JP2868589B2 - Neutral salt electrolytic treatment method for stainless steel strip - Google Patents

Neutral salt electrolytic treatment method for stainless steel strip

Info

Publication number
JP2868589B2
JP2868589B2 JP15270890A JP15270890A JP2868589B2 JP 2868589 B2 JP2868589 B2 JP 2868589B2 JP 15270890 A JP15270890 A JP 15270890A JP 15270890 A JP15270890 A JP 15270890A JP 2868589 B2 JP2868589 B2 JP 2868589B2
Authority
JP
Japan
Prior art keywords
electrode
stainless steel
steel strip
electrolysis
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15270890A
Other languages
Japanese (ja)
Other versions
JPH0445300A (en
Inventor
一生 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP15270890A priority Critical patent/JP2868589B2/en
Publication of JPH0445300A publication Critical patent/JPH0445300A/en
Application granted granted Critical
Publication of JP2868589B2 publication Critical patent/JP2868589B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、焼鈍によりステンレス鋼帯表面に生じたス
ケールを安定して且つ安価に除去出来るステンレス鋼帯
の中性塩電解処理方法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a stainless steel strip neutral salt electrolysis method capable of removing scale generated on a stainless steel strip surface by annealing stably and at low cost. is there.

〔従来の技術〕[Conventional technology]

冷間圧延後のステンレス鋼帯に対して行われる焼鈍処
理方法の一つとして、大気雰囲気炉内で燃料をバーナー
燃焼させて直火熱処理する大気焼鈍方法がある。この大
気焼鈍においては、大気中の酸素の作用を受けてステン
レス鋼帯の表面に金属酸化物(以下、単にスケールと言
うことがある)が生成するので、これを除去し良好な品
質のステンレス鋼帯を製造するために、焼鈍処理後に脱
スケール処理が行われる。そして一般にステンレス鋼帯
の脱スケール処理は、その前工程の焼鈍処理と共に一連
のラインにて連続的に行われている。
As one of the annealing treatment methods performed on the stainless steel strip after the cold rolling, there is an atmospheric annealing method in which the fuel is burned in a furnace in an atmosphere atmosphere furnace to perform direct flame heat treatment. In this atmospheric annealing, metal oxides (hereinafter, sometimes simply referred to as scales) are formed on the surface of the stainless steel strip by the action of oxygen in the atmosphere. To produce the strip, a descaling treatment is performed after the annealing treatment. Generally, the descaling process of the stainless steel strip is continuously performed in a series of lines together with the annealing process in the preceding process.

この脱スケール方法としては従来よりいくつかの方法
があって、主として硫酸ソーダから成る水溶液中での電
解処理(以下、中性塩電解処理と言う)や苛性ソーダと
硝酸ソーダとの混合溶融塩中での浸漬処理(以下、単に
ソルト浸漬処理と言うことがある)等の前処理を行った
後、硝弗酸に浸漬(以下、単に混酸浸漬と言うことがあ
る)したり、硝酸水溶液中で電解(以下、単に硝酸電解
と言うことがある)を行う処理方法が広く採用されてい
る。
There are several methods for descaling conventionally, such as electrolytic treatment in an aqueous solution mainly composed of sodium sulfate (hereinafter referred to as neutral salt electrolytic treatment) or mixed molten salt of caustic soda and sodium nitrate. Pre-treatment such as immersion treatment (hereinafter sometimes simply referred to as salt immersion treatment), and then immersion in nitric hydrofluoric acid (hereinafter sometimes simply referred to as mixed acid immersion) or electrolysis in a nitric acid aqueous solution (Hereinafter, may be simply referred to as nitric acid electrolysis) is widely used.

このうち、中性塩電解処理又はソルト浸漬処理に代表
される前処理は、難溶性のスケール中のクロム酸化物を
クロム酸イオンとしてその浴中に溶解除去させて、後続
の混酸浸漬又は硝酸電解による脱スケールを容易化する
ものである。特に、この中性塩電解処理は特公昭38−12
162号で開示されて以来、広く採用されるに至った方法
である。
Of these, the pretreatment typified by the neutral salt electrolytic treatment or the salt immersion treatment is to dissolve and remove the chromium oxide in the poorly soluble scale as chromate ions in the bath, and then perform the mixed acid immersion or nitric acid electrolysis. To facilitate descaling. In particular, this neutral salt electrolytic treatment is described in
This method has been widely adopted since it was disclosed in Japanese Patent No. 162.

この中性塩電解処理方法を従来の標準的な電極配置を
示す電解装置の概略構成図である第2図により説明す
る。電解槽1には主として硫酸ソーダから成る水溶液の
電解浴2が入れられており、焼鈍処理されたステンレス
鋼帯Sは矢印方向に走行して入口及び出口の各デフレク
ターロール3,3及び浸漬ロール4,4によって電解浴2中を
通過し、その間に通電されてステンレス鋼帯Sの陽極電
解が行われる。陽極電解処理時の通電方法として、一般
に電解浴中に配した陰電極と接触ロールを介してステン
レス鋼帯を陽電極として通電する直接通電方法が行われ
ることがある。しかし、焼鈍後のステンレス鋼帯には非
導電性のスケールが表面に存在しているため通電不可能
であり、無理に通電を行おうとするとスパークが発生し
てステンレス鋼帯に疵を発生させることになる。このた
め、焼鈍後のスケールを表面に有するステンレス鋼帯の
脱スケールに当っては、電解浴2中に別に陽電極5をも
配して電解浴2中の陽電極5及び陰電極6に通電するこ
とにより電解浴2を通してステンレス鋼帯Sに通電する
間接通電方法が広く採用されている。間接通電するとき
の電極5,6の配置は、通常第2図に示すように、ステン
レス鋼帯Sの表裏面に対向して陽電極5と陰電極6とが
交互に並んでそれぞれ複数個配置されて電極列が形成さ
れる。このように配置された陽電極5及び陰電極6に電
解用直流電源7から通電すると、陽電極5及び陰電極6
に対向するステンレス鋼帯Sの各部分はそれぞれ陰極及
び陽極に分極されて一連の電気回路を形成する。この結
果、陽極に分極された鋼帯部分は陽極電解処理を受けて
主としてスケール中のクロム酸化物が酸化溶解される結
果、後続の硝酸電解又は混酸浸漬で容易に脱スケールが
行われる。また、陰極に分極された鋼帯部分は陰極電解
処理を受けるが、この陰極電解処理は電解浴2のpHが高
い場合には電解浴2中に溶解している金属イオンを水酸
化物に変える作用があるが、必ずしも必要とする作用で
はない。
This neutral salt electrolysis method will be described with reference to FIG. 2 which is a schematic configuration diagram of an electrolysis apparatus showing a conventional standard electrode arrangement. The electrolytic bath 1 contains an electrolytic bath 2 of an aqueous solution mainly composed of sodium sulfate, and the annealed stainless steel strip S travels in the direction of the arrow to move the inlet and outlet deflector rolls 3 and 3 and the immersion roll 4. , 4 pass through the electrolytic bath 2, during which time electricity is supplied to perform anodic electrolysis of the stainless steel strip S. As an energizing method at the time of anodic electrolytic treatment, a direct energizing method in which a stainless steel strip is used as a positive electrode through a contact roll and a negative electrode arranged in an electrolytic bath is generally used. However, the stainless steel strip after annealing cannot be energized due to the presence of non-conductive scale on the surface, and if you try to forcibly apply electricity, sparks will occur and the stainless steel strip will be damaged. become. For this reason, when descaling a stainless steel strip having a scale on the surface after annealing, a positive electrode 5 is also separately provided in the electrolytic bath 2 to energize the positive electrode 5 and the negative electrode 6 in the electrolytic bath 2. Thus, an indirect energization method of energizing the stainless steel strip S through the electrolytic bath 2 is widely used. As shown in FIG. 2, the arrangement of the electrodes 5 and 6 when the indirect current is applied is usually such that a plurality of positive electrodes 5 and negative electrodes 6 are arranged alternately in opposition to the front and back surfaces of the stainless steel strip S. Thus, an electrode row is formed. When electricity is supplied to the positive electrode 5 and the negative electrode 6 arranged in this way from the DC power source 7 for electrolysis, the positive electrode 5 and the negative electrode 6 are turned on.
The respective portions of the stainless steel strip S facing each other are polarized to a cathode and an anode, respectively, to form a series of electric circuits. As a result, the steel strip portion polarized to the anode is subjected to the anodic electrolytic treatment, and the chromium oxide in the scale is mainly oxidized and dissolved. As a result, descaling is easily performed in the subsequent nitric acid electrolysis or mixed acid immersion. In addition, the steel strip portion polarized to the cathode is subjected to cathodic electrolysis. This cathodic electrolysis converts metal ions dissolved in the electrolytic bath 2 to hydroxide when the pH of the electrolytic bath 2 is high. It has an effect, but is not always necessary.

このような中性塩電解処理における電極の材質として
は、寿命が長くて比較的安価なものが無かったために、
以前から普通鋼を基材としてその表面に鉛−アンチモン
合金をライニング又は肉盛り溶接したもの(以下、単に
鉛電極と言うことがある)が陽電極5に使用されてき
た。しかしながらこの鉛電極は使用に伴いひび割れした
り、ライニングの剥離が起こりその寿命は6ヵ月程度で
あった。この原因は、通電時間の経過と共に鉛−アンチ
モン合金が伸びる結果、基材との伸び量に差異が生じる
ためと推察される。更に、この鉛電極は重く、電極交換
に要する作業負荷が多大のものであった。また、加電圧
も高いために電解電力コストも嵩み、更に鉛−アンチモ
ン合金は少なからず溶解するために浴の汚染を来すとい
う問題もあった。なお、陰電極6は高度な耐食性を必要
としないことから、安価なSUS410が使用されてきたが、
交換するまでには至らないが多少の腐食は生じていた。
As the material of the electrode in such a neutral salt electrolysis treatment, there was no long-life and relatively inexpensive material,
For the positive electrode 5, a common steel base material and a lead-antimony alloy lining or build-up welding on the surface thereof (hereinafter, may be simply referred to as a lead electrode) have been used for a long time. However, this lead electrode was cracked or peeled off the lining with use, and its life was about 6 months. This is presumed to be due to the fact that the lead-antimony alloy elongates with the passage of current, resulting in a difference in the amount of elongation with the base material. Furthermore, this lead electrode was heavy, and the work load required for electrode replacement was heavy. In addition, since the applied voltage is high, the cost of electrolyzing power is increased, and furthermore, the lead-antimony alloy dissolves to a considerable extent, thus causing a problem of bath contamination. Since the negative electrode 6 does not require high corrosion resistance, inexpensive SUS410 has been used,
Although it was not possible to replace it, some corrosion had occurred.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

本発明は、前記従来技術の欠点を解消し、焼鈍後のス
テンレス鋼帯の中性塩電解処理を陽電極の破損が殆んど
無く高能率で経済的に行い得ることを課題とする。
SUMMARY OF THE INVENTION It is an object of the present invention to eliminate the drawbacks of the above-mentioned prior art and to be able to carry out the neutral salt electrolytic treatment of a stainless steel strip after annealing at a high efficiency and economically with almost no breakage of the positive electrode.

〔課題を解決するための手段〕[Means for solving the problem]

本発明者は種々検討した結果、アルミニウム等の金属
を有機酸やその塩を含む溶液中で電解処理して酸化皮膜
の形成,電解エッチング等の表面処理を行う場合に使用
されるイリジウム酸化物を主体とした電極被膜を有する
不溶性電極(以下、イリジウム系不溶性電極と言う)を
陽電極に、またステンレス鋼又はチタンから成る電極を
陰電極に用いてこれらを特殊に配列した電極列を形成さ
せることによって、前記課題を達成出来ることを究明し
て本発明を完成した。
As a result of various studies, the present inventor has found that iridium oxide used when performing a surface treatment such as formation of an oxide film and electrolytic etching by electrolytically treating a metal such as aluminum in a solution containing an organic acid or a salt thereof. Using an insoluble electrode having a main electrode coating (hereinafter referred to as an iridium-based insoluble electrode) as a positive electrode and an electrode made of stainless steel or titanium as a negative electrode to form a specially arranged electrode row. As a result, it has been found that the above-mentioned object can be achieved, and the present invention has been completed.

以下に、本発明に係るステンレス鋼帯の中性塩電解処
理方法をそれぞれ電極の配置例を示す電解装置の概略構
成図である第1図により詳細に説明する。
Hereinafter, the neutral salt electrolytic treatment method of the stainless steel strip according to the present invention will be described in detail with reference to FIG. 1 which is a schematic configuration diagram of an electrolytic apparatus showing an example of electrode arrangement.

本発明方法においては陽電極5として特公昭63−3099
6号公報に記載されているような、イリジウム酸化物
と、チタン,タンタル,ニオブ,コバルト及びマンガン
から選ばれた金属の酸化物とから成る電極被覆を有する
イリジウム系不溶性電極を使用する。このイリジウム系
不溶性電極は、前記したようにアルミニウム等の金属を
有機酸やその塩を含む溶液中で酸化処理して酸化被膜の
形成,電解エッチング等の表面処理を間接通電法で連続
的に行う場合の長期安定使用に耐える陽電極として開発
されたものであるが、主として硫酸ソーダから成る水溶
液中でステンレス鋼帯Sの電解を行う場合も充分に有効
であることを本発明者は究明したのである。
In the method of the present invention, the positive electrode 5 is used as JP-B-63-3099.
An iridium-based insoluble electrode having an electrode coating composed of iridium oxide and an oxide of a metal selected from titanium, tantalum, niobium, cobalt and manganese is used, as described in Japanese Patent Publication No. 6 (1994). As described above, the iridium-based insoluble electrode is subjected to a surface treatment such as formation of an oxide film and electrolytic etching by oxidizing a metal such as aluminum in a solution containing an organic acid or a salt thereof by an indirect energization method. Although it has been developed as a positive electrode that can withstand long-term stable use in the case, the present inventor has found that the electrolysis of the stainless steel strip S in an aqueous solution mainly composed of sodium sulfate is sufficiently effective. is there.

また、本発明においては陰電極6としてステンレス鋼
かチタンを使用する。ステンレス鋼は好ましくはSUS30
4,SUS316,SUS430,SUS420,SUS410等から選ばれ、チタン
はJISH4600に規定する第1種,第2種及び第3種から選
ばれる。これらは主として硫酸ソーダから成る水溶液の
電解浴2中で陰極としての充分な機能を有するばかりで
なく、軽くて強く且つかなりの耐食性を有し、更に量産
され汎用されているため比較的安価な素材である。
In the present invention, stainless steel or titanium is used as the negative electrode 6. Stainless steel is preferably SUS30
4, selected from SUS316, SUS430, SUS420, SUS410, etc., and titanium is selected from the first, second and third types specified in JISH4600. These have not only a sufficient function as a cathode in an electrolytic bath 2 of an aqueous solution mainly composed of sodium sulfate, but also have a light weight, strong strength and considerable corrosion resistance, and are relatively inexpensive materials because they are mass-produced and widely used. It is.

本発明の電解装置は、第1図に示すように主として硫
酸ソーダから成る水溶液が電解液2として建浴されてい
る一つの電解槽1内に陽電極5及び陰電極6が配置され
た構造であり、本発明の大きな特徴として、陰電極6の
数を陽電極5よりも多くそれも1個又は2個程度の差で
はなく大幅に例えば1:4〜8位の比となるようにすると
共に、電解装置の中央部より上流域と下流域(本発明で
上流,下流とは、ステンレス鋼帯Sの走行方向に基づい
て言う)とにおける陽電極5と陰電極6との配置が対称
となるように電極配置し、陽電極5と陰電極6とを電解
用直流電源7に接続する。そして、第1図に示すように
すべての陽電極5を順次並べて即ち隣接する陽電極5,5
間に陰電極6を介在させることなく並べて形成させた陽
電極群を電極列の中央に配置するのである。このように
陽電極5と陰電極6との配置が電解装置の中央部より上
流域と下流域とで対称になるように配置する理由は、上
流域と下流域におけるステンレス鋼帯Sに電位差を極力
生じさせないためであり、もし陽電極5又は陰電極6を
電解装置内に偏って配置した場合には上流域と下流域に
おけるステンレス鋼帯Sに大きな電位差が生じ、その結
果焼鈍処理と酸洗処理等を含む一連のラインが電気的に
絶縁されない限り電気抵抗の低い部分でスパークが生じ
て設備の破損やステンレス鋼帯Sに疵を付けることにな
る。また、陽電極5を順次並べて即ち隣接する陽電極5,
5間に陰電極6を介在させることなくすべての陽電極5
を順次並べて形成させた陽電極群を電極列の中央に電極
配置する理由は、陽電極5と陰電極6とが隣接する箇所
を減少せしめることによって隣接する陽電極5から陰電
極6へ流れるステンレス鋼帯Sの電解酸洗に寄与しない
無効電流を最小限にするためである。なお、高電流密度
での中性塩電解処理や長い電解時間で中性塩電解処理す
る必要がある場合には広い電極面積の陰電極6又は陽電
極5が必要となるが、このような広い電極面積を有する
電極の製作が困難な場合にしばしば同一極性となる電極
を並べた電極群が使用されることもあるが、単体の電極
であっても電極群であってもその考え方は上述の通りで
ある。
The electrolytic device of the present invention has a structure in which a positive electrode 5 and a negative electrode 6 are arranged in one electrolytic cell 1 in which an aqueous solution mainly composed of sodium sulfate is bathed as an electrolytic solution 2 as shown in FIG. As a major feature of the present invention, the number of cathodes 6 is larger than the number of cathodes 5, which is not a difference of about one or two, but is substantially in a ratio of, for example, 1: 4 to 8 and The arrangement of the positive electrode 5 and the negative electrode 6 in the upstream region and the downstream region (the upstream and downstream in the present invention are based on the running direction of the stainless steel strip S) from the central part of the electrolysis apparatus is symmetric. The positive electrode 5 and the negative electrode 6 are connected to a DC power source 7 for electrolysis. Then, as shown in FIG. 1, all the positive electrodes 5 are sequentially arranged, that is, the adjacent positive electrodes 5,5 are arranged.
The positive electrode group formed side by side without the intervening negative electrode 6 is arranged at the center of the electrode row. The reason for disposing the positive electrode 5 and the negative electrode 6 so that they are symmetrical in the upstream area and the downstream area from the center of the electrolyzer is that the stainless steel strip S in the upstream area and the downstream area has a potential difference. If the positive electrode 5 or the negative electrode 6 is arranged in the electrolytic apparatus in a biased manner, a large potential difference occurs between the stainless steel strip S in the upstream region and the downstream region, and as a result, annealing and pickling are performed. Unless a series of lines including processing and the like are electrically insulated, a spark is generated in a portion having a low electric resistance, which causes damage to the equipment and flaws on the stainless steel strip S. Further, the positive electrodes 5 are sequentially arranged, that is, the adjacent positive electrodes 5,
All positive electrodes 5 without a negative electrode 6 interposed between them
The reason for arranging the positive electrode group formed by sequentially arranging the electrodes in the center of the electrode row is that the position where the positive electrode 5 and the negative electrode 6 are adjacent to each other is reduced so that the stainless steel flowing from the adjacent positive electrode 5 to the negative electrode 6 is reduced. This is to minimize a reactive current that does not contribute to electrolytic pickling of the steel strip S. When it is necessary to perform the neutral salt electrolysis at a high current density or the neutral salt electrolysis for a long electrolysis time, the negative electrode 6 or the positive electrode 5 having a large electrode area is required. When it is difficult to manufacture an electrode having an electrode area, an electrode group in which electrodes having the same polarity are often arranged may be used. It is on the street.

電解浴2としては従来通り主として硫酸ソーダから成
る水溶液を使用するが、イリジウム系不溶性電極の活性
を長期に亘り維持するためには、次の濃度及び液温が好
ましい。硫酸ソーダの濃度は50〜300g/l、更に好ましく
は100〜200g/lで、液温が40〜80℃更に好ましくは55〜6
5℃である。
As the electrolytic bath 2, an aqueous solution mainly composed of sodium sulfate is conventionally used, but the following concentrations and liquid temperatures are preferable in order to maintain the activity of the iridium-based insoluble electrode for a long time. The concentration of sodium sulfate is 50-300 g / l, more preferably 100-200 g / l, and the liquid temperature is 40-80 ° C., more preferably 55-6.
5 ° C.

〔作用〕 第1図に示すように、電解槽1の陽電極5,陰電極6及
びそれらの電極列を前述の如く構成し、電解浴2として
主として硫酸ソーダから成る水溶液の電解液を使用し、
ステンレス鋼帯Sを通板させながら間接通電する。この
場合陽電極5としてイリジウム系不溶性電極を使用して
いるため、従来技術で使用していた鉛−アンチモン合金
の陽電極5に比べて高い電流密度で通電しても破損が少
なく、従って陽電極5よりも数の多い陰電極6に対して
電流密度を通常の状態に保って通電することが出来る。
従って従来技術に比べて総電極数が同じでも陰電極6の
数を多くすることが出来、陽電極5の数が同じなら陰電
極6の数をもっと多くすることが出来る。従って、例え
ば既設の電解槽1を利用する場合でも陽陰各電極5,6を
数及び配置を変更して電極列を前記のように構成するこ
とにより、ステンレス鋼帯Sが電解浴2中を走行すると
きに、多くなった陰電極6に対向する位置を通過する時
間、即ち陽極電解を受ける時間はそれだけ多くなって充
分な電解処理が行われるのである。
[Operation] As shown in FIG. 1, the positive electrode 5, the negative electrode 6 and the electrode array of the electrolytic cell 1 are constituted as described above, and the electrolytic bath 2 is made of an aqueous electrolytic solution mainly composed of sodium sulfate. ,
While the stainless steel strip S is passed through, indirect energization is performed. In this case, since the iridium-based insoluble electrode is used as the positive electrode 5, even if the current is applied at a higher current density than the lead-antimony alloy positive electrode 5 used in the prior art, there is less damage, and thus the positive electrode 5 Electric current can be supplied to more negative electrodes 6 while maintaining the current density in a normal state.
Therefore, the number of cathode electrodes 6 can be increased even if the total number of electrodes is the same as in the prior art, and the number of cathode electrodes 6 can be increased if the number of anode electrodes 5 is the same. Therefore, for example, even when the existing electrolytic cell 1 is used, by changing the number and arrangement of the positive and negative electrodes 5 and 6 and configuring the electrode row as described above, the stainless steel strip S can pass through the electrolytic bath 2. When the vehicle travels, the time for passing through the position facing the increased negative electrode 6, that is, the time for receiving the anodic electrolysis, becomes longer, and a sufficient electrolytic treatment is performed.

そして、陽電極5を順次並べて即ち隣接する陽電極5,
5間に陰電極6を介在させることなくすべての陽電極5
を順次並べて形成させた陽電極群を電極列の中央に電極
配置してあるので、陽電極5と陰電極6とが隣接する箇
所が2ヵ所しか存在しないため、隣接する陽電極5から
陰電極6へ流れるステンレス鋼帯Sの電解酸洗に寄与し
ない無効電流が非常に少なく、電力効率が非常に良いの
である。
Then, the positive electrodes 5 are sequentially arranged, that is, the adjacent positive electrodes 5,
All positive electrodes 5 without a negative electrode 6 interposed between them
Are arranged in the center of the electrode row, so that there are only two places where the positive electrode 5 and the negative electrode 6 are adjacent to each other. The reactive current that does not contribute to electrolytic pickling of the stainless steel strip S flowing to 6 is very small, and the power efficiency is very good.

更に、非電解時における陽電極5と陰電極6との間の
電池形成による陽電極5の表面活性の低下を防止するた
め、非電解時には陽電極5と陰電極6との間に2ボルト
以上の電圧を付加しておくか、又は電解浴2を別の槽に
移送して電解槽1を空にしておくのが好ましい。
Furthermore, in order to prevent a decrease in the surface activity of the positive electrode 5 due to the formation of a battery between the positive electrode 5 and the negative electrode 6 during non-electrolysis, a voltage of 2 volts or more is applied between the positive electrode 5 and the negative electrode 6 during non-electrolysis. Or the electrolytic bath 2 is transferred to another tank and the electrolytic tank 1 is emptied.

〔実施例〕〔Example〕

実施例1,比較例1 焼鈍後のステンレス鋼帯S(SUS304,板厚1.0mm,板幅1
030mm)を以下に説明する条件下で通板して電解酸洗す
ることを6カ月間続けた。即ち、実施例1では陽電極5
としてイリジウム系不溶性電極を、また陰電極6として
SUS304ステンレス鋼の材質から成る電極をそれぞれ第1
図と同様に配置して電極列を形成した電解装置(各電極
の電極面積は26dm2)を併用し、濃度150g/lの硫酸ソー
ダ水溶液を電解浴2とした。電解条件は、全負荷電流を
5,000Aとし、浴温は60℃であった。
Example 1, Comparative Example 1 Annealed stainless steel strip S (SUS304, thickness 1.0 mm, width 1)
030 mm) was passed through a plate under the conditions described below and electrolytic pickling was continued for 6 months. That is, in the first embodiment, the positive electrode 5
As the iridium-based insoluble electrode, and as the negative electrode 6
First electrodes made of SUS304 stainless steel material
An electrolytic device (electrode area of each electrode was 26 dm 2 ) in which an electrode array was formed in the same manner as in the drawing was used in combination, and an aqueous sodium sulfate solution having a concentration of 150 g / l was used as the electrolytic bath 2. The electrolysis conditions depend on the full load current.
The temperature was 5,000 A, and the bath temperature was 60 ° C.

また比較例1では、陽電極5として鉛−アンチモン合
金から成る電極を、陰電極6としてSUS410から成る電極
を使用して第2図と同様に配置して電極列を形成した電
解装置を使用した以外は実施例1と同様であった。
In Comparative Example 1, an electrolysis device was used in which an electrode made of a lead-antimony alloy was used as the positive electrode 5 and an electrode made of SUS410 was used as the negative electrode 6 in the same manner as in FIG. Except for the above, it was the same as Example 1.

実施例1と比較例1とでは通板速度は同じであった
が、陽電極5及び陰電極6の数の相違から、比較例1に
おいては電流密度は陽電極5では24A/dm2,陰電極6で
は16A/dm2であり、合計電解時間は陽電極5では4秒
間,陰電極6では6秒間であるのに対し、実施例1では
電流密度は陽電極5では48A/dm2,陰電極6では12A/dm2
であり、合計電解時間は陽電極5では2秒間,陰電極6
では8秒間であった。即ち、ステンレス鋼帯Sに対する
陽極電解の負荷は両例共に96クーロン/dm2と同じであ
った。
Although the passing speed was the same in Example 1 and Comparative Example 1, the current density in Comparative Example 1 was 24 A / dm 2 , The electrode 6 has a current density of 16 A / dm 2 , and the total electrolysis time is 4 seconds for the positive electrode 5 and 6 seconds for the negative electrode 6, whereas in Example 1, the current density is 48 A / dm 2 for the positive electrode 5, 12 A / dm 2 for electrode 6
The total electrolysis time is 2 seconds for the positive electrode 5 and 6 seconds for the negative electrode 6.
It was 8 seconds. That is, the load of the anodic electrolysis on the stainless steel strip S was the same as 96 coulombs / dm 2 in both cases.

実施例1,比較例1いずれの場合も、電解装置の使用開
始時では各電極は新品であり、そのまま全期間使用し
た。また、電解浴2は通常通りに時々更新した。
In each of Example 1 and Comparative Example 1, each electrode was new at the start of use of the electrolysis apparatus, and was used as it was during the entire period. Further, the electrolytic bath 2 was occasionally updated as usual.

このようにして焼鈍後のステンレス鋼帯Sの電解酸洗
を6カ月間行って脱スケール状態と各電極の破損状態を
観察した。酸洗開始時と6カ月後との結果を第1表に示
す。なお、表に示した結果は、いずれも建浴直後のもの
であり、脱スケール状態は条件の大きな変化のない混酸
浴中で浸漬処理したものである。
In this way, the electrolytic pickling of the annealed stainless steel strip S was performed for 6 months, and the descaled state and the broken state of each electrode were observed. Table 1 shows the results at the start of pickling and after 6 months. The results shown in the table are all obtained immediately after the bathing, and the descaling state was obtained by immersion treatment in a mixed acid bath in which the conditions did not change significantly.

第1表から、実施例では陽陰各電極5,6は6カ月使用
後も破損なく、脱スケールも良好であった。
According to Table 1, in Examples, the positive and negative electrodes 5, 6 did not break even after 6 months of use, and the descaling was good.

〔発明の効果〕〔The invention's effect〕

以上詳述した如く、本発明に係るステンレス鋼帯の中
性塩電解処理方法は、陽電極としてイリジウム系不溶性
電極を、また陰電極としてステンレス鋼又はチタンから
成る電極をそれぞれ使用して特殊に配置した電解装置を
使用するように構成したことにより、陽電極の破損も少
なく、また陰電極の数を増して効率良くステンレス鋼帯
を陽極電解することが可能となり、下記のような効果が
得られる。
As described in detail above, the neutral salt electrolysis treatment method for a stainless steel strip according to the present invention is specially arranged using an iridium-based insoluble electrode as a positive electrode and a stainless steel or titanium electrode as a negative electrode. By using the electrolysis apparatus, it is possible to reduce the damage to the positive electrode, increase the number of negative electrodes, and efficiently perform anodic electrolysis of the stainless steel strip, and obtain the following effects. .

陽電極交換頻度が低減されたことから、生産能力の
向上及び製造費用の低減が図られる。
Since the frequency of replacement of the positive electrode is reduced, the production capacity is improved and the manufacturing cost is reduced.

陽電極を順次並べて即ち隣接する陽電極間に陰電極
を介在させることなくすべての陽電極を順次並べて形成
させた陽電極群を電極列の中央に電極配置してあるの
で、陽電極と陰電極とが隣接する箇所が2ヵ所しか存在
しないため、隣接する陽電極から陰電極へ流れるステン
レス鋼帯の電解酸洗に寄与しない無効電流が非常に少な
く、電力効率が非常に良い。
The positive electrode group is formed by sequentially arranging the positive electrodes, that is, all the positive electrodes are sequentially arranged without interposing the negative electrode between the adjacent positive electrodes, and the positive electrode group is arranged at the center of the electrode row. Since only two locations are adjacent to each other, the reactive current that does not contribute to electrolytic pickling of the stainless steel strip flowing from the adjacent positive electrode to the negative electrode is very small, and the power efficiency is very good.

陽電極として使用するイリジウム系不溶性電極は、
従来の鉛−アンチモン合金に比較して加電圧が低く比較
的低い電解電圧で電解処理を行えるため、電解電力コス
トの低減が図られる。
The iridium-based insoluble electrode used as the positive electrode is
Since the applied voltage is lower than the conventional lead-antimony alloy and the electrolytic treatment can be performed at a relatively low electrolytic voltage, the cost of the electrolytic power can be reduced.

陰電極の数を増加させることが可能となったため、
全負荷電流を同じにした場合に陰電極1本当りの電流密
度が低下することになり、陰電極の寿命が延びる。
Because it became possible to increase the number of negative electrodes,
When the total load current is the same, the current density per cathode decreases, and the life of the cathode is extended.

陰電極として使用するステンレス鋼や第1種,第2
種,第3種チタンが軽量且つ安価であるため、電極が軽
量化されて電極交換に要する労力が軽減されると共に陰
電極代が安くつく。
Stainless steel used as negative electrode, 1st class, 2nd class
Since the seed and the third kind titanium are lightweight and inexpensive, the weight of the electrode is reduced, the labor required for electrode replacement is reduced, and the cost of the negative electrode is reduced.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明に係るステンレス鋼帯の電解酸洗方法に
おける電極の配置例を示す電解装置の概略構成図、第2
図は従来の標準的な電極配置を示す電解装置の概略構成
図である。 図面中 1……電解槽 2……電解浴 3……デフレクターロール 4……浸漬ロール 5……陽電極 6……陰電極 7……電解用直流電源 S……ステンレス鋼帯
FIG. 1 is a schematic configuration diagram of an electrolytic apparatus showing an example of electrode arrangement in a method for electrolytic pickling of a stainless steel strip according to the present invention.
The figure is a schematic configuration diagram of an electrolysis apparatus showing a conventional standard electrode arrangement. In the drawings: 1 ... Electrolyzer 2 ... Electrolysis bath 3 ... Deflector roll 4 ... Immersion roll 5 ... Positive electrode 6 ... Negative electrode 7 ... DC power supply for electrolysis S ... Stainless steel strip

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】複数個の陽電極とこの陽電極に電解用直流
電源を介して接続されている複数個の陰電極とをステン
レス鋼帯の走行路面に対向して一つの電解槽内に配置し
た電極列を備えた電解装置を使用して焼鈍後のステンレ
ス鋼帯を主として硫酸ソーダから成る水溶液中を走行さ
せながら間接通電法により中性塩電解処理するに当り、
陽電極としてイリジウム酸化物とチタン,タンタル,ニ
オブ,コバルト及びマンガンから選ばれた金属の酸化物
とから成る電極被覆を有する不溶性電極を用い、陰電極
としてステンレス鋼及び第1種,第2種及び第3種の各
チタンから選ばれる金属の電極を用い、陰電極の数を陽
電極の数よりも多く、しかも電解装置の中央部より上流
域と下流域とにおける陽電極と陰電極との配置が対称と
なるように、且つすべての陽電極を順次並べて形成させ
た陽電極群を電極列の中央に電極配置して電解すること
を特徴とするステンレス鋼帯の中性塩電解処理方法。
1. A plurality of positive electrodes and a plurality of negative electrodes connected to the positive electrode via a DC power supply for electrolysis are arranged in one electrolytic cell so as to face a running surface of a stainless steel strip. In carrying out the neutral salt electrolysis by the indirect energization method while running the annealed stainless steel strip in an aqueous solution mainly composed of sodium sulfate using an electrolysis apparatus equipped with an electrode row,
An insoluble electrode having an electrode coating composed of iridium oxide and an oxide of a metal selected from titanium, tantalum, niobium, cobalt and manganese is used as the positive electrode, and stainless steel and the first, second and third types are used as the negative electrode. Using a metal electrode selected from each of the third types of titanium, the number of cathodes is greater than the number of cathodes, and the arrangement of cathodes and cathodes in the upstream and downstream regions from the center of the electrolyzer. Wherein a positive electrode group formed by sequentially arranging all the positive electrodes is arranged at the center of an electrode row to perform electrolysis.
JP15270890A 1990-06-13 1990-06-13 Neutral salt electrolytic treatment method for stainless steel strip Expired - Lifetime JP2868589B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15270890A JP2868589B2 (en) 1990-06-13 1990-06-13 Neutral salt electrolytic treatment method for stainless steel strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15270890A JP2868589B2 (en) 1990-06-13 1990-06-13 Neutral salt electrolytic treatment method for stainless steel strip

Publications (2)

Publication Number Publication Date
JPH0445300A JPH0445300A (en) 1992-02-14
JP2868589B2 true JP2868589B2 (en) 1999-03-10

Family

ID=15546419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15270890A Expired - Lifetime JP2868589B2 (en) 1990-06-13 1990-06-13 Neutral salt electrolytic treatment method for stainless steel strip

Country Status (1)

Country Link
JP (1) JP2868589B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1656863B1 (en) * 2004-11-11 2011-03-02 Nestec S.A. Self-cleaning mixing head for producing a milk-based mixture and beverage production machines comprising such a mixing head
JP5757745B2 (en) * 2011-02-09 2015-07-29 日新製鋼株式会社 Electrolytic pickling method for descaling stainless steel strip

Also Published As

Publication number Publication date
JPH0445300A (en) 1992-02-14

Similar Documents

Publication Publication Date Title
US6143158A (en) Method for producing an aluminum support for a lithographic printing plate
US4994157A (en) Method and apparatus for descaling stainless steel
US6565735B1 (en) Process for electrolytic pickling using nitric acid-free solutions
JPS6237718B2 (en)
AU2005263476A1 (en) Method and device for descaling metals
JP2868589B2 (en) Neutral salt electrolytic treatment method for stainless steel strip
JPH0726240B2 (en) Electrolytic pickling or electrolytic degreasing method for steel sheet
JP2000204499A (en) Electrolytical descaling of stainless steel strip
JPH0827600A (en) Descaling method and device for stainless steel strip
JP2000064100A (en) Descaling apparatus for steel strip and apparatus for producing steel strip
JP2868574B2 (en) Electrolytic pickling of stainless steel strip
SE9800287L (en) Method of processing a metal product
JP2581954B2 (en) Electrolytic treatment of aluminum support for lithographic printing plate
JP3873335B2 (en) Electrolytic descaling method for steel strip
JP2577618B2 (en) Method and apparatus for descaling alloy steel strip
JPH0762599A (en) Electrolytic device of conductive plate material
US5314607A (en) Apparatus and method for anodizing supports for lithographic printing plate
JP3846646B2 (en) Surface cleaning method by electrolysis of steel
JP4189053B2 (en) High speed electrolytic descaling method for stainless steel
JPH02310398A (en) Method for electrolytically descaling cold-rolled stainless steel
JPH0324299A (en) Method for pickling band stainless steel
JPH06220699A (en) Device for electrolytically pickling steel material
JPS6333600A (en) Method for electrolytically pickling steel strip
JP3164927B2 (en) Electrolysis equipment for metal materials
RU2578623C1 (en) Electrolytic method for removing scales from belt of rolled metal