JPH03260097A - Method of chromium plating using insoluble anode - Google Patents

Method of chromium plating using insoluble anode

Info

Publication number
JPH03260097A
JPH03260097A JP5654890A JP5654890A JPH03260097A JP H03260097 A JPH03260097 A JP H03260097A JP 5654890 A JP5654890 A JP 5654890A JP 5654890 A JP5654890 A JP 5654890A JP H03260097 A JPH03260097 A JP H03260097A
Authority
JP
Japan
Prior art keywords
plating
electrode
anode
chromium
chromium plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5654890A
Other languages
Japanese (ja)
Inventor
Kaoru Hirakata
平形 薫
Akihiko Fujii
昭彦 藤井
Koji Koma
小間 弘司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Carlit Co Ltd
Original Assignee
Japan Carlit Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Carlit Co Ltd filed Critical Japan Carlit Co Ltd
Priority to JP5654890A priority Critical patent/JPH03260097A/en
Publication of JPH03260097A publication Critical patent/JPH03260097A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce production of sludge and to obtain chromium plating films stable for a long time by using such an insoluble anode as the anode that has specified oxygen generation potential and is coated with a film containing platinum group metal. CONSTITUTION:In a plating method using a chromium plating liquid, the anode to be used is such an insoluble anode comprising a corrosion-resistant base body and an electrode coating provided thereon containing platinum group metal and its oxide. The oxygen generation potential of the insoluble anode is specified to 2.2-2.8 volt under standard conditions. Thereby, chromium plating is performed while maintaining 6-8g/l trivalent chromium. Contamination of the plating liquid due to lead sludge in a conventional method using a lead insoluble electrode can be prevented by this method.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、クロムメッキ方法に関し、不溶性陽極を用い
て工業用クロムメッキを行う方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a chromium plating method, and more particularly to a method for industrial chromium plating using an insoluble anode.

(従来の技術) クロムメッキに用いるメッキ浴には無水クロム酸を主成
分とし、これに少量の硫酸または硫酸塩を加えたサージ
ェント浴、あるいはフッ化アンモニウム、フッ酸、ホウ
フッ酸、ケイフッ化ソーダなどのフッ素化合物に置き換
えたフッ化物含有浴、及びサージェント浴に非置換アル
キルスルフォン酸またはその塩とホウ酸またはホウ酸塩
を加えた高効率無腐食浴(特公昭63−32874号公
報、以下HEEF浴と略す)等がある。
(Prior art) The plating bath used for chromium plating consists of chromic anhydride as a main component and a small amount of sulfuric acid or sulfate added thereto, or a sergeant bath, or ammonium fluoride, hydrofluoric acid, fluoroboric acid, sodium silicofluoride, etc. A fluoride-containing bath replaced with a fluorine compound of ) etc.

サージェント浴を使用するメッキ方法は、液の取扱いが
容易であるが、電流効率が低いという難点がある。フッ
化物含有浴を使用するメッキ方法は、仕上りが良好で電
流効率が比較的高いという特徴がある半面、浴の安定性
が乏しいため液管理が難しく、また、フッ化物イオンが
存在するため低電流密度の操業では被メッキ物の腐食が
生じる欠点がある。
Although the plating method using a Sargent bath allows easy handling of the solution, it has the disadvantage of low current efficiency. Plating methods that use fluoride-containing baths are characterized by a good finish and relatively high current efficiency, but they are difficult to control due to poor bath stability, and also have low current due to the presence of fluoride ions. Density operation has the drawback of causing corrosion of the plated material.

これらのメッキ方法に対してHEEF浴を使用するメッ
キ方法は、低電流密度における被メッキ物の腐食がなく
、広範囲の電流密度にわたって高い電流効率を示すこと
から、電着速度を重視し、生産性の向上を至上とするク
ロムメッキ業界で広く用いられるようになった。
In contrast to these plating methods, the plating method using a HEEF bath does not corrode the plated object at low current densities and exhibits high current efficiency over a wide range of current densities, so it emphasizes electrodeposition speed and improves productivity. It has come to be widely used in the chrome plating industry, where improving the quality is paramount.

(発明が解決しよろとする課題) 一方、クロムメッキに用いられる電極としては鉛合金電
極あるいは二酸化鉛被覆電極等の電極が知られている。
(Problems to be Solved by the Invention) On the other hand, as electrodes used for chromium plating, electrodes such as lead alloy electrodes and lead dioxide coated electrodes are known.

特に、チタン等の導電性基体上に白金族金属およびそれ
らの酸化物の中間層を介して二酸化鉛を被覆した電極は
、鉛合金電極に比べ電解消耗量が少なく、スラッジの生
成が僅かであることによりメッキ業界で広く使用されて
いる。
In particular, electrodes in which lead dioxide is coated on a conductive substrate such as titanium through an intermediate layer of platinum group metals and their oxides have less electrolytic consumption and generate less sludge than lead alloy electrodes. This makes it widely used in the plating industry.

しかし、この鉛合金電極あるいは二酸化鉛被覆電極は重
いため電極交換時の作業性が悪いこと、特に鉛合金電極
の場合、生成するスラッジの主成分であるクロム酸鉛を
公害規制上安全に廃液処理する必要があるなどの欠点を
有している。
However, these lead alloy electrodes or lead dioxide coated electrodes are heavy and have poor workability when replacing the electrodes.In particular, in the case of lead alloy electrodes, lead chromate, the main component of the generated sludge, cannot be safely disposed of as waste fluid in accordance with pollution regulations. It has drawbacks such as the need to

一方、チタン等の導電性金属基体表面に白金、イリジウ
ム、ロジウムなどの白金族金属およびそれらの酸化物の
1種以上、あるいはこれにチタン、スズ等の酸化物を含
ませたものを熱分解法により被覆した貴金属被覆電極(
以下単に貴金属電極という)は、クロムメッキ洛中で鉛
合金電極、二酸化鉛被覆電極等の鉛電極に比べて極めて
低い分極電位を示すことが知られている。しかし、この
電極は三価クロムを六価クロムに酸化する能力が低く、
初期には十分にメッキ可能であるが、良好なりロムメッ
キを連続して行うことができない。
On the other hand, the surface of a conductive metal substrate such as titanium containing one or more platinum group metals such as platinum, iridium, and rhodium and their oxides, or oxides such as titanium and tin, can be prepared by thermal decomposition. Noble metal coated electrode (
It is known that noble metal electrodes (hereinafter simply referred to as noble metal electrodes) exhibit an extremely lower polarization potential than lead electrodes such as lead alloy electrodes and lead dioxide-coated electrodes when plated with chrome. However, this electrode has a low ability to oxidize trivalent chromium to hexavalent chromium;
Although sufficient plating is possible in the initial stage, it is not possible to perform ROM plating continuously.

一般にクロムの電着に際し、クロムメッキ浴内には少量
の三価クロムを含有させることが重要であり、良質のメ
ッキを行うにはこの三価クロム濃度を調整することが必
要である。クロムメッキ浴でメッキを行うと、陰極(被
メッキ物)では三価クロムが生成し、陽極において酸化
されて再び六価クロムすなわちクロム酸になる。この還
元および酸化作用は用いる電極材料により一様でなく、
三価クロムはある濃度で平衡に達する。貴金属電極は前
述したように三価クロムを酸化する能力が低く、メッキ
を続けると洛中の三価クロム濃度が増大してメッキネ良
となるのみならず、摺電圧が上昇して電流効率が低下す
る問題がある。
Generally, when electrodepositing chromium, it is important to include a small amount of trivalent chromium in the chromium plating bath, and it is necessary to adjust the concentration of trivalent chromium in order to achieve high-quality plating. When plating is performed in a chromium plating bath, trivalent chromium is generated at the cathode (the object to be plated), and is oxidized at the anode to become hexavalent chromium, that is, chromic acid. This reduction and oxidation effect is not uniform depending on the electrode material used.
Trivalent chromium reaches equilibrium at a certain concentration. As mentioned above, noble metal electrodes have a low ability to oxidize trivalent chromium, and if plating continues, the trivalent chromium concentration in the electrode will increase, resulting in poor plating, and the sliding voltage will increase, reducing current efficiency. There's a problem.

サージェント浴を用いたクロムメッキにおいては、前記
問題点を解決し消費電力量が小さく、スラッジの生成が
少なく、また、三価クロム濃度を頻繁に調整することな
く長期間安定したクロムメッキを行うことのできる方法
として二酸化鉛被覆電極および二酸化イリジウム電極を
併用し、画電極の有する特性を有効に利用してメッキを
行う方法が提案されている(特開昭63−270490
)しかし、この方法をHEEF浴等で行った場合には、
洛中の非置換アルキルスルフォン酸塩およびホウ酸等が
電極表面に吸着し電極電位を増大させるため消耗が激し
く寿命が短期間になるという欠点がある。
In chromium plating using Sargent bath, it is possible to solve the above problems, consume less electricity, generate less sludge, and perform stable chromium plating for a long time without frequently adjusting the trivalent chromium concentration. As a method for achieving this, a method has been proposed in which a lead dioxide-coated electrode and an iridium dioxide electrode are used in combination, and plating is performed by effectively utilizing the characteristics of the picture electrode (Japanese Patent Laid-Open No. 63-270490).
) However, when this method is carried out in a HEEF bath, etc.
Unsubstituted alkyl sulfonic acid salts, boric acid, and the like are adsorbed to the electrode surface and increase the electrode potential, resulting in severe wear and a short lifespan.

また、この方法では、二酸化鉛電極と二酸化イリジウム
電極の酸素発生電位が異なるため、両者の電極の配置を
工夫しないと電極への電流の流れが不均一となり、メッ
キが不均一となる欠点があった。
In addition, this method has the disadvantage that the oxygen generation potentials of the lead dioxide electrode and the iridium dioxide electrode are different, so unless the arrangement of both electrodes is carefully arranged, the current flow to the electrodes will be uneven, resulting in uneven plating. Ta.

他にもクロムメッキを行う方法が提案されている。チタ
ン等の基体上に白金被覆を形成せしめ、その上に中間層
として卑金属酸化物を被覆し、更に該卑金属酸化物上に
二酸化鉛を被覆して成る電極を用いる方法である(特開
平1−184299)。この方法ではクロムメッキ操作
中に二酸化鉛が消耗してしまうので、メッキ洛中に鉛成
分を添加している。この方法によれば、一種類の電極で
クロムメッキを行えるが、白金被覆と中間層の卑金属酸
化物との密着性が悪いため、中間層が脱落して、数ケ月
で白金被覆が露出してしまうため、三価クロムが増加し
てしまい使用できなくなるという欠点があった。
Other methods of chrome plating have also been proposed. This method uses an electrode in which a platinum coating is formed on a substrate such as titanium, a base metal oxide is coated on the base metal oxide as an intermediate layer, and lead dioxide is further coated on the base metal oxide (Japanese Patent Application Laid-Open No. 1999-1-1992). 184299). In this method, lead dioxide is consumed during the chrome plating process, so a lead component is added to the plating process. According to this method, chromium plating can be performed using one type of electrode, but due to poor adhesion between the platinum coating and the base metal oxide in the intermediate layer, the intermediate layer falls off and the platinum coating is exposed in a few months. This has the disadvantage that trivalent chromium increases, making it unusable.

(課題を解決するための手段) 本発明者等は種々検討した結果、クロムメッキ浴を用い
るメッキ操作において、陽極として、標準条件における
酸素発生電位が2.2〜2.8ボルトであり、耐食性基
体上に白金族金属および/またはそれらの酸化物を含有
する電極被覆を施した不溶性陽極を用いるクロムメッキ
方法が、前記課題を解決することを見い出し、本発明を
完成するに至った。
(Means for Solving the Problems) As a result of various studies, the present inventors have found that in plating operations using a chromium plating bath, the oxygen evolution potential under standard conditions is 2.2 to 2.8 volts as an anode, and corrosion resistance. It has been discovered that a chromium plating method using an insoluble anode in which an electrode coating containing a platinum group metal and/or an oxide thereof is provided on a substrate solves the above problems, and the present invention has been completed.

本発明で使用する不溶性陽極の酸素発生電位が2.2ボ
ルトより低いと、三価クロムを六価クロムに酸化する能
力が低くいので好ましくなく、2.8ボルトより高いと
、メッキ操作における摺電圧が高くなり、使用している
整流器の能力を越えるおそれがあるので好ましくない。
If the oxygen evolution potential of the insoluble anode used in the present invention is lower than 2.2 volts, the ability to oxidize trivalent chromium to hexavalent chromium is low, which is undesirable. This is undesirable because the voltage becomes high and may exceed the capacity of the rectifier being used.

本発明において標準条件における酸素発生電位とは、銀
−塩化銀電極基準として、25℃、1モル硫酸溶液中で
30A/dm2の電流密度における酸素発生電位をいう
In the present invention, the oxygen evolution potential under standard conditions refers to the oxygen evolution potential at a current density of 30 A/dm2 in a 1 molar sulfuric acid solution at 25 DEG C. with reference to a silver-silver chloride electrode.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明における耐食性基体は、メッキ洛中で陽分極時に
耐食性を有し、また導電性を有するものであれば何ら限
定されない。例えば、サージェント浴またはHEEF浴
に用いるためにはチタンまたはチタン合金が最適である
。フッ化物含有浴では、チタンは耐食性ではないので、
フッ化物に耐食性のある材料、例えば特開昭57−79
189に示されたチタン低級酸化物(TxOs:1.5
5≦X≦1,9)より成る導電性の焼結体を用いること
ができる。該基体の形状は、平板、エクスパンドメツシ
ュ、穴あき板を用いることができる。
The corrosion-resistant substrate in the present invention is not limited in any way as long as it has corrosion resistance during anodic polarization during plating and has electrical conductivity. For example, titanium or titanium alloys are best suited for use in Sargent baths or HEEF baths. In fluoride-containing baths, titanium is not corrosion resistant, so
Materials that are resistant to corrosion by fluorides, such as JP-A-57-79
Titanium lower oxide (TxOs: 1.5
An electrically conductive sintered body having the following relationship (5≦X≦1,9) can be used. The shape of the base may be a flat plate, an expanded mesh, or a perforated plate.

次に本発明における白金族金属及びそれらの酸化物につ
いて説明する。
Next, the platinum group metals and their oxides in the present invention will be explained.

従来の白金族金属及び/またはそれらの酸化物を被覆し
た電極は酸素発生電位が低い。最も高い白金メッキチタ
ン電極でも標準条件で2.0ボルトである。酸化イリジ
ウム、酸化ロジウムでは白金より酸素発生電位が低い。
Conventional electrodes coated with platinum group metals and/or their oxides have a low oxygen evolution potential. Even the highest platinum plated titanium electrode is 2.0 volts under standard conditions. Iridium oxide and rhodium oxide have a lower oxygen evolution potential than platinum.

そこで酸素発生電位を高くするために、白金族金属及び
/またはそれらの酸化物の被覆中に卑金属酸化物を含有
せしめる。
Therefore, in order to increase the oxygen generation potential, a base metal oxide is included in the coating of platinum group metals and/or their oxides.

白金族金属としては、白金、白金族金属酸化物としては
酸化イリジウム、酸化ロジウムが好ましい。ルテニウム
、パラジウムは酸素発生に対して耐久性が乏しいので、
使用するとしても少量の割合であり、使用しない方が好
ましい。卑金属酸化物としては、チタン、タンタル、ニ
オブ、ジルコニウム、ビスマス、アンチモン、タングス
テン、スズ等の酸化物が好ましい。
The platinum group metal is preferably platinum, and the platinum group metal oxide is preferably iridium oxide or rhodium oxide. Ruthenium and palladium have poor durability against oxygen generation, so
Even if it is used, it is only in a small proportion, and it is preferable not to use it. As the base metal oxide, oxides of titanium, tantalum, niobium, zirconium, bismuth, antimony, tungsten, tin, etc. are preferable.

白金族金属等と卑金属酸化物を含有する被覆を形成する
方法としては、熱分解法、真空蒸着法、プラズマ溶射等
の公知の方法が適用できる。工業的には熱分解法が不溶
性陽極の製造法として広く用いられている。以下にその
方法について述べる。
As a method for forming a coating containing a platinum group metal or the like and a base metal oxide, known methods such as a thermal decomposition method, a vacuum evaporation method, and a plasma spraying method can be applied. Industrially, thermal decomposition is widely used as a method for producing insoluble anodes. The method will be described below.

白金族金属の塩類たとえば塩化白金酸、塩化イリジウム
、塩化ロジウムに、必要ならば塩酸を加え、卑金属の塩
化物またはアルコキシド類とアルコールを混合して塗布
液を調整する。この塗布液を耐蝕性基体上に塗り、40
0〜600℃で加熱分解する。この操作を数回繰り返し
て任意の厚さの被覆を得ることができる。
A coating solution is prepared by adding hydrochloric acid, if necessary, to a salt of a platinum group metal such as chloroplatinic acid, iridium chloride, or rhodium chloride, and mixing a base metal chloride or alkoxide with alcohol. This coating solution was applied onto a corrosion-resistant substrate, and
Decomposes by heating at 0-600°C. This operation can be repeated several times to obtain a coating of any desired thickness.

標準条件で2.2〜2.8ボルトの酸素発生電位を示す
電極被覆を得るための卑金属の含有量は、使用する白金
族金属および/またはそれらの酸化物と卑金属元素の組
み合わせによってかなり異なり、−概に定めることはで
きない。
The base metal content to obtain an electrode coating exhibiting an oxygen evolution potential of 2.2 to 2.8 volts under standard conditions varies considerably depending on the combination of platinum group metals and/or their oxides and base metal elements used; -Cannot be generalized.

また、本発明のメッキ方法において、メッキ液中に鉛イ
オンを存在させることにより、電極の表面上に二酸化鉛
の薄膜を形成させて、電極の保護を図ることもできる。
Furthermore, in the plating method of the present invention, by making lead ions present in the plating solution, a thin film of lead dioxide can be formed on the surface of the electrode, thereby protecting the electrode.

(実 施 例) 以下実施例により本発明の詳細な説明するが、本発明は
該実施例に限定されるものセはない。
(Examples) The present invention will be explained in detail below with reference to Examples, but the present invention is not limited to these Examples.

実施例1 15+aa+X 200mmX 1間のチタン板をサン
ドブラスト処理して粗面化したチタン基体に、塩化イリ
ジウムとペンタノルマルブトキシタンタルをモル比でI
 r02: Ta20s=3 : 7になるように秤量
して混合し、少量の塩酸とブタノールを加えた塗布液を
塗り、乾燥後、500℃で1時間加熱した。IrO2と
して10g/m2となるまでこの操作を繰り返し行った
。標準条件におけるこの電極の酸素発生電位は2.3ボ
ルトであった。
Example 1 Iridium chloride and pentanormal butoxytantalum were added in a molar ratio of I to a titanium substrate whose surface was roughened by sandblasting a titanium plate between 15+aa+X 200mm
They were weighed and mixed so that r02: Ta20s=3:7, a coating solution containing a small amount of hydrochloric acid and butanol was applied, and after drying, it was heated at 500° C. for 1 hour. This operation was repeated until IrO2 reached 10 g/m2. The oxygen evolution potential of this electrode under standard conditions was 2.3 volts.

実施例2 15m+aX 200mmX 1 amのチタン板を熱
シュウ酸によりエツチングしたチタン基体に、塩化イリ
ジウムとペンタノルマルブトキシタンタルをモル比でI
 r02:Ta203=2 : 8になるように秤量し
て混合し、少量の塩酸とブタノールを加えた塗布液を塗
り、乾燥後、500℃で1時間加熱した。IrO2とし
て8g/m2となるまでこの操作を繰り返し行った。標
準条件におけるこの電極の酸素発生電位は2.6ボルト
であった。
Example 2 Iridium chloride and pentanormal butoxytantalum were added in a molar ratio of I to a titanium substrate obtained by etching a titanium plate of 15 m + a x 200 mm x 1 am with hot oxalic acid.
They were weighed and mixed so that r02:Ta203=2:8, a coating solution containing a small amount of hydrochloric acid and butanol was applied, and after drying, it was heated at 500° C. for 1 hour. This operation was repeated until IrO2 reached 8 g/m2. The oxygen evolution potential of this electrode under standard conditions was 2.6 volts.

実施例3 15m鵬X200mmX1鵬園のチタン板を5%のフッ
化水素酸によりエツチングしたチタン基体に、塩化白金
酸と塩化イリジウム酸とペンタノルマルブトキシタンタ
ルと塩化第二スズをモル比でpt:IrO2:Ta20
5:5n02=1:2:6:1となるように秤量して混
合し、少量の塩酸とブタノールを加えた塗布液を塗り、
乾燥後、500℃で1時間加熱した。IrO2+Ptと
して15g/m2となるまでこの操作を繰り返した。こ
の電極の標準条件における酸素発生電位は、2.3ボル
トであった。
Example 3 Chloroplatinic acid, chloroiridic acid, pentanormal butoxytantalum, and stannic chloride were added to a titanium substrate obtained by etching a 15m Peng x 200 mm x 1 Pengyuan titanium plate with 5% hydrofluoric acid in a molar ratio of pt:IrO2. :Ta20
Weigh and mix so that the ratio is 5:5n02 = 1:2:6:1, and apply a coating solution containing a small amount of hydrochloric acid and butanol.
After drying, it was heated at 500°C for 1 hour. This operation was repeated until IrO2+Pt reached 15 g/m2. The oxygen evolution potential of this electrode under standard conditions was 2.3 volts.

実施例4 15mmX200m鵬×1−口のチタン板を熱シュウ酸
によりエツチングしたチタン基体に、塩化白金酸と塩化
イリジウムとペンタノルマルブトキシタンタルとオルト
チタン酸ブチルを秤量してモル比でPt:IrO2:T
a205:Ti02=2+2:5:1となるように秤量
して混合し、少量の塩酸とブタノールを加えた塗布液を
塗り、乾燥後、500℃で1時間加熱した。IrO2+
Ptとして15g/m2となるまでこの操作を繰り返し
た。
Example 4 Chloroplatinic acid, iridium chloride, pentanormal butoxytantalum, and butyl orthotitanate were weighed onto a titanium substrate prepared by etching a 15 mm x 200 m x 1-hole titanium plate with hot oxalic acid, and the molar ratio of Pt:IrO2: T
They were weighed and mixed so that a205:Ti02=2+2:5:1, a coating solution containing a small amount of hydrochloric acid and butanol was applied, and after drying, it was heated at 500° C. for 1 hour. IrO2+
This operation was repeated until the amount of Pt was 15 g/m2.

この電極の標準条件における酸素発生電位は、2.4ボ
ルトであった。
The oxygen evolution potential of this electrode under standard conditions was 2.4 volts.

実施例5 15X200X1mmのチタン板を5%のフッ化水素酸
でエツチングしたチタン基体に、塩化白金酸トペンタノ
ルマルブトキシタンタルと塩化第二スズとをモル比でI
 r02: Ta205: 5n02=1:6:3とな
るように秤量して混合し、少量の塩酸とブタノールを加
えた塗布液を塗り、乾燥後、500℃で1時間加熱した
。I r02+Ta205+ S n 02として15
g/m2となるまでこの操作を繰り返した。この電極の
標準条件における酸素発生電位は、2.5ボルトであっ
た。
Example 5 A titanium plate of 15 x 200 x 1 mm was etched with 5% hydrofluoric acid as a titanium substrate, and tantalum chloroplatinate and stannic chloride were added in a molar ratio of I.
They were weighed and mixed so that r02: Ta205: 5n02 = 1:6:3, a coating solution containing a small amount of hydrochloric acid and butanol was applied, and after drying, it was heated at 500° C. for 1 hour. 15 as I r02+Ta205+ S n 02
This operation was repeated until it reached g/m2. The oxygen evolution potential of this electrode under standard conditions was 2.5 volts.

実施例6 実施例5と同の条件で、I r 02: T a2o5
:5nO2=1 : 7 : 2に被覆を有する電極を
作製した。この電極の標準条件における酸素発生電位は
2.4ボルトであった。
Example 6 Under the same conditions as Example 5, I r 02: T a2o5
:5nO2=1:7:2 An electrode having a coating was prepared. The oxygen evolution potential of this electrode under standard conditions was 2.4 volts.

実施例7 15mmX 200mmX 1 amのチタン板を熱シ
ュウ酸によりエツチングしたチタン基体に、塩化白金酸
と塩化イリジウムとペンタノルマルブトキシタンタルを
モル比でP t : I r02: Ta20s= 1
:に8となるように秤量して混合し、少量の塩酸とブタ
ノールを加えた塗布液を塗り、乾燥後、450℃で1時
間加熱した。Ta205+ I r02十ptとして1
5g/m2となるまでこの操作を繰り返した。この電極
の標準条件における酸素発生電位は、2.4ボルトであ
った。
Example 7 A 15 mm x 200 mm x 1 am titanium plate was etched with hot oxalic acid to form a titanium substrate, and chloroplatinic acid, iridium chloride, and pentanormal butoxy tantalum were added in a molar ratio of P t : I r02 : Ta20s=1
A coating solution containing a small amount of hydrochloric acid and butanol was applied, dried, and then heated at 450° C. for 1 hour. Ta205+ I r020pt as 1
This operation was repeated until it reached 5 g/m2. The oxygen evolution potential of this electrode under standard conditions was 2.4 volts.

比較例1 実施例2と同様にエツチングしたチタン基体に、塩化イ
リジウムとペンタノルマルブトキシタンタルをモル比で
I r Q2: Ta203= 4 : 6となるよう
に秤量して混合し、少量の塩酸とブタノールを加えた塗
布液を塗り乾燥後500℃で1時間加熱り、、IrO2
としてLog/園2となるまでこの操作を繰り返した。
Comparative Example 1 On a titanium substrate etched in the same manner as in Example 2, iridium chloride and pentanormal butoxytantalum were weighed and mixed in a molar ratio of I r Q2: Ta203 = 4:6, and a small amount of hydrochloric acid and butanol were added. Apply a coating solution containing IrO2, dry it, and heat it at 500℃ for 1 hour.
This operation was repeated until Log/Sono 2 was obtained.

この電極の標準条件における酸素発生電位は2.1ボル
トであった。
The oxygen evolution potential of this electrode under standard conditions was 2.1 volts.

比較例2 実施例3と同様にエツチングしたチタン基体に、塩化白
金酸と塩化イリジウム酸とペンタノルマルブトキシタン
タルと塩化第二スズをモル比でPt: I r02: 
Ta205: 5n02=1 : 4 : 4 : 1
となるように秤量して混合し、少量の塩酸とブタノール
を加えた塗布液を塗り、乾燥後、500℃で1時間加熱
した。IrO2+ptとして15g/m2となるまでこ
の操作を繰り返した。この電極の標準条件における酸素
発生電位は、2.0ボルトであった。
Comparative Example 2 A titanium substrate etched in the same manner as in Example 3 was coated with chloroplatinic acid, chloroiridic acid, pentanormal butoxytantalum, and stannic chloride in a molar ratio of Pt:I r02:
Ta205: 5n02=1:4:4:1
A coating solution containing a small amount of hydrochloric acid and butanol was applied, and after drying, it was heated at 500° C. for 1 hour. This operation was repeated until IrO2+pt was 15 g/m2. The oxygen evolution potential of this electrode under standard conditions was 2.0 volts.

比較例3 実施例4と同様にエツチングしたチタン板に、塩化イリ
ジウムとオルトチタン酸ブチルをモル比でIrO2:T
i02=5:5となるように秤量して混合し、少量の塩
酸とブタノールを加えた塗布液を塗り乾燥後500℃で
1時間加熱しIrO2として10 g/膳2となるまで
この操作を繰り返した。標準条件にわける酸素発生電位
は1.9ボルトであった。
Comparative Example 3 Iridium chloride and butyl orthotitanate were added to a titanium plate etched in the same manner as in Example 4 in a molar ratio of IrO2:T.
Weigh and mix so that i02 = 5:5, apply a coating solution containing a small amount of hydrochloric acid and butanol, dry, heat at 500°C for 1 hour, and repeat this operation until IrO2 is 10 g/plate 2. Ta. The oxygen evolution potential under standard conditions was 1.9 volts.

比較例4 実施例7と同じ条件で、Pt:IrO2:Ta20s=
80 : 11 : 9の被覆を有する電極を作製した
。この電極の標準条件における酸素発生電位は2.0ボ
ルトであった。
Comparative Example 4 Under the same conditions as Example 7, Pt:IrO2:Ta20s=
Electrodes with a coating of 80:11:9 were prepared. The oxygen evolution potential of this electrode under standard conditions was 2.0 volts.

メッキ操業実験 日本エム・アンド・ティ社製の高速クロムメッキ浴を使
用して、陽極面積、陰極面積ともに30e112とし、
陰極に5US304を使用して30A/d+s2で24
時間連続電解の条件で、実施例1〜7、比較例1〜4、
市販の白金メッキチタン電極(Pt/TI)を陽極に用
いてクロムメッキを行った。
Plating operation experiment Using a high-speed chrome plating bath manufactured by Japan M&T Co., Ltd., the anode area and cathode area were both 30e112,
24 at 30A/d+s2 using 5US304 for the cathode
Under the conditions of time continuous electrolysis, Examples 1 to 7, Comparative Examples 1 to 4,
Chrome plating was performed using a commercially available platinum-plated titanium electrode (Pt/TI) as an anode.

表1に24時間後におけるメッキ洛中の3価クロムの量
を示す。
Table 1 shows the amount of trivalent chromium in the plating after 24 hours.

(発明の効果) 従来、鉛合金が用いられていたクロムメッキ操作におい
て、標準条件にける酸素発生電位が2゜2ボルト以上で
ある鉛系以外の不溶性電極を使って三価クロムを6〜8
g/Iに保ってクロムメッキを行うことが本発明により
可能となり、鉛スラッジによる液の汚染を防止できるよ
うになった。
(Effects of the invention) In chromium plating operations where lead alloys were conventionally used, trivalent chromium can be coated with 6 to 8 volts of trivalent chromium using a non-lead insoluble electrode with an oxygen evolution potential of 2.2 volts or more under standard conditions.
The present invention makes it possible to carry out chromium plating while maintaining g/I, thereby making it possible to prevent liquid contamination by lead sludge.

Claims (1)

【特許請求の範囲】[Claims] 1 クロムメッキ浴を用いるメッキ操作において、陽極
として、標準条件における酸素発生電位が2.2〜2.
8ボルトであり、耐食性基体上に白金族金属および/ま
たはそれらの酸化物を含有する電極被覆を施した不溶性
陽極を用いることを特徴とするクロムメッキ方法。
1. In a plating operation using a chromium plating bath, as an anode, the oxygen evolution potential under standard conditions is 2.2 to 2.
A chromium plating method characterized in that it is 8 volts and uses an insoluble anode having an electrode coating containing platinum group metals and/or their oxides on a corrosion-resistant substrate.
JP5654890A 1990-03-09 1990-03-09 Method of chromium plating using insoluble anode Pending JPH03260097A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5654890A JPH03260097A (en) 1990-03-09 1990-03-09 Method of chromium plating using insoluble anode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5654890A JPH03260097A (en) 1990-03-09 1990-03-09 Method of chromium plating using insoluble anode

Publications (1)

Publication Number Publication Date
JPH03260097A true JPH03260097A (en) 1991-11-20

Family

ID=13030147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5654890A Pending JPH03260097A (en) 1990-03-09 1990-03-09 Method of chromium plating using insoluble anode

Country Status (1)

Country Link
JP (1) JPH03260097A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19523307A1 (en) * 1994-06-27 1996-01-11 Permelec Electrode Ltd Chrome plating process using trivalent chromium
KR20220142106A (en) * 2021-04-14 2022-10-21 주식회사 웨스코일렉트로드 An insoluble anode assembly for manufacturing an electrolytic metal foil

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19523307A1 (en) * 1994-06-27 1996-01-11 Permelec Electrode Ltd Chrome plating process using trivalent chromium
JPH0813199A (en) * 1994-06-27 1996-01-16 Permelec Electrode Ltd Chromium plating method
KR20220142106A (en) * 2021-04-14 2022-10-21 주식회사 웨스코일렉트로드 An insoluble anode assembly for manufacturing an electrolytic metal foil

Similar Documents

Publication Publication Date Title
US5560815A (en) Electrolytic chromium plating method using trivalent chromium
KR100227556B1 (en) Electrolytic electrode
JP3810043B2 (en) Chrome plating electrode
KR20050004867A (en) Electrode for gas evolution and method for its production
WO2013038928A1 (en) Positive electrode for electrolytic plating and electrolytic plating method using positive electrode
JPH049493A (en) Method for electrolytically tinning steel sheet
KR910000916B1 (en) Method of electrolytic treatment of metals
EP0475914B1 (en) Anode for chromium plating and processes for producing and using the same
US4936965A (en) Method for continuously electro-tinplating metallic material
JPH03260097A (en) Method of chromium plating using insoluble anode
US3497426A (en) Manufacture of electrode
US3412000A (en) Cathodic protection of titanium surfaces
JPS63270490A (en) Chromium plating method
JPH01100291A (en) Chromium plating method
JP2722263B2 (en) Electrode for electrolysis and method for producing the same
IL35237A (en) Metal oxide electrodes
JPH0860391A (en) Insoluble metallic anode
JP3658823B2 (en) Electrode for electrolysis and method for producing the same
JPH02294497A (en) Chromium plating method
JP2908540B2 (en) Chrome plating method
JPH03215700A (en) Lead dioxide-coated electrode
US4085013A (en) Chromium plating process employing manganese dioxide coated anodes
JP2722262B2 (en) Electrode for electrolysis and method for producing the same
JPH01184299A (en) Chromium plating method and anode for chrome plating
JPH0434640B2 (en)