JPH06180000A - Metallic ion supply method - Google Patents

Metallic ion supply method

Info

Publication number
JPH06180000A
JPH06180000A JP43A JP35280892A JPH06180000A JP H06180000 A JPH06180000 A JP H06180000A JP 43 A JP43 A JP 43A JP 35280892 A JP35280892 A JP 35280892A JP H06180000 A JPH06180000 A JP H06180000A
Authority
JP
Japan
Prior art keywords
plating
metal
soln
plating solution
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP43A
Other languages
Japanese (ja)
Other versions
JP2785626B2 (en
Inventor
Toshiyuki Tsujihara
利之 辻原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP35280892A priority Critical patent/JP2785626B2/en
Publication of JPH06180000A publication Critical patent/JPH06180000A/en
Application granted granted Critical
Publication of JP2785626B2 publication Critical patent/JP2785626B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Coating With Molten Metal (AREA)

Abstract

PURPOSE:To prevent the generation of sludge in a plating soln. in the plating device of Fe-Zn, etc., using an insoluble anode and a metallic granular material as the metallic ion source by fixing the difference in pH between the plating solns. before and behind a metal dissolving tank. CONSTITUTION:An insoluble anode is used, and the metal ion consumed in the plating reaction is replenished by dissolving a granular metal to carry out the plating of Fe-Zn, etc. In this case, a waste plating soln. from a circulating tank 1 as the plating tank is sent to a dissolving device 2 contg. granular Fe-Zn by a pump 3 to dissolve the Fe-Zn as the Fe<2+> and Zn<2+> ions, which are replenished, and then returned to the tank 1. The pH of the plating soln. before entering the dissolving device 2 is measured by a pH meter 4 and the pH of the soln. having dissolved the Fe and Zn by a pH meter 5, the discharge of the soln. from the tank 1 is controlled so that the difference is adjusted to <=0.5 to prevent the generation of sludge in the soln., and the metallic ion is supplied to the soln.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、Fe−Zn或いはFe
−Ni等の電気鍍金における金属イオン供給方法に関す
る。
The present invention relates to Fe--Zn or Fe.
-A method of supplying metal ions in electroplating of Ni or the like.

【0002】[0002]

【従来の技術】鋼帯等の金属帯にZn、Fe−ZnやN
iーZn等の電気鍍金するに当たり不溶性陽極方式によ
って行なう場合は、金属イオンを系外より補給する必要
がある。そしてこの金属イオンの補給方法としては、金
属塩で補給する方法と金属メタルで補給する方法とがあ
る。
2. Description of the Related Art Zn, Fe-Zn and N are applied to metal strips such as steel strips.
When electroplating of i-Zn or the like is performed by an insoluble anode method, it is necessary to replenish metal ions from outside the system. As a method of replenishing this metal ion, there are a method of replenishing with a metal salt and a method of replenishing with a metal metal.

【0003】[0003]

【発明が解決しようとする課題】そのうち金属メタルで
補給する方法は、設備をコンパクトにできるメリットが
ありこの方法を採用する所も多いが、反面鍍金液中にF
3+イオンを含む場合、金属溶解に伴って溶解装置出口
側のpHが上昇(水素イオン濃度減少)し、下式化1若
しくは化2、更に化3、化4に示されるような反応が夫
々溶解装置内(化1、化2、化3)と鍍金槽中(陽極反
応、化4)で起こり、該溶解装置中でpHの上昇によ
り、Fe(OH)3スラッジが生じ易くなる。
Among them, the method of replenishing with metal metal has the merit that the equipment can be made compact, and there are many places to adopt this method, but on the other hand, it is possible to use F in the plating solution.
In the case of containing e 3+ ions, the pH at the outlet side of the melting device increases (hydrogen ion concentration decreases) as the metal is dissolved, and the reaction shown in the following chemical formula 1 or chemical formula 2, chemical formula 3 or chemical formula 4 may occur. The Fe (OH) 3 sludge is likely to be generated due to the increase of pH in the melting apparatus (Chemical formula 1, Chemical formula 2, Chemical formula 3) and in the plating tank (Anodic reaction, Chemical formula 4) respectively.

【0004】[0004]

【化1】Zn+2H+→Zn2++H2↑(pH上昇)[Chemical formula 1] Zn + 2H + → Zn 2+ + H 2 ↑ (pH increase)

【0005】[0005]

【化2】Fe+2H+→Fe2++H2↑(pH上昇)[Chemical formula 2] Fe + 2H + → Fe 2+ + H 2 ↑ (pH increase)

【0006】[0006]

【化3】Fe3++3(OH)-→Fe(OH)3(スラッ
ジ発生)
Embedded image Fe 3+ +3 (OH) → Fe (OH) 3 (sludge generation)

【0007】[0007]

【化4】Fe2+→Fe3++e-(Fe3+生成) Embedded image Fe 2+ → Fe 3+ + e (Fe 3+ generation)

【0008】そのため該スラッジの増大に伴う鍍金品質
欠陥(押し疵)を生じ、またFe−Zn等の鍍金にあっ
ては、必要量以上の金属(Fe)を溶解させることにな
ってしまう。
Therefore, a plating quality defect (defect) is generated due to the increase of the sludge, and in plating such as Fe-Zn, a required amount of metal (Fe) is dissolved.

【0009】本発明は以上のような問題に鑑み創案され
たもので、金属メタル溶解前後の水素イオン濃度差を所
定値以下に制御しながら金属イオンを溶解供給すること
により、Fe(OH)3スラッジの発生を減少させ、金
属イオンを効率よく供給できることを知見したことでな
されたものである。
The present invention was made in view of the above problems, and Fe (OH) 3 is supplied by dissolving and supplying metal ions while controlling the difference in hydrogen ion concentration before and after melting of metal metal to a predetermined value or less. It was made by finding that sludge generation can be reduced and metal ions can be efficiently supplied.

【0010】[0010]

【課題を解決するための手段】そのため本発明の金属イ
オン供給方法は、金属メタルを溶解させてFe3+イオン
を含む鍍金液中に金属イオンを供給する場合に、金属メ
タルの溶解がなされている浴中へ鍍金液を流入させ或い
は排出させている鍍金液流入部位及び排出部位において
前記鍍金液のpHを計測し、該流入部位と排出部位の鍍
金液水素イオン濃度差を一定値以下になるように鍍金液
供給流量を制御することを基本的特徴としている。
Therefore, according to the metal ion supplying method of the present invention, when the metal metal is dissolved and the metal ion is supplied into the plating solution containing Fe 3+ ions, the metal metal is dissolved. The pH of the plating solution is measured at the plating solution inflow part and the discharge part where the plating solution is allowed to flow in or out of the bath, and the difference in the plating solution hydrogen ion concentration between the inflow part and the discharge part becomes a certain value or less. The basic feature is to control the plating solution supply flow rate as described above.

【0011】[0011]

【作用】金属メタル溶解装置(例えばFe−Zn金属溶
解装置)内での初期反応は、下式化5及び化6に示すよ
うなFe3+還元反応が優先的に起こるため、鍍金液流入
部位と排出部位のpHを測定した上でこれらの鍍金液水
素イオン濃度差が一定値以下になるように鍍金液供給流
量を制御することによって、該溶解装置内の浴中のpH
上昇を抑え、前記化3の反応を進行しにくくする。
In the initial reaction in the metal-metal melting apparatus (for example, Fe-Zn metal melting apparatus), the Fe 3+ reduction reaction as shown in the following chemical formulas 5 and 6 occurs preferentially, so that the plating solution inflow site The pH of the bath in the dissolution apparatus is controlled by controlling the flow rate of the plating solution so that the difference between the hydrogen ion concentrations of the plating solution becomes less than a certain value after measuring the pH at the discharge site.
It suppresses the rise and makes it difficult for the reaction of Chemical formula 3 to proceed.

【0012】[0012]

【化5】Fe+2Fe3+→3Fe2+ Embedded image Fe + 2Fe 3+ → 3Fe 2+

【0013】[0013]

【化6】Zn+2Fe3+→Zn2++2Fe2+ Embedded image Zn + 2Fe 3+ → Zn 2+ + 2Fe 2+

【0014】[0014]

【実施例】以下本発明の実施例につき説明する。EXAMPLES Examples of the present invention will be described below.

【0015】図1は、鋼帯に対しFe−Zn電気鍍金を
行なっている鍍金槽を構成する循環タンク1と、該循環
タンク1の鍍金液に対してFe2+イオンを供給する溶解
装置2との間の鍍金液循環状態を示す循環系概略図であ
る。
FIG. 1 shows a circulation tank 1 which constitutes a plating tank in which Fe-Zn electroplating is performed on a steel strip, and a melting apparatus 2 which supplies Fe 2+ ions to the plating solution in the circulation tank 1. FIG. 3 is a schematic diagram of a circulation system showing a plating liquid circulation state between and.

【0016】同図の溶解装置2は容量3m3のFe溶解
用タンクで構成されており、このタンクに設置したロー
ドセル値によりチップ充填量が18〜20tonになる
ように、Feチップを自動補給している。一方循環タン
ク1の鍍金液条件はZn2+:4〜6g/l、Fe2+:9
0〜100g/l、更にその入り側でFe3+:3g/
l、pH:2.0となるように制御されている。
The melting apparatus 2 shown in the figure is composed of a Fe melting tank having a capacity of 3 m 3 , and the Fe chips are automatically replenished so that the chip filling amount becomes 18 to 20 tons depending on the load cell value installed in this tank. ing. On the other hand, the plating solution conditions for the circulation tank 1 are Zn 2+ : 4 to 6 g / l, Fe 2+ : 9
0 to 100 g / l, and Fe 3+ on the inlet side: 3 g / l
l, pH: 2.0 is controlled.

【0017】以上の装置構成で本発明者等は、前記溶解
装置2への鍍金液供給流量が3m3/min(一定)と
なるように鍍金液供給装置3のポンプを制御し、該溶解
装置2でFeイオンの供給を行なった。
With the above apparatus configuration, the present inventors have controlled the pump of the plating solution supply device 3 so that the flow rate of the plating solution supply to the dissolution device 2 is 3 m 3 / min (constant), At 2, Fe ions were supplied.

【0018】一方、本発明法を実施するため、上記溶解
装置2の入り側と出側にpH計4、5を設け、入り側の
pH計4の値(2.0±0.05で制御)に対して出側
のpH計5の値が+0.05となるように、鍍金液供給
流量を制御した。流量範囲は2.5〜4.0m3/mi
nの範囲であった。図2はその時のFeチップ充填量と
鍍金液流量との関係を示している。
On the other hand, in order to carry out the method of the present invention, pH meters 4 and 5 are provided on the inlet side and outlet side of the dissolution apparatus 2 and the value of the pH meter 4 on the inlet side (controlled at 2.0 ± 0.05). )), The plating solution supply flow rate was controlled so that the value of the pH meter 5 on the outlet side was +0.05. Flow rate range is 2.5-4.0 m 3 / mi
It was in the range of n. FIG. 2 shows the relationship between the Fe chip filling amount and the plating liquid flow rate at that time.

【0019】下記表1は上記の従来法と、本発明法を実
施した時におけるスラッジ生成率を比較したものであ
る。従来法による場合に比べ、本発明法の方がスラッジ
生成率が低いことが分かる。尚、スラッジ生成率は下式
数1により求めた。
Table 1 below shows a comparison of the sludge formation rate when the above-mentioned conventional method and the method of the present invention are carried out. It can be seen that the sludge generation rate is lower in the method of the present invention than in the case of the conventional method. The sludge production rate was calculated by the following equation 1.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【数1】 [Equation 1]

【0022】又図3と図4は、スラッジ生成率とFeチ
ップ充填量の関係を示すグラフである。図3に示す従来
法では、Feチップ充填量が多くなるにつれてスラッジ
生成率も高くなっているのに対し、図4に示される本発
明法の方法では、Feチップ充填量の如何に拘らず、ス
ラッジ生成率は一定で且つ低く抑えられていることが分
かる。
FIGS. 3 and 4 are graphs showing the relationship between the sludge production rate and the Fe chip filling amount. In the conventional method shown in FIG. 3, the sludge generation rate increases as the Fe chip filling amount increases, whereas in the method of the present invention shown in FIG. 4, regardless of the Fe chip filling amount, It can be seen that the sludge production rate is constant and kept low.

【0023】更に図5は、入り側と出側のpHの差とス
ラッジ発生量との関係を示すグラフである。スラッジの
発生を防止するためにはpHの差を0.05以下とする
ことが好ましい。
Further, FIG. 5 is a graph showing the relationship between the difference in pH between the inlet side and the outlet side and the amount of sludge generated. In order to prevent the generation of sludge, the difference in pH is preferably 0.05 or less.

【0024】[0024]

【発明の効果】以上詳述したように本発明法によれば、
Fe(OH)3スラッジ発生を少なくして、効率よく金
属イオンを鍍金液に供給することができるようになる。
As described in detail above, according to the method of the present invention,
Fe (OH) 3 sludge generation can be reduced and metal ions can be efficiently supplied to the plating solution.

【図面の簡単な説明】[Brief description of drawings]

【図1】Fe−Zn電気鍍金を行なっている鍍金槽に対
し、鍍金液を循環させている循環系の概略図である。
FIG. 1 is a schematic diagram of a circulation system in which a plating solution is circulated in a plating tank in which Fe-Zn electroplating is performed.

【図2】上記循環系で本発明法を実施した場合のFeチ
ップ充填量と鍍金液流量との関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the Fe chip filling amount and the plating solution flow rate when the method of the present invention is carried out in the above circulation system.

【図3】従来法を実施した場合のスラッジ生成率とFe
チップ充填量の関係を示すグラフである。
FIG. 3 Sludge generation rate and Fe when the conventional method is carried out
It is a graph which shows the relationship of a chip filling amount.

【図4】本発明法を実施した場合のスラッジ生成率とF
eチップ充填量の関係を示すグラフである。
FIG. 4 shows the sludge generation rate and F when the method of the present invention is carried out.
It is a graph which shows the relationship of e chip filling amount.

【図5】入り側と出側のpHの差とスラッジ発生量との
関係を示すグラフである。
FIG. 5 is a graph showing a relationship between a difference in pH between an inlet side and an outlet side and a sludge generation amount.

【符号の説明】[Explanation of symbols]

1 循環タンク 2 溶解装置 3 鍍金液供給装置 4、5 pH計 1 Circulation tank 2 Dissolution device 3 Plating liquid supply device 4, 5 pH meter

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 金属メタルを溶解させてFe3+イオンを
含む鍍金液中に金属イオンを供給する場合に、金属メタ
ルの溶解がなされている浴中へ鍍金液を流入させ或いは
排出させている鍍金液流入部位及び排出部位において前
記鍍金液のpHを計測し、該流入部位と排出部位の鍍金
液水素イオン濃度差を一定値以下になるように鍍金液供
給流量を制御することを特徴とする金属イオン供給方
法。
1. When the metal metal is dissolved and the metal ion is supplied into the plating solution containing Fe 3+ ions, the plating solution is caused to flow into or out of the bath in which the metal metal is dissolved. The pH of the plating solution is measured at the plating solution inflow site and the discharge site, and the plating solution supply flow rate is controlled so that the difference in the plating solution hydrogen ion concentration between the inflow site and the discharge site becomes a certain value or less. Metal ion supply method.
JP35280892A 1992-12-14 1992-12-14 Metal ion supply method Expired - Fee Related JP2785626B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35280892A JP2785626B2 (en) 1992-12-14 1992-12-14 Metal ion supply method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35280892A JP2785626B2 (en) 1992-12-14 1992-12-14 Metal ion supply method

Publications (2)

Publication Number Publication Date
JPH06180000A true JPH06180000A (en) 1994-06-28
JP2785626B2 JP2785626B2 (en) 1998-08-13

Family

ID=18426581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35280892A Expired - Fee Related JP2785626B2 (en) 1992-12-14 1992-12-14 Metal ion supply method

Country Status (1)

Country Link
JP (1) JP2785626B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012107393A1 (en) 2011-08-12 2013-02-14 Gramm Technik Gmbh Device useful for producing galvanic coating, comprises process chamber, into which workpiece to be provided with galvanic coating and electrolyte, which is in connection with starting- or sacrificial material, are introduced
DE102013112302A1 (en) 2013-11-08 2015-05-13 Gramm Technik Gmbh Device for producing galvanic coatings

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012107393A1 (en) 2011-08-12 2013-02-14 Gramm Technik Gmbh Device useful for producing galvanic coating, comprises process chamber, into which workpiece to be provided with galvanic coating and electrolyte, which is in connection with starting- or sacrificial material, are introduced
DE102013112302A1 (en) 2013-11-08 2015-05-13 Gramm Technik Gmbh Device for producing galvanic coatings

Also Published As

Publication number Publication date
JP2785626B2 (en) 1998-08-13

Similar Documents

Publication Publication Date Title
US5858196A (en) Method of controlling component concentration of plating solution in continuous electroplating
CA1256819A (en) Process for reconditioning a used ammoniacal copper etching solution containing copper solute
JP2003527490A (en) METHOD AND APPARATUS FOR ADJUSTING METAL ION CONCENTRATION IN ELECTROLYTE FLUID, USING THE METHOD AND USING THE APPARATUS
JP2801670B2 (en) Method for controlling composition of copper plating bath using insoluble anode
US20140061035A1 (en) System and method of plating metal alloys by using galvanic technology
EP0598144B1 (en) Use of a pH sensitive reference electrode in electrolytic desilvering
JP2785626B2 (en) Metal ion supply method
US5336336A (en) Process for chemical treatment with phosphate
JP3454829B2 (en) Method for electrolytically depositing metal from electrolyte with process organics
JPS6141799A (en) Method for supplying tin ion to electrolytic tinning bath
JPS591679A (en) Controlling and administering method of etching solution
JP2732623B2 (en) Etching method
JP2000054167A (en) Method for controlling ferric chloride etching solution and apparatus therefor
JPS5941488A (en) Method for automatically controlling concentration of ferrous electroplating bath
JPS6148599A (en) Method for supplying ion during electroplating of iron or iron alloy
JPH07316897A (en) Method for supplying metallic ion to plating solution
JPS5893888A (en) Supplying method for metallic ion in electroplating
US4422912A (en) Method and apparatus for recovering metals from metal rich solutions
JP3551627B2 (en) Plating solution component concentration control method
JP3932829B2 (en) Scale adhesion prevention method
KR800000028B1 (en) Elecfric tin plating method
KR100293207B1 (en) APPARATUS AND METHOD FOR CONTROLLING pH OF HYDROCHLORIC ACID BASED Zn-Fe ALLOY ELECTROPLATING SOLUTION
JP3193152B2 (en) Metal etching method
JP2000160400A (en) Electroplating using insoluble anode and device therefor
JPS63145800A (en) Method for managing iron-based electroplating bath

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980428

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090529

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090529

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100529

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110529

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees