JPH0221171B2 - - Google Patents

Info

Publication number
JPH0221171B2
JPH0221171B2 JP55074550A JP7455080A JPH0221171B2 JP H0221171 B2 JPH0221171 B2 JP H0221171B2 JP 55074550 A JP55074550 A JP 55074550A JP 7455080 A JP7455080 A JP 7455080A JP H0221171 B2 JPH0221171 B2 JP H0221171B2
Authority
JP
Japan
Prior art keywords
support
plane
wavelength
waves
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP55074550A
Other languages
Japanese (ja)
Other versions
JPS56169908A (en
Inventor
Hideo Sato
Akyoshi Ogawa
Naoto Matsunaka
Takashi Kataki
Takashi Hirukoi
Katsuhiko Aoki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
KDDI Corp
Original Assignee
Kokusai Denshin Denwa KK
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Denshin Denwa KK, Mitsubishi Electric Corp filed Critical Kokusai Denshin Denwa KK
Priority to JP7455080A priority Critical patent/JPS56169908A/en
Priority to CA000378683A priority patent/CA1172354A/en
Priority to GB8116783A priority patent/GB2081023B/en
Priority to US06/269,216 priority patent/US4369448A/en
Publication of JPS56169908A publication Critical patent/JPS56169908A/en
Publication of JPH0221171B2 publication Critical patent/JPH0221171B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/12Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave

Landscapes

  • Aerials With Secondary Devices (AREA)

Description

【発明の詳細な説明】 この発明はマイクロ波やミリ波帯で使用される
開口面アンテナにおいて広角放射特性が優れたア
ンテナ装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an antenna device having excellent wide-angle radiation characteristics in an aperture antenna used in microwave and millimeter wave bands.

従来の開口面アンテナの一例としてカセグレン
アンテナの構成を第1図に示す。第1図におい
て、1は主反射鏡、2は副反射鏡、3は一次放射
器、4は副反射鏡を支える支柱である。このよう
な構成の開口面アンテナにおいて、一次放射器3
から放射された球面波は副反射鏡2および主反射
鏡1で反射された後平面波となり外部へ放射され
る。このとき主反射鏡1で反射された平面波5は
副反射鏡2を支える支柱4に当たりこの支柱によ
つて散乱される。この場合散乱波6は幾何光学的
にスネルの法則を満足する方向へ進行する反射波
とその反射波の進行方向において電界強度が強
く、離れるにつれて徐々に弱くなる回折波から構
成される。
FIG. 1 shows the configuration of a Cassegrain antenna as an example of a conventional aperture antenna. In FIG. 1, 1 is a main reflector, 2 is a sub-reflector, 3 is a primary radiator, and 4 is a support supporting the sub-reflector. In the aperture antenna with such a configuration, the primary radiator 3
After being reflected by the sub-reflector 2 and the main reflector 1, the spherical wave radiated from the spherical wave becomes a plane wave and is radiated to the outside. At this time, the plane wave 5 reflected by the main reflecting mirror 1 hits the support 4 supporting the sub-reflector 2 and is scattered by this support. In this case, the scattered waves 6 are composed of a reflected wave that travels in a direction that satisfies Snell's law in terms of geometrical optics, and a diffracted wave that has a strong electric field strength in the traveling direction of the reflected wave and gradually weakens as it moves away from the reflected wave.

このような考え方は幾何学的回折理論と呼ば
れ、以下この理論に基づいて説明する。
This way of thinking is called the geometric diffraction theory, and the following explanation will be based on this theory.

そこで、先ず支柱4と反射波の進行方向との関
係について説明する。従来の支柱4は主反射鏡側
の形状が平面で構成されたもの、あるいは曲面で
構成されたものがあつた。
First, the relationship between the pillar 4 and the traveling direction of reflected waves will be explained. In the conventional support column 4, the shape on the main reflecting mirror side may be a flat surface or a curved surface.

このため、支柱4が平面で構成されている場合
について説明する。
For this reason, a case will be described in which the support column 4 is configured as a plane.

先ず、第2図に示すように直交座標系XYZ及
び平面Q1,Q2で構成される支柱4を設定する。
直交座標系においてXYZの各軸に沿つた単位ベ
クトルをそれぞれi,j,kとする。支柱4を構
成する平面Q1と平面Q2の交線がZ−X内に存在
し、上記交線とZ軸のなす角がθで与えられ、平
面Q1とZ−X面のなす角がで与えられるとす
る。ここで、支柱の面が平面で構成されているも
のとし、平面Q1内に存在するベクトルで、支柱
の長手方向に平行な単位ベクトルa及びこれと直
行する単位ベクトルbは次式で表わされる。
First, as shown in FIG. 2, a support 4 is set which is composed of an orthogonal coordinate system XYZ and planes Q 1 and Q 2 .
Let i, j, and k be unit vectors along each axis of XYZ in the orthogonal coordinate system. The line of intersection between the plane Q 1 and the plane Q 2 that constitutes the pillar 4 exists within Z-X, the angle between the above line of intersection and the Z-axis is given by θ, and the angle between the plane Q 1 and the Z-X plane is given by θ. Suppose that is given by . Here, assuming that the surface of the support is a plane, the unit vector a parallel to the longitudinal direction of the support and the unit vector b perpendicular to this, which are vectors existing in the plane Q1 , are expressed by the following equation. .

a=sinθj+cosθk b=−cos cosθj+sinj +cos sinθk …(1) 次に、観測点Pが第3図aで示すように極座標
系Θ,Φで与えられ、平面波がZ軸方向に進行す
るとした場合、平面Q1で反射する反射波の進行
方向erは次式で与えられる。
a=sinθj+cosθk b=-cos cosθj+sinj +cos sinθk …(1) Next, if the observation point P is given by the polar coordinate system Θ, Φ as shown in Figure 3a, and the plane wave travels in the Z-axis direction, then the plane The traveling direction e r of the reflected wave reflected at Q 1 is given by the following equation.

er=k−2(n・k)n n=a×b …(2) 一方、erを極座標成分で表わすと er=sinΘ cosΦj+sinΘ sinΦj+cosΘk …(3) となるので(1)式と(2)式より求めたerと(3)式のer
関係よりΘ,Φとθ,の関係は次式で表わされ
る。
e r =k−2(n・k)n n=a×b …(2) On the other hand, if e r is expressed as a polar coordinate component, e r =sinΘ cosΦj+sinΘ sinΦj+cosΘk…(3), so equation (1) and ( From the relationship between e r obtained from equation 2) and e r from equation (3), the relationship between Θ, Φ, and θ is expressed by the following equation.

観測点Pは反射波の進行方向に関係なく存在
し、その点Pの極座標はΘ,Φで与えられる。そ
して、反射波の進行方向は、(4)式を満足する値で
与えられる。第4図は支柱4の形状を表わすパラ
メータθ,と反射波の進行方向Θ,Φの関係を
示したもので、支柱4の形状を表わすθとの値
が与えられた場合、第3図に示す反射波の進行方
向を表わすΘ,Φをパラメータとした極座標
(Θ,Φ)において支柱4による反射波の放射さ
れる方向を示したもので、ΘとΦの読みを第3図
bに与える。
The observation point P exists regardless of the traveling direction of the reflected wave, and the polar coordinates of the point P are given by Θ and Φ. Then, the traveling direction of the reflected wave is given by a value that satisfies equation (4). Figure 4 shows the relationship between the parameter θ, which represents the shape of the pillar 4, and the traveling directions Θ and Φ of the reflected waves.When the value of θ, which represents the shape of the pillar 4, is given, Figure 3 This shows the direction in which the reflected wave from the pillar 4 is radiated in polar coordinates (Θ, Φ) with parameters Θ and Φ representing the traveling direction of the reflected wave shown in Figure 3b. .

また、支柱4が曲面で構成されている場合につ
いて第5図を用いて説明する。支柱4の断面の形
状が曲面で与えられる場合、この支柱4による反
射波の進行方向は、概略的には、曲面を局部的に
平面で置換え、平面からの反射波の集まりとして
考えることができる。すなわち、第5図に示すよ
うに、点A1に入射した平面波の反射方向は、点
A1における接平面P1を仮定し、この接平面P1
平面波が入射した場合の反射方向で表わすことが
できる。この場合、第1図と同様に支柱4がZ軸
に対してθ傾けて設けられているとして反射方向
は、支柱4の傾き角であるθと、接平面P1及び
平面波の進行方向を含む面のなす角1とで与え
られる。点A2に入射した場合も同様に接平面P2
及び平面波の進行方向を含む面のなす角2とで
与えられる。
Further, a case where the support column 4 has a curved surface will be explained using FIG. 5. When the cross-sectional shape of the pillar 4 is given by a curved surface, the traveling direction of the waves reflected by the pillar 4 can be roughly considered as a collection of reflected waves from the flat surface by locally replacing the curved surface with a flat surface. . In other words, as shown in Figure 5, the reflection direction of the plane wave incident on point A1 is
Assuming a tangential plane P 1 at A 1 , it can be expressed by the reflection direction when a plane wave is incident on this tangential plane P 1 . In this case, assuming that the support 4 is provided at an angle of θ with respect to the Z axis as in FIG. 1, the reflection direction includes θ, which is the inclination angle of the support 4, the tangential plane P1 , and the traveling direction of the plane wave. It is given by the angle 1 between the faces. Similarly, when incident on point A 2 , the tangent plane P 2
and the angle 2 formed by the plane including the direction of travel of the plane wave.

このように、支柱が曲面の場合、曲面を多面体
に置き換えると、各平面に対応した反射波が存在
し、また各平面の接続部からは回折波が存在し、
反射波の放射方向の間を回折波がつなぐように放
射される。次にこの多面体の平面の数を限りなく
多くすると曲面となる。この場合、反射波と回折
波を明確に区別することは難しく、従つて、ここ
では曲面からの反射波は、各接平面からの反射波
の集合で表わすものとする。
In this way, if the support is a curved surface and the curved surface is replaced with a polyhedron, there will be reflected waves corresponding to each plane, and diffracted waves will exist from the connection of each plane,
The diffracted waves connect the reflected waves in the radiation direction. Next, if we increase the number of planes of this polyhedron as much as possible, it becomes a curved surface. In this case, it is difficult to clearly distinguish between reflected waves and diffracted waves, so here the reflected waves from a curved surface are represented by a set of reflected waves from each tangential plane.

次に、支柱4の形状と回折波の進行方向の関係
について第6図を用いて説明する。第6図に示す
ように、矢印で示す平面波の進行方向と支柱4の
形状が与えられた場合、支柱4を構成する平面
Q1,Q2の交線7(以下、エツジと称する。)と平
面波の進行方向であるZ軸とのなす角をθとする
と、回折波の進行方向はエツジEを中心軸とし、
半頂角がθで与えられる円錐の母線Bに沿つた方
向で与えられる。この半頂角θは第6図に示すよ
うに平面波の進行方向に対するエツジ7の傾きに
等しい。したがつて、第7図に示すような従来の
支柱4では、第5図におけるの値が90゜となる
反射面8による反射波とエツジ7による回折波が
存在し、支柱4の形状はθと(=90゜)で表わさ
れるので、(4)式より反射波の進行方向はΘ=2θ,
Φ=0゜で与えられる方向へ放射される。さらに回
折波は第8図に示すように、θが一定でを連続
的に変化させた方向に放射される。ここで、Θ,
Φの読みは第3図bに示すとおりであり、第4図
の場合と同様である。
Next, the relationship between the shape of the support 4 and the traveling direction of the diffracted waves will be explained using FIG. 6. As shown in FIG. 6, given the traveling direction of the plane wave shown by the arrow and the shape of the support 4, the plane that constitutes the support 4 is
If the angle between the intersection line 7 of Q 1 and Q 2 (hereinafter referred to as edge) and the Z axis, which is the traveling direction of the plane wave, is θ, then the traveling direction of the diffracted wave is centered around edge E, and
It is given in the direction along the generating line B of the cone whose half apex angle is given by θ. As shown in FIG. 6, this half-vertex angle θ is equal to the inclination of the edge 7 with respect to the traveling direction of the plane wave. Therefore, in the conventional support 4 as shown in FIG. 7, there are waves reflected by the reflecting surface 8 and diffracted waves by the edge 7, where the value of in FIG. 5 is 90 degrees, and the shape of the support 4 is θ. and (=90°), so from equation (4), the traveling direction of the reflected wave is Θ=2θ,
It is radiated in the direction given by Φ=0°. Furthermore, as shown in FIG. 8, the diffracted waves are radiated in a direction in which θ is constant and continuously varied. Here, Θ,
The reading of Φ is as shown in FIG. 3b, and is the same as in FIG.

第5図に示す支柱の場合、反射波は特定の方向
へ集中することはないが、回折波は前述のように
多面体とした場合には反射波の放射方向の間をつ
なぐようにθが一定でが連続的に変化する方向
へほぼ一様に放射される。しかし、この多面体の
数を限りなく多くすると前述のように反射波の集
まりとして表わすことができ、回折の寄与がなく
なる。また、Θが零の方向では直接波が存在する
ので放射レベルが強くなる。第7図に示す支柱の
場合、反射波はΘ=20θ,Φ=0゜の方向へ集中し、
回折波はθが一定でが連続的に変化する方向へ
放射される。また、第7図に示す支柱の場合は第
5図に示す支柱の場合と同様にΘが零の方向では
直接波が存在するので、放射レベルが強くなる。
In the case of the pillar shown in Figure 5, the reflected waves are not concentrated in a specific direction, but when the diffracted waves are made into a polyhedron as described above, θ is constant so that the radiation directions of the reflected waves are connected. It is emitted almost uniformly in a direction that changes continuously. However, if the number of polyhedrons is increased to an infinitely large number, it can be expressed as a collection of reflected waves as described above, and the contribution of diffraction disappears. Furthermore, in the direction where Θ is zero, direct waves exist, so the radiation level becomes stronger. In the case of the pillar shown in Figure 7, the reflected waves are concentrated in the direction of Θ = 20θ, Φ = 0°,
The diffracted waves are emitted in a direction in which θ is constant but continuously changes. Further, in the case of the support shown in FIG. 7, as in the case of the support shown in FIG. 5, direct waves exist in the direction where Θ is zero, so the radiation level becomes strong.

これら第5図及び第7図に示した支柱による放
射パターンをそれぞれ第9図a,bに示す。この
第9図aに示す第5図の支柱の放射レベルに対
し、第9図bに示す第7図の支柱の放射レベル
は、Θ=2θ,Φ=0゜の方向では反射波が存在する
ので高くなるが、それ以外のθが一定でが連続
的に変化する方向では、回折波だけが存在するの
で、低くなる。この第9図a,bにおいて線の密
度が高い程放射レベルが高いとする。このよう
に、従来における第5図、第7図に示すような形
状の支柱を用いると、第9図a,bに示すように
放射レベルは円錐状に全体に高くΘの値が大きい
領域でも放射レベルは小さくならず広角放射特性
を劣化させる原因となつている。従つてこのよう
なアンテナを用いた場合、他の無線回線との干渉
を生じるという欠点があつた。
Radiation patterns by the pillars shown in FIGS. 5 and 7 are shown in FIGS. 9a and 9b, respectively. In contrast to the radiation level of the pillar in Figure 5 shown in Figure 9a, the radiation level of the pillar in Figure 7 shown in Figure 9b is that reflected waves exist in the directions of Θ = 2θ and Φ = 0°. However, in other directions where θ is constant but changes continuously, only diffracted waves exist, so it becomes low. In FIGS. 9a and 9b, it is assumed that the higher the line density, the higher the radiation level. In this way, when using conventional pillars with shapes as shown in Figures 5 and 7, the radiation level is high throughout the conical shape, even in areas where the value of Θ is large, as shown in Figures 9a and b. The radiation level does not decrease and becomes a cause of deterioration of wide-angle radiation characteristics. Therefore, when such an antenna is used, it has the disadvantage of causing interference with other wireless lines.

これらの欠点を除去するために、従来支柱の表
面に電波吸収体を取りつける方法、例えば第10
図に示すように支柱4に一定の周期を有する金属
板9を配列する方法、あるいは波長より小さく、
かつ不規則な凹凸を有する金属体を配置する方法
があるが、第1の方法では電波吸収体で散乱波を
完全に除去することは困難であり、更に耐候性の
良い材料が得にくいという欠点があつた。第2の
方法では一定の周期に配列した金属板の周期に応
じてグレーテイングロブがでるという欠点があつ
た。また第3の方法では、反射波を散乱させるこ
とはできるが、回折波を散乱させることは難しい
という欠点があつた。
In order to eliminate these drawbacks, conventional methods of attaching a radio wave absorber to the surface of the pillar, such as the 10th method, have been proposed.
As shown in the figure, a method of arranging metal plates 9 having a constant period on the support 4, or a method smaller than the wavelength,
There is also a method of arranging a metal body with irregular irregularities, but the first method has the drawback that it is difficult to completely eliminate scattered waves with a radio wave absorber, and it is also difficult to obtain materials with good weather resistance. It was hot. The second method had a drawback in that grating lobes appeared in accordance with the period of the metal plates arranged at a constant period. Furthermore, the third method has the disadvantage that although it is possible to scatter the reflected waves, it is difficult to scatter the diffracted waves.

この発明はこのような欠点を除去するために、
支柱の表面の一部あるいは全部に、断面が三角形
で支柱の長手方向に沿つた長さが波長に比べて長
い三角柱を取りつけ、上記三角柱の長手方向の三
つの各辺に沿つてそれぞれ、厚さが波長に比べて
小さい板状の構造物を取りつけたもので、その目
的は広角放射特性が優れたアンテナを実現するこ
とにある。以下図面について詳細に説明する。
In order to eliminate such drawbacks, this invention
A triangular prism with a triangular cross section and a length along the longitudinal direction of the pillar is longer than the wavelength is attached to part or all of the surface of the support, and the thickness is The antenna is equipped with a plate-like structure whose wavelength is smaller than the wavelength, and its purpose is to create an antenna with excellent wide-angle radiation characteristics. The drawings will be explained in detail below.

第11図はこの発明の一実施例を示すもので、
図において、4は支柱、5は通過する平面波、1
0は三角柱、11は構造物である。ここで三角柱
10の支柱4の長手方向に垂直な断面の形状が三
角形で、上記三角形の支柱4へ接続する辺の長さ
が支柱4の幅に等しく、他の二辺の長さが各々波
長よりも長くなつており、かつ上記三角柱10の
支柱の長手方向に沿つた長さが波長に比べて長く
なつている。また構造物11は厚さが波長に比べ
て小さい平板で、上記平板の一端が上記三角柱1
0の長手方向に沿つて接続され、その他の端が波
長よりも長い辺からなる不規規な凹凸となつてい
る。そして上記三角柱10は、カセグレンアンテ
ナでは支柱の主反射鏡側、パラボラアンテナでは
支柱の反射鏡側の表面に取りつけてあり、上記構
造物11は、上記支柱4の長手方向と上記平面波
5の進行方向の両者を含む平面と平行となるよう
にして、上記三角柱10の長手方向の三つの各辺
に沿つてそれぞれ取りつけられている。エツジ7
a,7b,7cはそれぞれは構造物11a,11
b,11cの端であり、エツジ7dは構造物11
aと三角柱10の接続部であり、平面8a,8b
は三角柱10の側面である。このような構成にす
ることによつて、平面波5の散乱波は第12図に
示すようにエツジ7a,7b,7c,7dによる
回折波12と平面8a,8bによる反射波13の
合成で表ろされる。平面8a,8bによる反射波
は、式(4)よりθ,で定まる方向へ放射され、第
11図に示すような支柱の場合、θが一定では
平面8a,8bに対応した符号が逆の一定値とな
るため、θ,で定まる方向にピークをもつよう
になるが、この反射波の一部は構造物11b,1
1cで反射され、これら構造物11b,11cで
反射された反射波は種々の方向に散乱される。ま
た、第11図において支柱4と平面8a,8bと
の接続部におけるエツジ( )及び平面8a,8
bの接続部におけるエツジ7aをもつ支柱の側面
に平面波が入射したときの回折波は、エツジの方
向と入射波の進行方向から定まる円錐の母線に沿
つて放射され、構造物11a,11b,11cの
エツジ7a,7b,7cが波長よりも長い辺から
なる不規則な凹凸でできているので、これらのエ
ツジによる回折波は各エツジの傾き角θできまる
リング状に散乱されるがエツジの頂角が零であ
るため平面波の進行方向にピークをもつようにな
り、また、構造物11b,11cによる反射波に
対してこれらエツジによる回折波もエツジが不規
則な凹凸であるため広い領域に散乱され、位相も
各々異なるので、散乱波の放射レベルを小さくす
ることができる。
FIG. 11 shows an embodiment of this invention.
In the figure, 4 is a column, 5 is a passing plane wave, 1
0 is a triangular prism, and 11 is a structure. Here, the shape of the cross section perpendicular to the longitudinal direction of the support 4 of the triangular prism 10 is triangular, the length of the side connecting to the support 4 of the above-mentioned triangle is equal to the width of the support 4, and the length of the other two sides are each the wavelength. The length along the longitudinal direction of the support of the triangular prism 10 is longer than the wavelength. Further, the structure 11 is a flat plate whose thickness is smaller than the wavelength, and one end of the flat plate is connected to the triangular prism 1.
0 along the longitudinal direction, and the other end is irregularly uneven with sides longer than the wavelength. The triangular prism 10 is attached to the main reflector side of the prop in a Cassegrain antenna, and to the surface of the reflector side of the prop in a parabolic antenna. The triangular prism 10 is attached along each of the three longitudinal sides of the triangular prism 10 so as to be parallel to a plane containing both of the triangular prisms 10 and 10. Edge 7
a, 7b, and 7c are structures 11a and 11, respectively.
b, 11c, and edge 7d is the structure 11
a and the triangular prism 10, and the planes 8a and 8b
is the side surface of the triangular prism 10. With this configuration, the scattered wave of the plane wave 5 is expressed as a combination of the diffracted waves 12 by the edges 7a, 7b, 7c, and 7d and the reflected waves 13 by the planes 8a and 8b, as shown in FIG. be done. The waves reflected by the planes 8a and 8b are radiated in the direction determined by θ according to equation (4), and in the case of a support as shown in Fig. 11, when θ is constant, the signs corresponding to the planes 8a and 8b are constant with opposite signs. value, so it will have a peak in the direction determined by θ, but a part of this reflected wave will be reflected by the structures 11b and 1
The reflected waves reflected by the structures 11b and 11c are scattered in various directions. In addition, in FIG. 11, the edges (
When a plane wave is incident on the side surface of the support with the edge 7a at the connection part b, the diffracted wave is radiated along the generatrix of the cone determined by the direction of the edge and the direction of propagation of the incident wave, and is emitted from the structures 11a, 11b, 11c. Since the edges 7a, 7b, and 7c are made of irregular irregularities with sides longer than the wavelength, the diffracted waves from these edges are scattered in a ring shape defined by the inclination angle θ of each edge. Since the angle is zero, it has a peak in the traveling direction of the plane wave, and the waves reflected by the structures 11b and 11c are also diffracted by these edges and scattered over a wide area because the edges are irregularly uneven. and have different phases, it is possible to reduce the radiation level of the scattered waves.

第13図はこの発明の他の実施例であり、三角
柱10および構造物11a,11b,11cを取
りつける支柱4の表面の形状が、支柱4の長手方
向および平面波5の進行方向の両者を含む平面に
直交する複数の平面から構成されている。このよ
うな構成にすることによつて反射波および回折波
の方向および位相を各々変えることができるの
で、散乱波の放射レベルをより小さくすることが
できる。
FIG. 13 shows another embodiment of the present invention, in which the surface shape of the support 4 to which the triangular prism 10 and the structures 11a, 11b, 11c are attached is a plane that includes both the longitudinal direction of the support 4 and the traveling direction of the plane wave 5. It is composed of multiple planes perpendicular to the plane. By adopting such a configuration, the direction and phase of the reflected wave and the diffracted wave can be changed, so that the radiation level of the scattered wave can be further reduced.

また構造物の不規則な凹凸として、辺の長さあ
るいは大きさの異なる複数種類の三角形あるいは
矩形を複数個不規則に配列しても同様の効果を得
ることができる。さらに不規則な凹凸の一部ある
いは全部の角を丸めても同様の効果を得ることが
できる。
Furthermore, the same effect can be obtained by irregularly arranging a plurality of triangles or rectangles of different side lengths or sizes as the irregular irregularities of the structure. Furthermore, the same effect can be obtained by rounding some or all of the corners of the irregular irregularities.

ここで、第11図、第14図及び第15図に示
すエツジの長さは波長に比べて十分長いものとす
る。
Here, it is assumed that the lengths of the edges shown in FIGS. 11, 14, and 15 are sufficiently long compared to the wavelength.

これは、幾何光学的回折理論に基づくものであ
り、この論理は物体の寸法が波長に比べて十分大
きい場合に適用できる高周波近似解法である。
This is based on the geometric optical diffraction theory, and this logic is a high-frequency approximation method that can be applied when the dimensions of the object are sufficiently large compared to the wavelength.

このため、エツジの寸法は波長に比べて小さい
場合、この「エツジ」の効果は小さく、小さい
「エツジ」を無視した全体の傾きで定まる方向へ
回折波は進行する。
Therefore, when the size of the edge is smaller than the wavelength, the effect of this "edge" is small, and the diffracted wave proceeds in a direction determined by the overall slope, ignoring the small "edge."

しかし、エツジの寸法を波長に比べて長くする
ことにより、実際上回折波は第6図に示すような
円錐の母線に沿つた方向に放射されるようにな
り、エツジ7の傾きで定まる所望の方向へ回折波
を放射させることができる。
However, by making the edge dimension longer than the wavelength, the refracted wave will actually be radiated in the direction along the generatrix of the cone as shown in Figure 6, and the desired wave determined by the inclination of edge 7 will be emitted. It is possible to radiate diffracted waves in the direction.

以上説明したように、この発明を用いれば支柱
による散乱波の放射レベルを小さくすることがで
きるので、広角放射特性が良好なアンテナを実現
することができる。
As explained above, by using the present invention, it is possible to reduce the radiation level of scattered waves by the pillars, and therefore it is possible to realize an antenna with good wide-angle radiation characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のアンテナ装置の構成図、第2図
は直交座標系XYZと支柱との配置関係図、第3
図a,bはそれぞれ観測点を示す極座標系図及び
反射波の進行方向Θ,Φの読みを示す説明図、第
4図は支柱の形状を表わすパラメータθ,と反
射波の進行方向Θ,Φの関係図、第5図は曲面か
らなる支柱からの散乱波の進行方向を説明する説
明図、第6図は回折波の進行方向を示す説明図、
第7図は平面からなる支柱による散乱波を説明す
る説明図、第8図は反射波と回折波の放射方向を
示す説明図、第9図a,bは従来の支柱による散
乱波の放射パターン図、第10図は従来の支柱の
構成図、第11図はこの発明の一実施例を示す構
成図、第12図はエツジによる回折波と平面によ
る反射波についての説明図、第13図はこの発明
の他の実施例を示す構成図である。 図中、1は主反射鏡、2は副反射鏡、3は一次
放射器、4は支柱、5は平面波、6は散乱波、7
はエツジ、8は反射面、9は金属板、10は反射
波、Pは観測点である。なお、図中、同一あるい
は相当部分には同一符号を付して示してある。
Figure 1 is a configuration diagram of a conventional antenna device, Figure 2 is a diagram of the arrangement relationship between the orthogonal coordinate system XYZ and columns, and Figure 3
Figures a and b are polar coordinate system diagrams showing the observation points and explanatory diagrams showing the readings of the traveling directions Θ and Φ of the reflected waves, respectively. A relationship diagram, FIG. 5 is an explanatory diagram illustrating the traveling direction of scattered waves from a support made of a curved surface, and FIG. 6 is an explanatory diagram showing the traveling direction of diffracted waves.
Fig. 7 is an explanatory diagram illustrating scattered waves caused by planar supports, Fig. 8 is an explanatory diagram showing the radiation directions of reflected waves and diffracted waves, and Figs. 9 a and b are radiation patterns of scattered waves caused by conventional supports. Fig. 10 is a block diagram of a conventional support, Fig. 11 is a block diagram showing an embodiment of the present invention, Fig. 12 is an explanatory diagram of diffracted waves due to edges and reflected waves by planes, and Fig. 13 is a block diagram showing an embodiment of the present invention. It is a block diagram which shows another Example of this invention. In the figure, 1 is the main reflector, 2 is the sub-reflector, 3 is the primary radiator, 4 is the column, 5 is the plane wave, 6 is the scattered wave, and 7
is an edge, 8 is a reflective surface, 9 is a metal plate, 10 is a reflected wave, and P is an observation point. In the drawings, the same or corresponding parts are denoted by the same reference numerals.

Claims (1)

【特許請求の範囲】 1 マイクロ波帯あるいはミリ波帯で用いられる
開口面アンテナであつて、その開口面内に電波の
通過を妨げ、一次放射器あるいは副反射鏡を支え
る支柱を有するアンテナ装置において、カセグレ
ンアンテナでは支柱の主反射鏡側、パラボラアン
テナでは支柱の反射鏡側の表面に上記支柱の長手
方向に垂直な断面の形状が三角形で、上記三角形
の支柱へ接続する一辺の長さが支柱の幅に等しく
他の二辺の長さが各々波長よりも長く、かつ上記
支柱の長手方向に沿つた長さが波長に比べて長い
三角柱を取りつけ、さらに厚さが波長に比べて小
さい平板で、上記平板の一端が波長よりも長い辺
からなる不規則な凹凸となつている構造物を、上
記支柱の長手方向と上記電波の進行方向の両者を
含む平面に平行となるようにして、上記構造物の
他端を上記三角柱の長手方向の三つの各辺に沿つ
てそれぞれ取りつけたことを特徴とするアンテナ
装置。 2 三角柱および構造物を取りつける支柱の表面
の形状が、支柱の長手方向および電波の進行方向
の両者を含む平面に直交する単一あるいは複数の
平面からなつていることを特徴とする特許請求の
範囲第1項記載のアンテナ装置。 3 不規則な凹凸の一部あるいは全部の角に丸み
をもたせたことを特徴とする特許請求の範囲第1
項あるいは第2項いずれかに記載のアンテナ装
置。
[Scope of Claims] 1. An antenna device that is an aperture antenna used in the microwave band or millimeter wave band and has a pillar within the aperture that prevents the passage of radio waves and supports a primary radiator or sub-reflector. , in a Cassegrain antenna, the surface of the main reflector side of the prop, and in a parabolic antenna, the surface of the prop on the reflector side has a triangular cross section perpendicular to the longitudinal direction of the column, and the length of one side connected to the triangular column is the length of the column. A triangular prism whose width is equal to the length of the other two sides is longer than the wavelength, and whose length along the longitudinal direction of the support is longer than the wavelength, and whose thickness is smaller than the wavelength. , one end of the flat plate has an irregularly uneven structure with a side longer than the wavelength, so that it is parallel to a plane that includes both the longitudinal direction of the support and the direction of propagation of the radio wave, An antenna device characterized in that the other end of the structure is attached to each of the three longitudinal sides of the triangular prism. 2. Claims characterized in that the shape of the surface of the triangular prism and the support to which the structure is attached consists of a single or multiple planes orthogonal to a plane that includes both the longitudinal direction of the support and the propagation direction of radio waves. The antenna device according to item 1. 3 Claim 1 characterized in that some or all of the corners of the irregular irregularities are rounded.
2. The antenna device according to any one of item 1 and 2.
JP7455080A 1980-06-03 1980-06-03 Antenna device Granted JPS56169908A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP7455080A JPS56169908A (en) 1980-06-03 1980-06-03 Antenna device
CA000378683A CA1172354A (en) 1980-06-03 1981-05-29 Microwave antenna having improved wide angle radiation characteristics
GB8116783A GB2081023B (en) 1980-06-03 1981-06-02 Reflector antenna
US06/269,216 US4369448A (en) 1980-06-03 1981-06-02 Microwave antenna with radiation scattering support member elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7455080A JPS56169908A (en) 1980-06-03 1980-06-03 Antenna device

Publications (2)

Publication Number Publication Date
JPS56169908A JPS56169908A (en) 1981-12-26
JPH0221171B2 true JPH0221171B2 (en) 1990-05-14

Family

ID=13550460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7455080A Granted JPS56169908A (en) 1980-06-03 1980-06-03 Antenna device

Country Status (1)

Country Link
JP (1) JPS56169908A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53105343A (en) * 1977-02-26 1978-09-13 Nippon Telegr & Teleph Corp <Ntt> Antenna unit
JPS54134959A (en) * 1978-04-12 1979-10-19 Mitsubishi Electric Corp Radio-wave shielding board

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53105343A (en) * 1977-02-26 1978-09-13 Nippon Telegr & Teleph Corp <Ntt> Antenna unit
JPS54134959A (en) * 1978-04-12 1979-10-19 Mitsubishi Electric Corp Radio-wave shielding board

Also Published As

Publication number Publication date
JPS56169908A (en) 1981-12-26

Similar Documents

Publication Publication Date Title
US4001836A (en) Parabolic dish and method of constructing same
US4174533A (en) Waveflux concentration reflector
JPH0221169B2 (en)
US4369448A (en) Microwave antenna with radiation scattering support member elements
JPH0221171B2 (en)
JPH0221168B2 (en)
JPH0221170B2 (en)
JPH0221167B2 (en)
JPH0221166B2 (en)
Veruttipong et al. Design considerations for beamwaveguide in the NASA deep space network
US4488157A (en) Slot array antenna assembly
JPH0221165B2 (en)
US5075692A (en) Antenna system
GB2081023A (en) Reflector antenna
JPS62204605A (en) Circularly polarized wave shaped beam antenna
JPH042490Y2 (en)
JPS6128247B2 (en)
JPS6138261Y2 (en)
JPS6232844B2 (en)
JPH0349204B2 (en)
JP2533626Y2 (en) Antenna with circular arc reflector
JPH0352246B2 (en)
JP3668913B2 (en) Reflector antenna
JPS6029209Y2 (en) antenna power supply device
JPH0491503A (en) Flat mirror antenna