JPS59116400A - Automatic controlling method of concentration in plating bath - Google Patents

Automatic controlling method of concentration in plating bath

Info

Publication number
JPS59116400A
JPS59116400A JP23389482A JP23389482A JPS59116400A JP S59116400 A JPS59116400 A JP S59116400A JP 23389482 A JP23389482 A JP 23389482A JP 23389482 A JP23389482 A JP 23389482A JP S59116400 A JPS59116400 A JP S59116400A
Authority
JP
Japan
Prior art keywords
metal
plating
tank
value
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23389482A
Other languages
Japanese (ja)
Other versions
JPS6116440B2 (en
Inventor
Hiro Amano
豁 天野
Kunitoshi Watanabe
渡辺 国俊
Satoru Yamashita
悟 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP23389482A priority Critical patent/JPS59116400A/en
Publication of JPS59116400A publication Critical patent/JPS59116400A/en
Publication of JPS6116440B2 publication Critical patent/JPS6116440B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)

Abstract

PURPOSE:To make the soln. in a plating cell always normal, in an insoluble electrode plating device having a circulation cell and a metal dissolving cell by adding a plating current value and the replenishing amt. of metal by a replenishing soln. in replenishing the metal in accordance with a metallic ion value. CONSTITUTION:A plating current value I, a value by a analysis meter 3 for the metallic ion in an electrolyte to be fed into a plating cell 4, a value by a hydrometer 18, the control value 8 of water 9, chemical soln. 10, sulfuric acid 11 by a liquid level gage 6 and a free sulfuric acid densitometer 7 and the value from a metal level gage 17 of a metal dissolving cell 13 are inputted into a control device 19 for the concn. of the plating soln. The device 19 outputs a charging instruction to a metal charger 14 in accordance with the values inputted thereto and instructs the selection of valves V-1, V-2. A metal replenishing circuit by a pump 12 is bypassed by the selection of valves, whereby the excess concn. of the metal in a tank 1 is prevented and the troublesome settling in the system is prevented. The concn. of the metallic ion in the plating bath is thus automatically controlled.

Description

【発明の詳細な説明】 本発明はメッキ浴特に不溶解電極型電気メッキにおける
メッキ浴の濃度の自動制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for automatically controlling the concentration of a plating bath, particularly in non-dissolving electrode type electroplating.

鉛等の不溶性電極を用いた鋼板の電気メツキ設備におい
ては、安定なメッキ性を維持するだめにメッキ浴濃度を
一定に保つことが重要である。特に亜鉛と鉄の合金メッ
キを行う場合には、より厳しくそれぞれの金属イオン濃
度を一定に保つ必要がある。
In equipment for electroplating steel plates using insoluble electrodes such as lead, it is important to keep the plating bath concentration constant in order to maintain stable plating properties. In particular, when performing alloy plating of zinc and iron, it is necessary to maintain the concentration of each metal ion more strictly at a constant level.

従来、亜鉛単独の電気メッキにおけるメッキ浴濃度制御
は、たとえは特公昭53−24897号公報にみられる
ように、金、属溶解槽内に適当量の亜鉛塊を入れておき
、メッキ液循環タンクと金属溶解槽の間にメッキ液を循
環させ、その循環流量を調節したり、0N−OFFする
ことによシ行われていた。
Conventionally, plating bath concentration control in electroplating with zinc alone has been carried out by placing an appropriate amount of zinc ingots in a metal dissolving tank, for example, as seen in Japanese Patent Publication No. 53-24897, and using a plating solution circulation tank. This was done by circulating the plating solution between the plating tank and the metal dissolving tank, and adjusting the circulation flow rate or turning it off.

ところが、亜鉛と鉄の合金電気メッキを行うに当シ、鉄
の溶解を行う場合、金属溶解槽へのメッキ液循環を長時
間停止すれは離溶性の水酸化鉄の析出が生じ、その析出
に要する時間は溶解槽内の鉄の量や、メッキ浴組成によ
シ異なるが、一旦析出すると操業不能の事態にも々pか
ねない。このことから、メッキ液循環タンクと溶解槽間
のメッキ液は、短時間の停止を除き、水酸化鉄析出防止
の理由から常時循環させる必要がある。従って亜鉛と鉄
の合金メッキを行う場合は、前記従来の濃度制御方法は
適当でなく本質的に矛盾を含むことになる。
However, when electroplating zinc and iron alloys and dissolving iron, if the circulation of the plating solution to the metal melting tank is stopped for a long time, the precipitation of resolvable iron hydroxide will occur, and the precipitation will be affected. The time required varies depending on the amount of iron in the melting tank and the composition of the plating bath, but once precipitation occurs, it may lead to an operational failure. For this reason, it is necessary to constantly circulate the plating solution between the plating solution circulation tank and the dissolution tank in order to prevent iron hydroxide precipitation, except for short-term stops. Therefore, when performing alloy plating of zinc and iron, the conventional concentration control method is not appropriate and is inherently contradictory.

本発明の目的は、金属溶解槽内にメッキ液を常時循環さ
せることが必要な電気メッキにおいても、メッキ浴の金
属イオン濃度を厳密に制仙jすることが可能な方法を提
供することにあQlこの目的を達成するための本発明の
メッキ浴濃度の自動制御方法は、メッキ液循環タンクと
、該メッキ液循環タンクへの水、薬液、酸液の補給装置
と、金属溶解槽と、該金属浴)9イ慴への金属投入装置
とを有し、前記メッキ液循環タンクと金属溶解槽の間の
循環路に金属溶解槽をバイパスさせるだめの弁を設けた
不溶解性電極型成気メッキ設備における電気メッキにお
いて、メッキ電流値を用いて鼻出した消費金属量と、前
配水、薬液、酸液の補給量に見会う金属量と、メッキ液
中の金属イオン濃度の測定値と目標値との差に応じて算
出した補正金属量との合計金属量を前記金属投入装置よ
シ金属溶解槽へ投入し、金属イオン濃度の測定値が目標
範囲を超えたときは前記弁を操作して金属溶解槽をバイ
パスすることを特徴とするものである。以下図面にもと
づき本発明の詳細な説明する。
An object of the present invention is to provide a method that can strictly control the concentration of metal ions in a plating bath even in electroplating that requires constant circulation of a plating solution in a metal dissolving tank. Ql The method for automatically controlling the concentration of a plating bath according to the present invention to achieve this objective includes a plating solution circulation tank, a supply device for water, chemical solution, and acid solution to the plating solution circulation tank, a metal dissolution tank, and a plating solution circulation tank. (Metal bath) 9) An insoluble electrode type aeration system, which has a device for introducing metal into the metal bath, and has a valve in the circulation path between the plating solution circulation tank and the metal dissolution tank to bypass the metal dissolution tank. In electroplating in plating equipment, the amount of metal consumed using the plating current value, the amount of metal corresponding to the amount of pre-water distribution, chemical solution, and acid solution replenishment, and the measured value and target of metal ion concentration in the plating solution. The total metal amount, including the corrected metal amount calculated according to the difference between the two values, is charged into the metal dissolving tank through the metal charging device, and when the measured value of the metal ion concentration exceeds the target range, the valve is operated. This is characterized by bypassing the metal melting tank. The present invention will be described in detail below based on the drawings.

図面は、本発明方法を実jt=する電気メツキ設備の構
成の1例を示す。なお図面には、一点鎖線で囲んだ装置
(群)を1組しか図示していないが、亜鉛と鉄の合金メ
ッキを行う設備においてはこの装置(#)が2!#i設
置されている。しかし濃度制御はそれぞれの金属(亜鉛
、鉄)イオンに着目して独立に行えはよいから、以下図
面にもとづく説明では亜鉛と鉄を特に区別せず金属とし
て説明する。
The drawing shows an example of the configuration of electroplating equipment for implementing the method of the present invention. Although the drawing only shows one set of equipment (group) surrounded by a dashed-dotted line, this equipment (#) is 2! #i is installed. However, since concentration control can be performed independently by focusing on each metal (zinc, iron) ion, in the following explanation based on the drawings, zinc and iron will be explained as metals without making a particular distinction.

循環タンク1のメッキ液はポンプ2によりメッキ槽4へ
送られ、メッキに供はれた後、循環タンク1へ還流され
る。一方、ポンプ12によシ常時メッキ液が循環タンク
1から金属溶解槽13に送られ、沈澱槽15、ポンプ1
6を経て循環タンクlへ戻シ、メッキ槽4で消費された
金属を補給する。弁V−1,V−2は流路切替弁である
。補給される金属は金属投入装置14から金属溶解槽1
3へ投入され、溶解される。
The plating solution in the circulation tank 1 is sent to the plating tank 4 by the pump 2, used for plating, and then returned to the circulation tank 1. On the other hand, the pump 12 constantly sends the plating solution from the circulation tank 1 to the metal dissolution tank 13, the precipitation tank 15, and the pump 1.
6, the metal is returned to the circulation tank 1, and the metal consumed in the plating tank 4 is replenished. Valves V-1 and V-2 are flow path switching valves. The metal to be replenished is transferred from the metal charging device 14 to the metal melting tank 1.
3 and dissolved.

メッキの進行にともない、被メッキ材である鋼ストリッ
プ5によシメッキ液が持ち去られることによシ循環タン
クlの液位が低下する。この液位を液面計6で測定し、
液位が予め設定された低いレベル″L#まで低下すると
液面・酸a度制御装置8によシ、水タンク9.薬液タン
ク10の弁V −3、V−4を開いて水および薬液を一
定量づつ補給する。一方、循環タンク1内の遊離硫酸濃
度を#置針7で測定し、目標濃度になるように液面・酸
濃度制御装置8によ’)4jm酸タンク11の弁V −
5を開いて補給する。この一連の動作を、循環タンクl
の液位が予め設定きれた高いレベル゛f(”に達ブーる
まで繰返す。ここで、フリー硫酸一度の代少にPi−1
値の管理を行ってもよい。
As plating progresses, the plating solution is carried away by the steel strip 5, which is the material to be plated, and the liquid level in the circulation tank 1 decreases. This liquid level is measured with a liquid level gauge 6,
When the liquid level drops to a preset low level "L#", the liquid level/acidity control device 8 opens the water tank 9 and the valves V-3 and V-4 of the chemical tank 10 to release water and the chemical liquid. On the other hand, the free sulfuric acid concentration in the circulation tank 1 is measured with the # holder 7, and the liquid level/acid concentration control device 8 is used to adjust the concentration to the target concentration by adjusting the valve V of the acid tank 11. −
Open 5 and replenish. This series of operations is carried out in the circulation tank l.
Repeat this until the liquid level reaches a preset high level ゛f().
Value management may also be performed.

釡属投入量は、メッキ液a度制御装置19によシ演算す
る。通常溶解槽への金属の投入は間欠的に投入する方式
が一般的であシ、一定時間々@T(分)毎に4グ出しを
行ない平均切出し量は1回毎の投入量を加減することに
より調節する。
The amount of metal to be added to the pot is calculated by the plating solution temperature control device 19. Normally, the metal is fed into the melting tank intermittently, and 4 grams are taken out every certain period of time @ T (minutes), and the average amount of metal cut out is adjusted by the amount put in each time. Adjust by

本発明においては、1回毎の投入金属量M(袷)は次式
により求める。
In the present invention, the amount of metal introduced each time M (lineage) is determined by the following formula.

M=Mf1+Mf2+Mb          ・・・
・・・・・・(1)Mhは投入時間々隔T(分)内にメ
ッキ槽4で消費された金属量(kg)であシ、次式によ
シ算出する。
M=Mf1+Mf2+Mb...
(1) Mh is the amount of metal (kg) consumed in the plating tank 4 within the input time interval T (minutes) and is calculated according to the following formula.

Mft ”” Kfx ’ f、、 Idt     
      ・・・・・・・・・(2)ここで■はメッ
キ′m流の実測値で、これ′f:T分間積分したものに
比例係数Kf□を乗じた値がメッキのために消費された
金属量になる。
Mft ”” Kfx 'f,, Idt
・・・・・・・・・(2) Here ■ is the actual measured value of the plating flow 'm', which is 'f': The value obtained by multiplying the value integrated over T by the proportional coefficient Kf□ is consumed for plating. amount of metal.

1VLf2は循環タンク1の液補充が行われたとき、そ
れに見合う金属量(梅)であシ、次式によ)算出する。
1VLf2 is calculated using the following formula when the circulation tank 1 is replenished with the corresponding amount of metal.

1°df2 = Kf2− V           
   −・−(3)ここでVは、循環タンクlの液位全
上昇させるために薄光された液の量であシ、液面a十6
の測定値よシ算出する。液補充が行われないときはVは
零である。
1°df2 = Kf2-V
-・-(3) Here, V is the amount of liquid diluted to raise the liquid level in the circulation tank l, and the liquid level is a
Calculate based on the measured value. When liquid replenishment is not performed, V is zero.

V  =  S  ・ (L2 −  Ls  )  
                        −
曲・(4)ここにSは循環タンクlの断面積、L4 r
 L2は液補充前後の液位である。々お、補充液量Vは
水、薬液、硫酸の各糸紐に流星M1をつけて実測しても
よい。
V=S・(L2−Ls)

Song・(4) Here, S is the cross-sectional area of the circulation tank l, L4 r
L2 is the liquid level before and after liquid replenishment. Alternatively, the amount of replenishment fluid V may be actually measured by attaching Meteor M1 to each string of water, chemical solution, and sulfuric acid.

Kf2は金4イオンの目1娯嬌度に応じて定まる係数で
ある。A4bは、循環タンクlの出側に設けた金属イオ
ン分析計3で一定の時間々噛T(分)毎に測定した濃度
Cmと目標濃度Crとの差に応じて算出された該であり
、例えば良く知られた次式のPII)演界を行う。
Kf2 is a coefficient determined according to the level of entertainment of gold 4 ions. A4b is calculated according to the difference between the target concentration Cr and the concentration Cm measured at regular intervals T (minutes) with the metal ion analyzer 3 installed on the outlet side of the circulation tank 1, For example, perform the well-known PII) performance of the following formula.

j Mb ”Kp (e j +−Σei + Td(ej
−e、−1) −=−==(5)Ti  +=s ここで、Kp 、 Ti e Tdはそれぞれ比例ゲイ
ン、積分時間、微分時間である。ejは今回測定時の濃
度差でろシ、 ej=Cr−cm・・曲・・・(6) である。e、−4は前回1EI11定時の痩度差である
j Mb ”Kp (e j +−Σei + Td(ej
-e, -1) -=-==(5) Ti +=s Here, Kp and Ti e Td are proportional gain, integral time, and differential time, respectively. ej is the concentration difference at the time of this measurement, ej=Cr-cm...(6). e, -4 is the difference in weight loss from the previous 1EI11 regular time.

ときの偏差を合計した値である。Mf□、M42はフィ
ードフォワード的に投入する量であ、9、Mbf、を濃
度の実測値にもとづいたフィードバック環である。
This value is the sum of the deviations when Mf□ and M42 are feed-forward amounts, and 9 and Mbf are feedback rings based on actual measured values of concentration.

循環タンクの大きさを十分に大きくしておけばMfl 
+Mf2の項を考慮しなくてもMbのみで制御すること
も可能ではあるが、濃度の変動が大きくかつ、金属イオ
ン分析計3が故障すれは全く制御が不能になる。Mfl
 +Mf2項を加えることによシ外乱に対しても強く、
濃度変化を小さく抑えることが出来る。
If the size of the circulation tank is made large enough, Mfl
Although it is possible to control using Mb alone without considering the +Mf2 term, if the concentration fluctuates greatly and the metal ion analyzer 3 breaks down, control becomes impossible. Mfl
By adding the +Mf2 term, it is strong against external disturbances.
Concentration changes can be kept small.

以上で金属投入量Mが演算され、金属投入装置14に投
入指令が出されT−分毎に投入される。また、操業条件
の変化により、メッキ消費蓋が減少し、メッキ液中の金
属イオンぴ度が上・昇することもめるので、金属イオン
分析計3の測・定値が1:1標値上り上昇したら弁V−
1を全閉し、同時に弁■−2を全開して金属溶解槽をバ
イパスし、濃度のあがシすぎを防止する。
In the above manner, the metal input amount M is calculated, and a loading command is issued to the metal loading device 14 to input the metal every T minutes. In addition, due to changes in operating conditions, the plating consumption may decrease and the metal ion accuracy in the plating solution may increase. V-
Fully close valve 1 and at the same time fully open valve 2-2 to bypass the metal dissolving tank and prevent the concentration from rising too much.

本発明の方法は金属は必要な量だけ補給する方式である
ので、異常な操業とならない限シ、金属溶解槽13をメ
ッキ液がバイパスされる時間が長くなることは無い。
Since the method of the present invention is such that metal is replenished in the required amount, the time during which the plating solution bypasses the metal dissolving tank 13 will not be prolonged unless abnormal operation occurs.

本実施例設備で本発明方法を実施した結果、例えば鉄の
濃度変動は±1g1t以内に収まシ、メッキ液がバイパ
スされる時間中、水酸化鉄の析出が始まる時間に比べ1
/20程度と問題なく小さいことが確認された。
As a result of carrying out the method of the present invention in the equipment of this embodiment, for example, the concentration fluctuation of iron was within ±1 g1t, and during the time when the plating solution was bypassed, compared to the time when iron hydroxide precipitation started,
It was confirmed that the particle size was about /20, which was small without any problem.

はて、(2)式の比例係数Kf、は、メッキ電流効率や
設備の操業条件によシ若干変動する。従って(2)式の
Mflは本質的に誤差を持っている。そこでKt、を学
習し、よシ真値に近づければa夏制仰循度も一層向上し
、もし金属イオン分析計3が故障しても短時間なら(1
)式のRLr11M12項のみで金属溶解槽への金属の
切出し操業を継続することが出来る。
In fact, the proportionality coefficient Kf in equation (2) varies slightly depending on the plating current efficiency and the operating conditions of the equipment. Therefore, Mfl in equation (2) essentially has an error. Therefore, by learning Kt and getting closer to the true value, the a-summer oscillation rate will further improve, and even if the metal ion analyzer 3 breaks down, it will only be for a short time (1
) It is possible to continue the operation of cutting out metal into the metal melting tank using only the terms RLr11M12 of the equation.

Kflの学習は例えば次のように指数平滑法を用い、適
当な時間々隔P分(前記時間々隔Tの整数倍)毎に行う
Learning of Kfl is performed, for example, at appropriate time intervals P minutes (an integer multiple of the time interval T) using the exponential smoothing method as follows.

/\ (Kfl)nはKflの今回推定値、(Kfl )n−
1はK f 1の前回推定値、αは係数でO〈α〈1で
ある。
/\ (Kfl)n is the current estimated value of Kfl, (Kfl)n-
1 is the previous estimated value of K f 1, and α is a coefficient O<α<1.

(2)式のKt、は(7)式の(19)m+ 1である
。(1> )nは次式によシ算出する。
Kt in equation (2) is (19)m+1 in equation (7). (1>) n is calculated using the following formula.

ここで、fPIdtは前回、今回間のメッキ電流の積分
値、Σ(Mf1+Mb)jは学習期間内のMflとMb
の実j=1 績合計値、Rn−1,Rnは前回および今回の金属溶解
槽13内の金属残量で、金属レベル劃17で測定される
Here, fPIdt is the integral value of plating current between the previous and current times, and Σ(Mf1+Mb)j is Mfl and Mb within the learning period.
The actual total value of j=1, Rn-1, and Rn are the remaining amounts of metal in the metal melting tank 13 from the previous and current times, and are measured at the metal level section 17.

金属イオン分析計3は、螢光X線分析計等が主に用いら
れる。近年分析計の信頼性は向上しているが、メッキ液
中のスラリー等により、十分な保守を行わない゛と安定
した稼動が出来ず、一般の工業計器に比べ、幾分不安定
であシ、分析計異常時のバックアップを考えておくこと
は有益である。
As the metal ion analyzer 3, a fluorescent X-ray analyzer or the like is mainly used. Although the reliability of analyzers has improved in recent years, they cannot operate stably unless sufficient maintenance is done due to slurry in the plating solution, and they are somewhat unstable compared to general industrial instruments. It is useful to have a backup plan in case the analyzer malfunctions.

一般に複数金属イオンを含む溶液の4度こ比重の関係は
、厳密には線形ではないが、標準組成を中心にして各成
分の小さな変化範囲では、比重と各金属イオン濃度は線
形化出来る。
Generally, the relationship between the specific gravity of a solution containing multiple metal ions is not strictly linear, but the specific gravity and the concentration of each metal ion can be linearized within a small variation range of each component around the standard composition.

ρ=Σa i ′c i 十ao          
   ””曲’ (9)ト=1 ここで、ρ:メッキ液の比重 ao、ai:係数 C1:複数の分析計で測定している金属イオン濃度 分析計が正常なとき金属イオン接置eiおよび比重ρを
適当な時間々隔H(分)毎に測定し、その都度係数&o
、&iを推定することによシ、’ l’o r aiを
よシ真櫃に近づけておく。そして複数の分析計のうちの
1つが故障し、1つの金属イオン(ユ度が測定不能にな
った場合、最新のa(1,aiおよび比重の実測値を用
いて(9)式よシ測定不能になった金属イオン製置を逆
算することにより、当該金属イオン濃度を求めることが
できる。
ρ=Σa i ′c i tenao
""song' (9) t = 1 where ρ: specific gravity of plating solution ao, ai: coefficient C1: metal ion concentration measured by multiple analyzers When the analyzer is normal, metal ion contact ei and Measure the specific gravity ρ at appropriate time intervals H (minutes), and calculate the coefficient &o each time.
, &i, we keep 'l'o r ai closer to the truth. If one of the multiple analyzers malfunctions and one metal ion becomes unmeasurable, the latest a(1, ai) and the actual measured value of specific gravity are used to perform the measurement using equation (9). The metal ion concentration can be determined by back calculating the metal ion placement that has become impossible.

以上のように本発明によれば、金属溶解槽と循環タンク
間に常時メッキ液を循環させる必要がある電気メッキに
おいても、メッキ浴中の金属イオン瀝度を精度よく、か
つ安定して制御するご′とができる。
As described above, according to the present invention, even in electroplating where it is necessary to constantly circulate the plating solution between the metal dissolution tank and the circulation tank, the metal ion richness in the plating bath can be controlled accurately and stably. You can do that.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明方法を実施する電気メツキ設備の構成例を
示す図である◇ 1:循環タンク間 分析計、4:メッキ4’J、5 : Thiストリ、プ
、6:液面計、7:碗置針、8:液面、酸vf1度1b
り御装置q19:水タンク、10:薬液タンク、11:
4A敵タンク、12:ポンプ、13:金属溶屏僧、14
:金属投入装置、15:沈澱槽、16:ポンプ、17:
金属レベル計、18:比重計、19:メ。 キ液濃度制御装置、V−1〜V−5=パルプ。 出願人 新日本M鉄株式会社
The drawing is a diagram showing an example of the configuration of electroplating equipment for carrying out the method of the present invention. Bowl needle, 8: liquid level, acid vf 1 degree 1b
Control device q19: Water tank, 10: Chemical tank, 11:
4A enemy tank, 12: pump, 13: metal molten monk, 14
: Metal charging device, 15: Sedimentation tank, 16: Pump, 17:
Metal level meter, 18: Hydrometer, 19: Me. Liquid concentration control device, V-1 to V-5 = pulp. Applicant: New Japan M-Tetsu Co., Ltd.

Claims (1)

【特許請求の範囲】 メッキ液循環タンクと、該メッキ液循環タンクへの水、
薬液、酸液の補給装置と、金槙溶解槽と、該金属溶解槽
への金属投入装置とを有し、前記メッキ液循環タンクと
金属溶解槽の間の循環路に金属溶解槽?バイパスさせる
ための弁を設けた不溶解性電極型電気メツキ設備におけ
る電気メッキにおいて、 メッキ電流値を用いて算出した消費金属量と、前記水、
薬液、酸液の補給量に見合う金属量と、メッキ液中の金
属イオン濃度の測定値と目標値との差に応じて算出した
補正金属量との合計金属量を前記金属投入装置よシ金属
溶解槽へ投入し、金属イオン濃度の測定値が目標範囲を
超えたときは前記弁を操作して金属溶解槽をバイパスす
ることを特徴とするメッキ浴濃度の自動制御方法。
[Claims] A plating solution circulation tank, water to the plating solution circulation tank,
It has a replenishing device for chemical solution and acid solution, a metal dissolving tank, and a device for charging metal into the metal dissolving tank, and a metal dissolving tank is provided in the circulation path between the plating solution circulation tank and the metal dissolving tank. In electroplating in insoluble electrode type electroplating equipment equipped with a bypass valve, the amount of metal consumed calculated using the plating current value and the water,
The metal feeding device calculates the total amount of metal, which is the amount of metal corresponding to the amount of replenishment of the chemical solution and acid solution, and the amount of corrected metal calculated according to the difference between the measured value and the target value of the metal ion concentration in the plating solution. A method for automatically controlling the concentration of a plating bath, characterized in that when the measured value of metal ion concentration exceeds a target range, the valve is operated to bypass the metal dissolution tank.
JP23389482A 1982-12-23 1982-12-23 Automatic controlling method of concentration in plating bath Granted JPS59116400A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23389482A JPS59116400A (en) 1982-12-23 1982-12-23 Automatic controlling method of concentration in plating bath

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23389482A JPS59116400A (en) 1982-12-23 1982-12-23 Automatic controlling method of concentration in plating bath

Publications (2)

Publication Number Publication Date
JPS59116400A true JPS59116400A (en) 1984-07-05
JPS6116440B2 JPS6116440B2 (en) 1986-04-30

Family

ID=16962230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23389482A Granted JPS59116400A (en) 1982-12-23 1982-12-23 Automatic controlling method of concentration in plating bath

Country Status (1)

Country Link
JP (1) JPS59116400A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0456796A (en) * 1990-06-25 1992-02-24 Sumitomo Metal Ind Ltd Fe-based electroplating device and its ph controller
KR20020038224A (en) * 2000-11-17 2002-05-23 이구택 apparatus for preventing an oxidation on non-coating surface of strip and removing a metal precipitation material
CN106133202A (en) * 2014-03-26 2016-11-16 孙治镐 There is the anodized system that the medicine utilizing electrolyte to automatically analyze puts into the metal of function

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0247448U (en) * 1988-09-28 1990-03-30

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0456796A (en) * 1990-06-25 1992-02-24 Sumitomo Metal Ind Ltd Fe-based electroplating device and its ph controller
KR20020038224A (en) * 2000-11-17 2002-05-23 이구택 apparatus for preventing an oxidation on non-coating surface of strip and removing a metal precipitation material
CN106133202A (en) * 2014-03-26 2016-11-16 孙治镐 There is the anodized system that the medicine utilizing electrolyte to automatically analyze puts into the metal of function

Also Published As

Publication number Publication date
JPS6116440B2 (en) 1986-04-30

Similar Documents

Publication Publication Date Title
US5858196A (en) Method of controlling component concentration of plating solution in continuous electroplating
US4406250A (en) Apparatus for controlling electroless plating bath
CN112714803B (en) Plating solution production and regeneration process and device for insoluble anode acid copper electroplating
JPS59116400A (en) Automatic controlling method of concentration in plating bath
US20140061035A1 (en) System and method of plating metal alloys by using galvanic technology
JPH0331800B2 (en)
Danilov et al. Electrocatalytic processes on Pb/PbO2 electrodes at high anodic potential
JPS6191396A (en) Method for controlling concentration of plating liquid in continuous electroplating
JPH1046399A (en) Method for controlling concentration of insoluble-anode electrogalvanizing solution
JPS583999A (en) Electric alloy plating method
JP3699410B2 (en) Plating apparatus and plating solution composition adjusting method
JPH06180000A (en) Metallic ion supply method
US5759377A (en) Process for de-silvering of a silver-containing solution
JPH09236577A (en) Measurement of dissolution amount of metal ions and control of concentration of plating bath using insoluble anode
JP3264479B2 (en) Method for controlling bath rate of plating solution in continuous electroplating equipment
JPH09268400A (en) Method for controlling concentration of plating liquid component
JPH01234599A (en) Method for controlling concentration of plating liquid in fe-zn alloy plating
JPH0639720B2 (en) Method for producing zinc alloy electroplated steel sheet
JPS58171593A (en) Electroplating method with fe
EP0020831A1 (en) Method of regenerating electrolyte in a zinc plating process
JPH0456796A (en) Fe-based electroplating device and its ph controller
JPS5993883A (en) Chromating process of galvanized steel plate
JPS583998A (en) Electric alloy plating method
JPS5893864A (en) Electroless plating method
JPS5913100A (en) Method for controlling thickness of oxidized film