JP4299253B2 - Hexavalent chromium plating method - Google Patents
Hexavalent chromium plating method Download PDFInfo
- Publication number
- JP4299253B2 JP4299253B2 JP2005023346A JP2005023346A JP4299253B2 JP 4299253 B2 JP4299253 B2 JP 4299253B2 JP 2005023346 A JP2005023346 A JP 2005023346A JP 2005023346 A JP2005023346 A JP 2005023346A JP 4299253 B2 JP4299253 B2 JP 4299253B2
- Authority
- JP
- Japan
- Prior art keywords
- metal
- plating
- plating bath
- platinum
- chromium plating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Electroplating And Plating Baths Therefor (AREA)
Description
本発明はクロムめっき方法に関し、特に6価クロムめっき浴中で、鉛又は鉛合金電極を使用せずに、安定にクロムめっきを行う方法に関する。 The present invention relates to a chromium plating method, and more particularly to a method of stably performing chromium plating in a hexavalent chromium plating bath without using lead or a lead alloy electrode.
クロムめっきは、硬さや耐食性に優れることから、自動車のエンジン部品をはじめ、各種シリンダー、グラビア印刷ロール、工業用、装飾用として広く用いられている。
通常クロムめっきに用いられるめっき浴には、ケイフッ化物浴とサージェント浴があるが、電流効率がやや低いものの取り扱いが容易であることから、後者が広く用いられている。
このサージェント浴のめっきには、従来陽極に鉛または鉛合金を用いているが、3価クロムの濃度が維持できる利点があるものの、使用時に陽極溶解によりクロム酸鉛が大量に沈殿するという問題点がある。
この改善策として二酸化鉛を陽極として用いる方法が提案されている。これは、極めて鉛の溶出が少ないが、(二酸化鉛は脆く、若干の衝撃にも皮膜が脱落するなど、取り扱いが難しく、また逆通電にも弱いなどクロムめっきに採用するには問題があった。)
更なる改善策として、白金族金属およびその酸化物を主成分とした不溶性電極を陽極に用いてめっきを行う方法があるが、二酸化鉛とは異なり3価クロムから6価クロムへの酸化力が極めて低いために、めっき浴中の3価クロム濃度が上昇する問題を抱えている。この対策として、特開平3-47985号公報では、陽極に白金族金属系不溶性電極を用いて、めっき浴中に鉛塩類を添加する方法や、特開平6-47757号公報では、二酸化鉛被覆電極と白金族不溶性電極との組み合わせによる複合電極が、特開平11-117095号公報では二酸化鉛が含まれている浴には白金族系不溶性電極を、その他には白金族系酸化物の上に白金めっきを施し、さらに二酸化鉛層を被覆した電極が考案されている。
しかしながら、上記各特許公報に記載の内容では、めっき浴に必ず鉛が含まれており、近年の環境問題を考慮すると鉛を含まない浴でのめっき手法で行うのが望ましい。
The plating baths usually used for chromium plating include a silicofluoride bath and a sergeant bath, but the latter is widely used because it has a slightly low current efficiency and is easy to handle.
In this Sargent bath plating, lead or lead alloy is conventionally used for the anode, but there is an advantage that the concentration of trivalent chromium can be maintained, but there is a problem that a large amount of lead chromate precipitates due to anodic dissolution during use. There is.
As an improvement measure, a method using lead dioxide as an anode has been proposed. Although lead elution is very small, lead dioxide is fragile, and it is difficult to handle, such as the film falling off even with a slight impact, and it is difficult to use for chromium plating because it is weak against reverse current. .)
As a further improvement measure, there is a method in which an insoluble electrode mainly composed of a platinum group metal and its oxide is used as an anode, but unlike lead dioxide, it has an oxidizing power from trivalent chromium to hexavalent chromium. Since it is extremely low, it has a problem of increasing the trivalent chromium concentration in the plating bath. As countermeasures, JP-A-3-47985 discloses a method of adding a lead salt into a plating bath using a platinum group metal-based insoluble electrode as an anode, and JP-A-6-47757 discloses a lead dioxide-coated electrode. In combination with a platinum group insoluble electrode, JP-A-11-117095 discloses a platinum group insoluble electrode for a bath containing lead dioxide and a platinum group oxide on a platinum group oxide. An electrode that has been plated and further coated with a lead dioxide layer has been devised.
However, according to the contents described in the above patent publications, lead is always included in the plating bath, and considering recent environmental problems, it is desirable to perform the plating using a bath that does not contain lead.
本発明においては、陽極には白金族系不溶性電極を用いて、この際問題点となる、めっき浴中の3価クロムの6価クロムへの酸化力低下を改善し、めっき浴中の3価クロム濃度を適正範囲に維持できる鉛電極を使用しないクロムめっきの方法を提案することを目的とする。 In the present invention, a platinum group insoluble electrode is used as the anode, which improves the reduction in oxidation power of trivalent chromium in the plating bath to hexavalent chromium, which is a problem in this case, and reduces the trivalent in the plating bath. The purpose is to propose a chromium plating method that does not use a lead electrode that can maintain the chromium concentration within an appropriate range.
本発明は上記の問題点を解決するために鋭意検討した結果、クロムめっき浴中における陽極として、チタンを含む金属基体上に白金族金属を被覆した不溶性電極を使用し、めっき浴中に銀イオンを添加することを特徴とするクロムめっき方法を見出した。 即ち、チタンを含む金属基体上に白金族金属を被覆した不溶性電極を使用し、且つ6価クロムめっき浴中に銀化合物、例えば硝酸銀や酸化銀を添加することにより、3価クロムの6価クロムへの酸化を十分に促進し、6価クロムめっき浴中の3価クロム濃度を適正範囲に維持できることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the present invention uses an insoluble electrode in which a platinum group metal is coated on a metal substrate containing titanium as an anode in a chromium plating bath, and silver ions are contained in the plating bath. We have found a chromium plating method characterized by adding That is, by using an insoluble electrode in which a platinum group metal is coated on a metal substrate containing titanium, and adding a silver compound such as silver nitrate or silver oxide to a hexavalent chromium plating bath, hexavalent chromium of trivalent chromium is added. The present inventors have found that the oxidation to can be sufficiently accelerated and the trivalent chromium concentration in the hexavalent chromium plating bath can be maintained within an appropriate range, and the present invention has been completed.
通常のクロムめっきでは、3価クロム濃度が増大するとめっき被膜の光沢性や被覆力が低下するので、6価クロムめっき浴中の3価クロム濃度を適正な範囲1〜5
g/l(g/リットル)に保つことが必要であった。古くから使われている鉛又は鉛合金電極は3価クロム濃度を適正な範囲に保つ能力があったので、今日まで多用されてきた。しかし鉛又は鉛合金電極を使用すると、鉛の一部がめっき液中に溶出しクロム酸鉛を形成してめっき槽中に沈殿することや、めっき休止時には鉛陽極表面がクロム酸鉛で覆われて、これが抵抗となることにより、めっきの析出不良や厚み不足の原因となっていた。また沈殿物の槽内の滞留によりめっき表面にピットが形成されるなどの欠陥因子になっていた。
そこで、チタン基体上に白金を電気めっきや熱分解被覆した不溶性電極が検討されたが、めっき浴中の3価クロム濃度が増大するという問題点を十分に解決することができなかった。本発明者らは鋭意研究した結果、6価クロムめっき浴中に銀化合物、例えば硝酸銀、酸化銀を添加することにより、3価クロム濃度を適正な範囲(1〜5
g/l)に保つことが可能である事を見出し、本発明を完成するに至った。
In normal chrome plating, the trivalent chromium concentration in the hexavalent chromium plating bath falls within an appropriate range of 1-5 because the gloss and covering power of the plating film decrease as the trivalent chromium concentration increases.
It was necessary to keep g / l (g / l). Lead or lead alloy electrodes that have been used for a long time have been used extensively to date because they have the ability to keep the trivalent chromium concentration within the proper range. However, when a lead or lead alloy electrode is used, some of the lead elutes in the plating solution and forms lead chromate and precipitates in the plating tank, or the surface of the lead anode is covered with lead chromate when plating is suspended. As a result, this has become a cause of plating deposition failure and insufficient thickness. Moreover, it has become a defect factor such as formation of pits on the plating surface due to retention of the precipitate in the tank.
In view of this, an insoluble electrode obtained by electroplating or pyrolytically coating platinum on a titanium substrate has been studied, but the problem that the trivalent chromium concentration in the plating bath increases cannot be solved sufficiently. As a result of intensive studies, the present inventors have found that a trivalent chromium concentration can be adjusted to an appropriate range (1 to 5) by adding a silver compound such as silver nitrate or silver oxide into a hexavalent chromium plating bath.
g / l), and the present invention has been completed.
6価クロムめっき浴とは従来の無水クロム酸に硫酸を加えたサージェント浴やそれに無機又は有機化合物の添加剤を加えた高速クロムめっき浴である。そこに添加する銀イオン濃度は金属換算で10
mg/l以上の範囲が適当である。10 mg/l以下では3価クロム濃度が増加し、効果が少ない。また上限は特にないが5 g/l程度である。それ以上に添加しても3価クロム増加抑制の効果は変わらず経済的効果も少ない。銀イオン源として用いる化合物としては、硝酸銀、酸化銀、酢酸銀、過塩素酸銀、トリフルオロメタンスルホン酸銀等の無機および有機銀化合物が適当である。めっき液の管理の点から酸化銀は溶解速度が適当で銀イオン源として好ましい。
The hexavalent chromium plating bath is a conventional sergeant bath in which sulfuric acid is added to chromic anhydride or a high-speed chromium plating bath in which an additive of an inorganic or organic compound is added thereto. The silver ion concentration added there is 10 in terms of metal.
A range of mg / l or more is appropriate. At 10 mg / l or less, the trivalent chromium concentration increases and is less effective. There is no particular upper limit, but it is about 5 g / l. Even if it is added more than that, the effect of suppressing the increase of trivalent chromium is not changed and the economic effect is also small. As the compound used as the silver ion source, inorganic and organic silver compounds such as silver nitrate, silver oxide, silver acetate, silver perchlorate and silver trifluoromethanesulfonate are suitable. From the viewpoint of management of the plating solution, silver oxide has a suitable dissolution rate and is preferable as a silver ion source.
銀イオンを添加すると何故3価クロム濃度を適正な範囲(1〜5 g/l)に保つ効果があるのか定かではないが、チタンを含む金属基体上に白金族金属を被覆した不溶性電極上で3価クロムの6価クロムへの酸化を十分に促進する触媒的な作用をしているか、または単に電極の酸素過電圧を上げているのではなく3価クロム生成の還元反応を阻害している可能性もある。この銀イオンを添加しためっき浴のめっき被膜は、光沢性や被覆力にも問題が生じないことも明らかとなった。 It is not clear why the addition of silver ions has the effect of keeping the trivalent chromium concentration within the proper range (1-5 g / l). However, on the insoluble electrode in which a platinum group metal is coated on a metal substrate containing titanium. It may act as a catalyst that sufficiently promotes the oxidation of trivalent chromium to hexavalent chromium, or may inhibit the reduction reaction of trivalent chromium formation rather than simply increasing the oxygen overvoltage of the electrode. There is also sex. It has also been clarified that the plating film of the plating bath to which silver ions are added has no problem with respect to glossiness or covering power.
チタンを含む金属基体上に白金族金属を被覆した不溶性電極において、チタンを含む金属としては、金属チタン、チタン−タンタル、チタン−ニオブ、チタン−パラジウム等のチタン基合金が最適である。この基体の形状は板状、有孔板状、棒状、網状等所望のものとすることができる。被覆する金属としては白金以外に、白金とイリジウムの合金が有る。白金金属を被覆した不溶性電極が最も好ましく、白金金属を被覆した不溶性電極は白金の電気めっきや熱分解被覆で作製が可能である。白金金属被覆層厚みは電極の寿命等を考慮して例えば0.1 μm以上、好ましくは0.5 μm以上である。白金金属のみの場合に次いで、イリジウム酸化物と白金金属とを被覆した不溶性電極を用いても好ましい結果が得られる。本発明のめっき方法を使用すれば、鉛電極を使用した場合に問題となるクロム酸鉛のスラッジの生成がなくなり、めっき浴の管理が容易になり、長期に安定したクロムめっき被膜が得られ、経済的効果ははなはだ大きい。
以下実施例で示すが、本発明はこれらに限定されるものではない。
In an insoluble electrode in which a platinum group metal is coated on a metal substrate containing titanium, titanium-based alloys such as metal titanium, titanium-tantalum, titanium-niobium, and titanium-palladium are optimal as the metal containing titanium. The substrate may have any desired shape such as a plate shape, a perforated plate shape, a rod shape, or a net shape. In addition to platinum, the metal to be coated includes an alloy of platinum and iridium. The insoluble electrode coated with platinum metal is most preferable, and the insoluble electrode coated with platinum metal can be produced by electroplating or pyrolytic coating of platinum. The thickness of the platinum metal coating layer is, for example, 0.1 μm or more, preferably 0.5 μm or more in consideration of the lifetime of the electrode. In the case of using only platinum metal, a preferable result can be obtained by using an insoluble electrode coated with iridium oxide and platinum metal. If the plating method of the present invention is used, there is no generation of lead chromate sludge, which is a problem when a lead electrode is used, management of the plating bath is facilitated, and a stable chromium plating film is obtained over a long period of time. The economic effect is huge.
Examples are shown below, but the present invention is not limited to these examples.
(電気めっき白金)
チタン金属基体に2 μm厚の白金を電気めっきした電極は市販(田中貴金属工業株式会社製)のものを使用した。以下の条件で鉄板にクロムめっきを行い、25時間電解後のめっき浴中の3価クロム濃度を測定した。3価クロム濃度の測定は比色法に拠った。銀イオン源は硝酸銀を用いて、銀イオン(I)を金属換算で1.5
g/lとした。電解後の浴中の3価クロム濃度は1.1 g/lに抑えることが可能であった。
(クロムめっき条件)
めっき浴組成: 無水クロム酸 250 g/l、 硫酸 2.5 g/l
浴温:45 ℃
陽極電流密度:15 A/dm2
陰極:鉄板
(Electroplating platinum)
A commercially available electrode (manufactured by Tanaka Kikinzoku Kogyo Co., Ltd.) was used as the electrode obtained by electroplating platinum having a thickness of 2 μm on a titanium metal substrate. The iron plate was plated with chromium under the following conditions, and the trivalent chromium concentration in the plating bath after electrolysis for 25 hours was measured. The trivalent chromium concentration was measured by a colorimetric method. The silver ion source uses silver nitrate, and the silver ion (I) is 1.5
g / l. The trivalent chromium concentration in the bath after electrolysis was able to be suppressed to 1.1 g / l.
(Chrome plating conditions)
Plating bath composition: chromic anhydride 250 g / l, sulfuric acid 2.5 g / l
Bath temperature: 45 ° C
Anode current density: 15 A / dm 2
Cathode: Iron plate
(熱分解被覆白金)
チタン金属製の板の表面を粒度36番のアルミナ粒子を用いてブラスト処理(砂かけ処理)し流水で洗浄した後、10
%の蓚酸(90 ℃)水溶液に1時間浸漬して表面をエッチング処理した。表面処理したチタン金属板に塩化白金酸のブタノール溶液(白金金属として45 g/l)を塗付し、乾燥後480
℃で10分間熱処理(焼成)した。塩化白金酸のブタノール溶液の塗付、乾燥、焼成の操作を繰り返し、白金金属の厚みを1 μmとした。
この熱分解被覆白金電極を用い、硝酸銀を用いて銀イオン(I)を金属換算で0.8 g/l添加した以外は実施例1と同様のクロムめっき条件を用いて25時間電解後のめっき浴中の3価クロム濃度を測定した。電解後の浴中の3価クロム濃度は1.2
g/lに抑えることが可能であった。
実施例1、実施例2で得られた結果を表1に示す。
(Pyrolytic coated platinum)
The surface of the titanium metal plate was blasted with sand particles of size 36 and washed with running water.
The surface was etched by immersion in a 1% aqueous solution of oxalic acid (90 ° C.) for 1 hour. Apply a butanol solution of chloroplatinic acid (45 g / l as platinum metal) to the surface-treated titanium metal plate, and after drying, 480
Heat treatment (baking) at 10 ° C. for 10 minutes. The operation of applying a butanol solution of chloroplatinic acid, drying and firing were repeated, and the thickness of the platinum metal was 1 μm.
In this plating bath after electrolysis for 25 hours using the same chromium plating conditions as in Example 1 except that this pyrolytically coated platinum electrode was used and silver nitrate (I) was added in an amount of 0.8 g / l in terms of metal using silver nitrate. The trivalent chromium concentration of was measured. The trivalent chromium concentration in the bath after electrolysis is 1.2.
It was possible to suppress to g / l.
The results obtained in Example 1 and Example 2 are shown in Table 1.
チタン金属基体に実施例1で用いた白金を電気めっきした電極を使用して、以下の条件で鉄板にクロムめっきを行い、めっき浴中の3価クロム濃度を測定した。銀イオンは酸化銀(I)を用いて、銀イオン(I)濃度で50 mg/lがめっき浴中に含まれるように定期的に補充した。この際2時間後に3価クロム濃度は1.1
g/lに達したが、以降濃度の変化は見られず、2日後のめっき浴中の3価クロム濃度は1.1 g/lであった。これより3価クロムの増加を抑制していることが確認できた。
(クロムめっき条件)
めっき浴組成: 無水クロム酸 250 g/l、硫酸 2.5 g/l
浴温:50 ℃
陽極電流密度:15 A/dm2
陰極:鉄板
Using an electrode obtained by electroplating the platinum used in Example 1 on a titanium metal substrate, chromium plating was performed on an iron plate under the following conditions, and the trivalent chromium concentration in the plating bath was measured. Silver ions were periodically replenished with silver (I) oxide so that the silver ion (I) concentration was 50 mg / l in the plating bath. In this case, the trivalent chromium concentration was 1.1 hours after 2 hours.
After reaching g / l, no change in concentration was observed, and the concentration of trivalent chromium in the plating bath after 2 days was 1.1 g / l. From this, it was confirmed that the increase in trivalent chromium was suppressed.
(Chrome plating conditions)
Plating bath composition: chromic anhydride 250 g / l, sulfuric acid 2.5 g / l
Bath temperature: 50 ° C
Anode current density: 15 A / dm 2
Cathode: Iron plate
チタン金属製の板の表面を粒度36番のアルミナ粒子を用いてブラスト処理(砂かけ処理)し流水で洗浄した後、10 %の蓚酸(90 ℃)水溶液に1時間浸漬して表面をエッチング処理した。表面処理したチタン金属板に塩化白金酸と塩化イリジウム酸を混合したもののブタノール溶液(白金金属として32
g/l、イリジウム金属として13 g/l)を塗布し、乾燥後480℃で10分間熱処理(焼成)した。上記混合溶液の塗布、乾燥、焼成の操作を繰り返し、白金と酸化イリジウムの厚みを1
μmとした。
チタン金属基体に白金金属と酸化イリジウムを熱分解法にて被覆を行ったものを電極に使用した以外は実施例3と同様の条件を用いてクロムめっきを行った。この際6時間後に3価クロム濃度は2.9 g/lまで上昇したが、以降濃度の変化は見られず、2日後の3価クロム濃度は2.9 g/lであった。これより3価クロムの増加を抑制していることが確認できた。
The surface of the titanium metal plate is blasted with sand particles of size 36 (sanding), washed with running water, and then immersed in a 10% oxalic acid (90 ° C) aqueous solution for 1 hour to etch the surface. did. Butanol solution of a surface-treated titanium metal plate mixed with chloroplatinic acid and chloroiridate (32
g / l, 13 g / l as iridium metal) was applied, dried and then heat-treated (fired) at 480 ° C. for 10 minutes. Repeat the coating, drying, and firing operations for the above mixed solution to reduce the thickness of platinum and iridium oxide to 1
μm.
Chromium plating was performed using the same conditions as in Example 3 except that a titanium metal substrate coated with platinum metal and iridium oxide by a thermal decomposition method was used as an electrode. At this time, the trivalent chromium concentration increased to 2.9 g / l after 6 hours, but no change in concentration was observed thereafter, and the trivalent chromium concentration after 2 days was 2.9 g / l. From this, it was confirmed that the increase in trivalent chromium was suppressed.
(比較例1)
銀イオン(I)を添加しないで実施例3で用いた電極と同様の陽極を使用し、実施例3と同様のクロムめっき条件にてめっき浴中の3価クロム濃度を測定した。この際めっき浴中の3価クロム濃度は徐々に上昇し、2日後のめっき浴中の3価クロム濃度は6.2
g/lに達しており、3価クロム濃度の増加を抑制できなかった。
(Comparative Example 1)
The trivalent chromium concentration in the plating bath was measured under the same chromium plating conditions as in Example 3 using the same anode as that used in Example 3 without adding silver ions (I). At this time, the trivalent chromium concentration in the plating bath gradually increases, and the trivalent chromium concentration in the plating bath after 2 days is 6.2.
Since it reached g / l, the increase in trivalent chromium concentration could not be suppressed.
(比較例2)
銀イオン(I)を添加しないで実施例4で用いた電極と同様の陽極を使用し、実施例3と同様のクロムめっき条件にてめっき浴中の3価クロム濃度を測定した。この際、めっき浴中の3価クロム濃度は比較例1より増加速度は大きく、2日後にはめっき浴中の3価クロム濃度は11.7
g/lに達しており、3価クロム濃度の増加を抑制できなかった。
(Comparative Example 2)
The trivalent chromium concentration in the plating bath was measured under the same chromium plating conditions as in Example 3 using the same anode as that used in Example 4 without adding silver ions (I). At this time, the trivalent chromium concentration in the plating bath increased at a higher rate than in Comparative Example 1, and after 2 days, the trivalent chromium concentration in the plating bath was 11.7%.
Since it reached g / l, the increase in trivalent chromium concentration could not be suppressed.
実施例3、実施例4、比較例1、及び比較例2で得られた結果を表2に示す。
Table 2 shows the results obtained in Example 3, Example 4, Comparative Example 1, and Comparative Example 2.
Claims (5)
以上 The hexavalent chromium plating method according to claim 1 or 2, wherein the insoluble electrode is an insoluble electrode in which a platinum metal is coated on a titanium metal substrate.
more than
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005023346A JP4299253B2 (en) | 2004-10-08 | 2005-01-31 | Hexavalent chromium plating method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004296168 | 2004-10-08 | ||
JP2005023346A JP4299253B2 (en) | 2004-10-08 | 2005-01-31 | Hexavalent chromium plating method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006131987A JP2006131987A (en) | 2006-05-25 |
JP4299253B2 true JP4299253B2 (en) | 2009-07-22 |
Family
ID=36725796
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005023346A Active JP4299253B2 (en) | 2004-10-08 | 2005-01-31 | Hexavalent chromium plating method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4299253B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4734664B1 (en) | 2010-09-17 | 2011-07-27 | 田中貴金属工業株式会社 | Electrode for electrolysis, anode for electrolysis of ozone, anode for electrolysis of persulfate, and anode for chromium electrooxidation |
EP2792770B1 (en) * | 2013-04-17 | 2015-06-24 | ATOTECH Deutschland GmbH | Functional chromium layer with improved corrosion resistance |
-
2005
- 2005-01-31 JP JP2005023346A patent/JP4299253B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2006131987A (en) | 2006-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3212327B2 (en) | Electrode for electrolysis | |
JP6788506B2 (en) | Passivation of microdiscontinuous chromium precipitated from trivalent electrolyte | |
JP3810043B2 (en) | Chrome plating electrode | |
JPS636636B2 (en) | ||
JP6855833B2 (en) | Manufacturing method of Sn-plated steel sheet and Sn-plated steel sheet | |
JP3914162B2 (en) | Oxygen generating electrode | |
US3951759A (en) | Chromium electroplating baths and method of electrodepositing chromium | |
JP4986267B2 (en) | Electrode manufacturing method | |
JP5522484B2 (en) | Electrolytic plating anode and electrolytic plating method using the anode | |
WO2011083700A1 (en) | Chromium plating method | |
JP6404226B2 (en) | Electrode for oxygen generation in industrial electrochemical processes, method for producing the electrode, and method for cathodic electrodeposition of metal from aqueous solution using the electrode | |
Belevskii et al. | Electrodeposition of Nanocrystalline Fe—W Coatings from a Citrate Bath | |
JP7097042B2 (en) | Electrode for chlorine generation | |
JP4299253B2 (en) | Hexavalent chromium plating method | |
JP2007508457A (en) | Electrolytic method for phosphating metal surfaces and phosphated metal layers thereby | |
JP2005126769A (en) | Black coating and method for forming black coating | |
JP3654204B2 (en) | Oxygen generating anode | |
JPH04116199A (en) | Anode for chromium plating and manufacture thereof | |
JP2722263B2 (en) | Electrode for electrolysis and method for producing the same | |
JPH0559999B2 (en) | ||
JP2004360067A (en) | Electrode for electrolysis, and its production method | |
JP6200882B2 (en) | Electrode for producing hydrogen water and production method | |
JPH01100291A (en) | Chromium plating method | |
JPH01184299A (en) | Chromium plating method and anode for chrome plating | |
JP2722262B2 (en) | Electrode for electrolysis and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060928 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090119 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090203 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090316 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090414 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090416 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4299253 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120424 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130424 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140424 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |