JPH02213139A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH02213139A
JPH02213139A JP3272389A JP3272389A JPH02213139A JP H02213139 A JPH02213139 A JP H02213139A JP 3272389 A JP3272389 A JP 3272389A JP 3272389 A JP3272389 A JP 3272389A JP H02213139 A JPH02213139 A JP H02213139A
Authority
JP
Japan
Prior art keywords
type
epitaxial layer
type epitaxial
region
npn transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3272389A
Other languages
Japanese (ja)
Inventor
Keimei Sato
啓明 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP3272389A priority Critical patent/JPH02213139A/en
Publication of JPH02213139A publication Critical patent/JPH02213139A/en
Pending legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To enable the thickness of an N<->-type epitaxial layer to be thinned further than that in the conventional constitution while securing the breakdown strength of base-collector junction by forming an N<+>-type buried diffusing region in a subcollector formation planned region, and thereon forming an N<->-type epitaxial layer through a P-type epitaxial layer. CONSTITUTION:An N<+>-type buried diffusing region 3 is formed in the subcollector formation planned region of an NPN transistor on a P-type semiconductor substrate 1, and a P-type epitaxial layer 4 is formed on said P-type semiconductor substrate 1, and an N<->-type epitaxial layer 5 is formed on the P-type epitaxial layer 4, whereby the upward diffusion length within the N<->-type epitaxial layer 5 ln the N<+>-type buried diffusing region 3 is restrained, and without lowering the breakdown voltage at reverse bias application to the base-collector junction of said NPN transistor, the thickness of the N<->-type epitaxial layer 5 is thinned and the diffusion length in depth direction of a P-type isolating region 6 is shortened so as to decrease lateral diffusion length, whereby said NPN transistor is made high-speed and the element area is reduced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、2M構造のエピタキシャル層を用いることに
よって、NPNトランジスタの高速化と素子面積の縮小
化を可能とするバイポーラ型半導体集積回路の製造方法
に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention is directed to the manufacture of bipolar semiconductor integrated circuits that can increase the speed of NPN transistors and reduce the device area by using an epitaxial layer with a 2M structure. It is about the method.

(従来の技術) バイポーラ型集積回路は、MO3型集積回路と比較して
、その高速性に特徴があり、より高速のNPNトランジ
スタを鍔えたバイポーラ型集積回路の製造が広く要望さ
れている。
(Prior Art) Bipolar integrated circuits are characterized by high speed compared to MO3 integrated circuits, and there is a wide demand for the production of bipolar integrated circuits equipped with faster NPN transistors.

バイポーラ型集積回路のNPN トランジスタは、ベー
ス・コレクタ接合の高い降伏電圧と、高周波応答性に優
れた低抵抗のサブコレクタ領域を形成するため、P型半
導体基板上にN+型(シート抵抗20Ω10程度)の埋
込拡散領域を低抵抗サブコレクタとして形成し、さらに
、P型半導体基板上にN−型(比抵抗1Ω−1程度)の
高抵抗エピタキシャル層を形成するという方法によって
製造されていた。
NPN transistors in bipolar integrated circuits are N+ type (sheet resistance approximately 20Ω10) on a P-type semiconductor substrate in order to form a low-resistance subcollector region with high base-collector junction breakdown voltage and excellent high frequency response. The buried diffusion region is formed as a low-resistance subcollector, and an N-type (specific resistance of about 1 Ω-1) high-resistance epitaxial layer is further formed on a P-type semiconductor substrate.

NPNトランジスタの高速性を高める方法の1つとして
、N−型エピタキシャル層の厚さを薄くし、コレクタの
寄生抵抗値とコレクタ・分離間の寄生容量を低下させる
という方法が、従来より用いられてきた。またN″′型
エピタキシャル層の厚さを薄くすることにより、P型分
離領域の深さ方向の拡散長を、N′″型エピタキシャル
層の厚さを薄くした分だけ短かくすることができ、した
がって、これと同程度の量のP型分離領域の横方向の拡
散長の減少を可能とし、素子面積を縮小化し、NPNト
ランジスタのコレクタ、P型半導体基板間の寄生容量と
、アルミ配線容量を低減させることができるという点で
バイポーラ型集積回路の高速化に寄与するとともに、集
積回路のチップ面積を縮小化することにより、1チツプ
あたりに要する原価を低減し1歩留りを向上させること
ができる。
One of the methods used to improve the high-speed performance of NPN transistors is to reduce the thickness of the N-type epitaxial layer to reduce the parasitic resistance of the collector and the parasitic capacitance between the collector and isolation. Ta. Furthermore, by reducing the thickness of the N'' type epitaxial layer, the diffusion length in the depth direction of the P type isolation region can be shortened by the amount that the N'' type epitaxial layer is thinned. Therefore, it is possible to reduce the lateral diffusion length of the P-type isolation region by the same amount as this, reducing the device area and reducing the parasitic capacitance between the collector of the NPN transistor and the P-type semiconductor substrate and the aluminum wiring capacitance. In addition, by reducing the chip area of the integrated circuit, it is possible to reduce the cost per chip and improve the yield.

(発明が解決しようとする課題) N−型エピタキシャル層形成時のオートドープと逆方向
拡散、さらにN−型エピタキシャル層形成後に受ける半
導体製造プロセスによる熱履歴のために、いわゆる「N
6型埋込拡散領域のせり上がり」を生ずるが、このせり
上がりがあるために、NPNトランジスタの活性ベース
直下のコレクタのN型不純物濃度プロファイルは5N0
型埋込拡散領域の方に向かって次第に高くなる。このよ
うなプロファイルにおいて、NPNトランジスタを高速
化するために、N−型エピタキシャル層の厚さを薄くし
ていくと、ベース・コレクタ接合のコレクタの不純物濃
度が高まることにより、ベース・コレクタ接合の降伏電
圧が次第に低下する。したがって、N−型エピタキシャ
ル層の厚さは、ベース・コレクタ接合に要求される耐圧
を確保し得る範囲内までしか薄くすることができない。
(Problems to be Solved by the Invention) Due to the autodoping and reverse diffusion during the formation of the N-type epitaxial layer, and the thermal history caused by the semiconductor manufacturing process after the formation of the N-type epitaxial layer, the so-called "N
Due to this rise, the N-type impurity concentration profile of the collector directly under the active base of the NPN transistor becomes 5N0.
The height increases gradually toward the mold-embedded diffusion region. In such a profile, if the thickness of the N-type epitaxial layer is reduced in order to increase the speed of the NPN transistor, the impurity concentration in the collector of the base-collector junction will increase, causing breakdown of the base-collector junction. The voltage gradually decreases. Therefore, the thickness of the N-type epitaxial layer can only be reduced within a range that can ensure the withstand voltage required for the base-collector junction.

本発明の目的は、上記の耐圧を確保しながら、従来の構
成のものよりさらにN−型エピタキシャル層の厚さを薄
くすることを可能とする半導体装置の製造方法を提供す
ることである。
An object of the present invention is to provide a method of manufacturing a semiconductor device that allows the thickness of an N-type epitaxial layer to be made thinner than that of a conventional structure while ensuring the above-mentioned breakdown voltage.

C′:a題を解決するための手段) 本発明の半導体装置の製造方法は、P型半導体Qls板
ヒのNPN)−ランジスタのサブコレクタ形成予定領域
にN0型埋込拡散領域を形成し、P型半導体基板上にP
型エピタキシャル層を形成し、このP型エピタキシャル
層上にN−型エピタキシャル層を形成することにより、
N9型埋込拡散領域のN−型エピタキシャル層中の上方
拡散長を抑え、NPNトランジスタのベース・コレクタ
接合の逆バイアス印加時の降伏電圧を低下させずに、N
−型エピタキシャル層の厚さを薄くし、かつP型分11
1m域の深さ方向の拡散長を短くして横方向の拡散長を
減少させ、NPNトランジスタを高速化するとともに、
素子面積を縮小化するものである。
C': Means for Solving Problem a) The method for manufacturing a semiconductor device of the present invention includes forming an N0-type buried diffusion region in a region where a sub-collector of a P-type semiconductor Qls board is to be formed, an NPN transistor transistor; P on a P-type semiconductor substrate
By forming a type epitaxial layer and forming an N-type epitaxial layer on this P-type epitaxial layer,
By suppressing the upward diffusion length of the N9 type buried diffusion region in the N- type epitaxial layer, the NPN transistor can be
The thickness of the − type epitaxial layer is reduced, and the P type portion is 11
By shortening the diffusion length in the depth direction in the 1 m region and reducing the lateral diffusion length, the speed of the NPN transistor is increased, and
This is to reduce the element area.

(作 用) バイポーラ型集積回路の製造方法の従来の構成に対し1
本発明のように、P型半導体基板とN−型エピタキシャ
ル層の間にP型エピタキシャル層を形成することにより
、形成したP型エピタキシャル層の厚さだけ、NPNト
ランジスタのサブコレクタであるN0型埋込拡散領域の
せり上がりが抑えられたことになり、NPNトランジス
タのベース・コレクタ間の耐圧を、従来の方法と同一に
保ちながら、エピタキシャル層の厚さを、従来の方法に
より形成したP型エピタキシャル層の厚さだけ薄くする
ことが可能である。
(Function) Compared to the conventional configuration of the bipolar integrated circuit manufacturing method, 1
As in the present invention, by forming a P-type epitaxial layer between a P-type semiconductor substrate and an N-type epitaxial layer, the thickness of the formed P-type epitaxial layer increases the thickness of the N0-type buried layer, which is the sub-collector of the NPN transistor. This means that the rise of the embedded diffusion region is suppressed, and while the breakdown voltage between the base and collector of the NPN transistor is kept the same as that of the conventional method, the thickness of the epitaxial layer can be reduced compared to that of the P-type epitaxial layer formed by the conventional method. It is possible to reduce the thickness of the layer.

(実施例) 本発明の一実施例を第1図および第2図に基づいて説明
する。
(Example) An example of the present invention will be described based on FIGS. 1 and 2.

第1図は本発明の製造方法によって得られたバイポーラ
型半導体集積回路のNPN)−ランジスタ部の断面図で
あり、第2図は、本発明の実施例の]−程順流れ図であ
る。
FIG. 1 is a sectional view of the NPN transistor portion of a bipolar semiconductor integrated circuit obtained by the manufacturing method of the present invention, and FIG. 2 is a process flowchart of an embodiment of the present invention.

第2図(a)に示すように、P型シリコン基板1上のN
PNトランジスタのサブコレクタ形成予定領域に1通常
のフォトリソグラフィー技術を用いて、酸化膜パターン
2を形成し、酸化1カバターン2をマスクにしてシート
抵抗が20Ω/口程度のN0型埋込拡散領域3を形成し
、N1型埋込拡散領域3の形成後、酸化膜パターン2を
完全に除去する。
As shown in FIG. 2(a), N on the P-type silicon substrate 1
An oxide film pattern 2 is formed in the region where the sub-collector of the PN transistor is planned to be formed using normal photolithography technology, and an N0 type buried diffusion region 3 with a sheet resistance of about 20Ω/hole is formed using the oxide film 1 and the cover pattern 2 as a mask. After forming the N1 type buried diffusion region 3, the oxide film pattern 2 is completely removed.

次に、第2図(b)に示すように、N1型埋込拡散領域
3の形成済みのP型シリコン基板1上にP型エピタキシ
ャル層4を形成する。P型エビタキシャルM4の比抵抗
はP型シリコン基板1の比抵抗と同程度で5〜15Ω−
1程度とし、P型エピタキシャル層4の形成時に、ラテ
ラル・オートドープによって、N″′型埋込拡散領域3
を介さずにP型シリコン基板1とP型エピタキシャル層
4が直接に接する部分の界面に、N型の層が形成されな
いようにする。また、P型エピタキシャル層4の厚さは
、半導体集積回路の製造工程のうち、900”C以−ヒ
の熱処理がすべて終了した時点で、N1型埋込拡散領域
3のせり上がりの先端が、Plf:!エピタキシャル層
4を突き抜けることのできる厚さ以下とする。
Next, as shown in FIG. 2(b), a P-type epitaxial layer 4 is formed on the P-type silicon substrate 1 in which the N1-type buried diffusion region 3 has already been formed. The specific resistance of the P-type epitaxial M4 is about the same as the specific resistance of the P-type silicon substrate 1, which is 5 to 15Ω.
1, and when forming the P-type epitaxial layer 4, the N″′-type buried diffusion region 3 is formed by lateral autodoping.
An N-type layer is not formed at the interface where the P-type silicon substrate 1 and the P-type epitaxial layer 4 are in direct contact without intervening. Furthermore, the thickness of the P-type epitaxial layer 4 is determined such that the tip of the raised portion of the N1-type buried diffusion region 3 is determined at the time when all heat treatments of 900"C or higher are completed during the manufacturing process of the semiconductor integrated circuit. Plf:!The thickness should be less than or equal to the thickness that can penetrate the epitaxial layer 4.

次に、第2図(e)に示すようにl〕型エピタキシャル
層4のトに、比抵抗1Ω−1程度の通常のN−型エピタ
キシャルM5を形成する。
Next, as shown in FIG. 2(e), a normal N-type epitaxial layer M5 having a specific resistance of about 1 Ω-1 is formed on the top of the L]-type epitaxial layer 4.

次に、第2図(d)に示すように、N−型エピタキシャ
ル層形成後のウェハに、順次、P型分離拡散領域6、P
型ベース領域7.N0型エミツタ領域8、N9型コレク
タコンタクト領域9を通常の方法で形成し、i&後に酸
化[10をフォトリソグラフィを用いて加工し、コンタ
クト窓を形成する。さらに、アルミ配線11を形成する
ことにより、第1図に示すようなNPN トランジスタ
が完成する。
Next, as shown in FIG. 2(d), a P-type isolation diffusion region 6, a P-type isolation diffusion region 6, a P-type isolation diffusion region 6, a P-type isolation diffusion region 6, a P-type
Mold base area7. An N0 type emitter region 8 and an N9 type collector contact region 9 are formed by a conventional method, and after i&, oxidation [10] is processed using photolithography to form a contact window. Furthermore, by forming aluminum wiring 11, an NPN transistor as shown in FIG. 1 is completed.

(発明の効果) 本発明の半導体装置の製造方法によれば、N I”Nト
ランジスタのベース・コレクタ接合の降伏電圧より決ま
る耐圧が従来の構成のものと同一で。
(Effects of the Invention) According to the method of manufacturing a semiconductor device of the present invention, the withstand voltage determined by the breakdown voltage of the base-collector junction of the N I''N transistor is the same as that of the conventional structure.

かつN−型エピタ、キシャル層の厚さが従来の構成のも
のより薄いNPNトランジスタの製造が可能となり、し
たがって、NPNトランジスタのベース・コレクタ間の
耐圧が従来の構成のものと同一で、かつ、NPNトラン
ジスタが従来の構成のものより高速化され、素子面積も
従来の構成のものより縮小化されたバイポーラ型集積回
路の製造が可能となり、その実用上の効果は極めて大で
ある。
In addition, it is possible to manufacture an NPN transistor in which the N-type epitaxial layer and the thickness of the axial layer are thinner than those of the conventional structure, and therefore, the withstand voltage between the base and collector of the NPN transistor is the same as that of the conventional structure, and It is possible to manufacture bipolar integrated circuits in which the speed of the NPN transistor is faster than that of the conventional structure and the element area is smaller than that of the conventional structure, and the practical effects thereof are extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による半導体装置のNPNト
ランジスタ部の断面図、第2図(a)〜(d)は本発明
の工程順の流れ図である。 1 ・・・ P型シリコン基板、 2 ・・・酸化膜。 3・・・N“型埋込拡散領域、 4 ・・・P型エピタ
キシャル層、 5 ・・・N−型エピタキシャル層、 
6 ・・・P型分離拡散領域、7・・・P型ベース領域
、 8・・・N0型エミッタ領域、 9 ・・・N1型
コレクタコンタクト領域、10・・・酸化膜、11・・
・アルミ配線。 第1図 特許出願人 松下電子工業株式会社 i −、−p型シリコン基方反 3−・・N1竪理ム広敗々酎八 4−・P型エピタキシャル層 5・−N−型エピダキシ〒ル層 6−P型合11it広旨丈領す代 7・・−P型へ−ズ4酊代 8−N+型エミッ9今負すへ 9−N中型コし/79コンダグト4員i代10−・・酸
化膜 11−・・アルミ配縞
FIG. 1 is a sectional view of an NPN transistor portion of a semiconductor device according to an embodiment of the present invention, and FIGS. 2(a) to 2(d) are flowcharts of the steps of the present invention. 1... P-type silicon substrate, 2... Oxide film. 3... N" type buried diffusion region, 4... P type epitaxial layer, 5... N- type epitaxial layer,
6...P-type isolation diffusion region, 7...P-type base region, 8...N0-type emitter region, 9...N1-type collector contact region, 10...oxide film, 11...
・Aluminum wiring. Figure 1 Patent Applicant: Matsushita Electronics Co., Ltd. i-, -p-type silicon base layer 3-...N1 vertical layer 4-, P-type epitaxial layer 5, -N-type epitaxial layer Layer 6-P type combination 11it broad length length 7...-P type hez 4 suffix 8-N+ type emitter 9 now negative 9-N medium size/79 conductor 4 member i 10-・・Oxide film 11−・・Aluminum stripe

Claims (1)

【特許請求の範囲】[Claims] P型半導体基板上のNPNトランジスタのサブコレクタ
形成予定領域にN^+型埋込拡散領域を形成し、前記P
型半導体基板上にP型エピタキシャル層を形成し、前記
P型エピタキシャル層上にN^−型エピタキシャル層を
形成することにより、前記N^+型埋込拡散領域の、前
記N^−型エピタキシャル層中の上方拡散長を抑え、前
記NPNトランジスタのベース・コレクタ接合の逆バイ
アス印加時の降伏電圧を低下させずに、前記N^−型エ
ピタキシャル層の厚さを薄くし、かつP型分離領域の深
さ方向の拡散長を短くして横方向の拡散長を減少させ、
前記NPNトランジスタを高速化するとともに、素子面
積を縮小することを特徴とする半導体装置の製造方法。
An N^+ type buried diffusion region is formed in the region where the sub-collector of the NPN transistor is to be formed on the P-type semiconductor substrate, and
By forming a P type epitaxial layer on a type semiconductor substrate and forming an N^- type epitaxial layer on the P type epitaxial layer, the N^- type epitaxial layer in the N^+ type buried diffusion region is formed. The thickness of the N^- type epitaxial layer can be reduced without reducing the breakdown voltage of the base-collector junction of the NPN transistor when reverse bias is applied, and the thickness of the P-type isolation region can be reduced. By shortening the diffusion length in the depth direction and decreasing the diffusion length in the lateral direction,
A method of manufacturing a semiconductor device, characterized in that the speed of the NPN transistor is increased and the element area is reduced.
JP3272389A 1989-02-14 1989-02-14 Manufacture of semiconductor device Pending JPH02213139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3272389A JPH02213139A (en) 1989-02-14 1989-02-14 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3272389A JPH02213139A (en) 1989-02-14 1989-02-14 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH02213139A true JPH02213139A (en) 1990-08-24

Family

ID=12366762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3272389A Pending JPH02213139A (en) 1989-02-14 1989-02-14 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH02213139A (en)

Similar Documents

Publication Publication Date Title
US20060118881A1 (en) Lateral PNP transistor and the method of manufacturing the same
US3772577A (en) Guard ring mesa construction for low and high voltage npn and pnp transistors and diodes and method of making same
US4144106A (en) Manufacture of an I2 device utilizing staged selective diffusion thru a polycrystalline mask
JPH02213139A (en) Manufacture of semiconductor device
JPS6133261B2 (en)
EP0036620B1 (en) Semiconductor device and method for fabricating the same
JPH0311107B2 (en)
JPS61134036A (en) Manufacture of semiconductor ic
JPS6155775B2 (en)
JPS637665A (en) Lateral p-n-p transistor
JP3474595B2 (en) Semiconductor device
JPH0115147B2 (en)
JPS6132573A (en) Semiconductor integrated circuit device and manufacture thereof
JPS58107645A (en) Manufacture of semiconductor device
JPH0436578B2 (en)
JPS6031107B2 (en) Semiconductor integrated circuit device
JPH10135235A (en) Manufacturing method of semiconductor device
JP2596132Y2 (en) Semiconductor device
JPS59130458A (en) Semiconductor integrated circuit
JP2604793B2 (en) Semiconductor device
JP2932076B2 (en) Method for manufacturing semiconductor device
JP2001230260A (en) Semiconductor device and manufacturing method thereof
JPS6225258B2 (en)
JPS60776B2 (en) semiconductor equipment
JPH0689902A (en) Manufacture of semiconductor device