 8 硝弗酸として、HNO_3濃度が50〜100g/
lでHF濃度が5〜50g/lのものを液温50〜70
℃で使用する請求項5又は6に記載のステンレス鋼帯の
脱スケール方法。
[Claims] 1. In an electrolytic solution consisting of an aqueous solution containing 50 to 200 g/l of NaCl as a main component, the solution temperature is 20 to 80°C, and the product of current density and electrolysis time is 200 to 800 A·sec/dm. The feature is that electrolytic treatment is performed under the conditions of ^2 using a hot rolled stainless steel strip as an anode, and then pickling treatment is performed with at least either nitric-fluoric acid or sulfuric-fluoric acid to remove even the metal substrate immediately below the scale. A method for descaling stainless steel strips. 2. The method for descaling a stainless steel strip according to claim 1, wherein the pickling treatment is carried out in two steps, first with sulfuric and then with nitric and hydrofluoric acid. 3 As sulfuric acid, H_2SO_4 concentration is 150-25
0 g/l and HF concentration of 5 to 50 g/l at a liquid temperature of 70
The method for descaling a stainless steel strip according to claim 1 or 2, wherein the method is used at a temperature of ~90°C. 4 As nitric hydrofluoric acid, HNO_3 concentration is 50 to 100 g/
1 with an HF concentration of 5 to 50 g/l at a liquid temperature of 50 to 70 g/l.
The method for descaling a stainless steel strip according to claim 1 or 2, wherein the method is used at a temperature of .degree. 5 In an electrolytic solution consisting of an aqueous solution containing 50 to 200 g/l of NaCl as the main component, the solution temperature is 20 to 80°C, and the product of current density and electrolysis time is 100 to 400 A・sec/dm^2. It is characterized by performing electrolytic treatment using a cold-rolled and annealed stainless steel strip as an anode, and then pickling with at least either nitric-fluoric acid or sulfuric-fluoric acid to remove even the metal substrate immediately below the scale. A method for descaling stainless steel strips. 6. The method for descaling a stainless steel strip according to claim 5, wherein the pickling treatment is carried out in two steps, first with sulfuric and then with nitric and hydrofluoric acid. 7 As sulfuric acid, H_2SO_4 concentration is 150-25
0 g/l and HF concentration of 5 to 50 g/l at a liquid temperature of 70
The method for descaling a stainless steel strip according to claim 5 or 6, wherein the method is used at a temperature of ~90°C. 8 As nitric hydrofluoric acid, HNO_3 concentration is 50 to 100 g/
1 with an HF concentration of 5 to 50 g/l at a liquid temperature of 50 to 70 g/l.
The method for descaling a stainless steel strip according to claim 5 or 6, wherein the method is used at a temperature of .degree.
JP63058207A 1988-03-14 1988-03-14 Descaling method for stainless steel strip Expired - Lifetime JP2517353B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63058207A JP2517353B2 (en) 1988-03-14 1988-03-14 Descaling method for stainless steel strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63058207A JP2517353B2 (en) 1988-03-14 1988-03-14 Descaling method for stainless steel strip

Publications (2)

Publication Number Publication Date
JPH01234600A true JPH01234600A (en) 1989-09-19
JP2517353B2 JP2517353B2 (en) 1996-07-24

Family

ID=13077597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63058207A Expired - Lifetime JP2517353B2 (en) 1988-03-14 1988-03-14 Descaling method for stainless steel strip

Country Status (1)

Country Link
JP (1) JP2517353B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4694048B2 (en) * 2001-06-15 2011-06-01 株式会社パーカーコーポレーション High-speed descaling method for stainless steel
CN106521525A (en) * 2016-11-30 2017-03-22 佛山市高明区诚睿基科技有限公司 Stainless steel surface treating agent as well as preparation method thereof and using method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102209596B1 (en) * 2018-11-30 2021-01-28 주식회사 포스코 Method for improving the surface of stainless steel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5323245A (en) * 1976-08-14 1978-03-03 Fujitsu Ltd Multiprocessor system having sensory memory
JPS61266588A (en) * 1985-05-22 1986-11-26 Nisshin Steel Co Ltd Method for descaling stainless steel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5323245A (en) * 1976-08-14 1978-03-03 Fujitsu Ltd Multiprocessor system having sensory memory
JPS61266588A (en) * 1985-05-22 1986-11-26 Nisshin Steel Co Ltd Method for descaling stainless steel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4694048B2 (en) * 2001-06-15 2011-06-01 株式会社パーカーコーポレーション High-speed descaling method for stainless steel
CN106521525A (en) * 2016-11-30 2017-03-22 佛山市高明区诚睿基科技有限公司 Stainless steel surface treating agent as well as preparation method thereof and using method thereof

Also Published As

Publication number Publication date
JP2517353B2 (en) 1996-07-24

Similar Documents

Publication Publication Date Title
US2115005A (en) Electrochemical treatment of metal
US3420760A (en) Process for descaling steel strip in an aqueous organic chelating bath using alternating current
KR0173975B1 (en) Method of descaling stainless steel and apparatus for the same
KR100650961B1 (en) Process for electrolytic pickling using nitric acid-free solutions
CN1451058A (en) Continuous electrolytic pickling method for metallic products using alternate current suplied cells
US3933605A (en) Non-polluting pickling method
JP2009167465A (en) Pickling method and pickling device for cold rolled stainless steel strip
US3429792A (en) Method of electrolytically descaling and pickling steel
US3254011A (en) Electrolytic potassium hydroxide descaling
JPH01234600A (en) Method for descaling band stainless steel
US3632490A (en) Method of electrolytic descaling and pickling
US4711707A (en) Method for removal of scale from hot rolled steel
JP3792335B2 (en) Finishing electrolytic pickling method in descaling of stainless steel strip
JP2577619B2 (en) Method and apparatus for descaling alloy steel strip
EP1051545A1 (en) Method for treating a metal product
US3027310A (en) Cleaning bath and method of cleaning moving metal strip
JP2577618B2 (en) Method and apparatus for descaling alloy steel strip
WO1990004047A1 (en) Method relating to the manufacturing of cold rolled strips and sheets of stainless steel
US6837973B1 (en) Apparatus for electrically coating a hot-rolled steel substrate
KR100368207B1 (en) Electrolytic pickling solution for cold annealed austenitic stainless steel sheet
JP2965423B2 (en) Pickling of ferritic stainless steel sheet containing high Cr
JP2585444B2 (en) Method and apparatus for descaling stainless steel strip
JPH05295600A (en) Continuous descaling method for stainless steel strip and its device
JP2680784B2 (en) Method and apparatus for descaling annealed stainless steel strip
KR20000011280A (en) Process and a plant for producing an electrolytically coated, hot-rolled strip