JPH0221168B2 - - Google Patents

Info

Publication number
JPH0221168B2
JPH0221168B2 JP55074547A JP7454780A JPH0221168B2 JP H0221168 B2 JPH0221168 B2 JP H0221168B2 JP 55074547 A JP55074547 A JP 55074547A JP 7454780 A JP7454780 A JP 7454780A JP H0221168 B2 JPH0221168 B2 JP H0221168B2
Authority
JP
Japan
Prior art keywords
wave
waves
support
plane
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP55074547A
Other languages
Japanese (ja)
Other versions
JPS56169905A (en
Inventor
Hideo Sato
Akyoshi Ogawa
Naoto Matsunaka
Takashi Kataki
Takashi Hirukoi
Katsuhiko Aoki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
KDDI Corp
Original Assignee
Kokusai Denshin Denwa KK
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Denshin Denwa KK, Mitsubishi Electric Corp filed Critical Kokusai Denshin Denwa KK
Priority to JP7454780A priority Critical patent/JPS56169905A/en
Priority to CA000378683A priority patent/CA1172354A/en
Priority to GB8116783A priority patent/GB2081023B/en
Priority to US06/269,216 priority patent/US4369448A/en
Publication of JPS56169905A publication Critical patent/JPS56169905A/en
Publication of JPH0221168B2 publication Critical patent/JPH0221168B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/12Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave

Landscapes

  • Aerials With Secondary Devices (AREA)

Description

【発明の詳細な説明】 この発明はマイクロ波やミリ波帯で使用される
開口面アンテナにおいて広角放射特性が優れたア
ンテナ装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an antenna device having excellent wide-angle radiation characteristics in an aperture antenna used in microwave and millimeter wave bands.

従来の開口面アンテナの一例としてカセグレン
アンテナの構成を第1図に示す。第1図におい
て、1は主反射鏡、2は副反射鏡、3は一次放射
器、4は副反射鏡を支える支柱である。このよう
な構成の開口面アンテナにおいて、一次放射器3
から放射された球面波は副反射鏡2および主反射
鏡1で反射された後平面波となり外部へ放射され
る。このとき主反射鏡1で反射された平面波5は
副反射鏡2を支える支柱4に当たりこの支柱によ
つて散乱される。この場合散乱波6は幾何光学的
にスネルの法則を満足する方向へ進行する反射波
とその反射波の進行方向において電界強度が強
く、離れるにつれて徐々に弱くなる回折波から構
成される。
FIG. 1 shows the configuration of a Cassegrain antenna as an example of a conventional aperture antenna. In FIG. 1, 1 is a main reflector, 2 is a sub-reflector, 3 is a primary radiator, and 4 is a support supporting the sub-reflector. In the aperture antenna with such a configuration, the primary radiator 3
After being reflected by the sub-reflector 2 and the main reflector 1, the spherical wave radiated from the spherical wave becomes a plane wave and is radiated to the outside. At this time, the plane wave 5 reflected by the main reflecting mirror 1 hits the support 4 supporting the sub-reflector 2 and is scattered by this support. In this case, the scattered waves 6 are composed of a reflected wave that travels in a direction that satisfies Snell's law in terms of geometrical optics, and a diffracted wave that has a strong electric field strength in the traveling direction of the reflected wave and gradually weakens as it moves away from the reflected wave.

そこで、先ず支柱4と反射波の進行方向との関
係について説明する。従来の支柱4は主反射鏡側
の形状が平面で構成されたもの、あるいは曲面で
構成されたものがあつた。
First, the relationship between the pillar 4 and the traveling direction of reflected waves will be explained. In the conventional support column 4, the shape on the main reflecting mirror side may be a flat surface or a curved surface.

このため、支柱4が平面で構成されている場合
について説明する。
For this reason, a case will be described in which the support column 4 is configured as a plane.

先ず、第2図に示すように直交座標系XYZ及
び平面Q1,Q2で構成される支柱4を設定する。
直交座標系においてXYZの各軸に沿つた単位ベ
クトルをそれぞれi,j,kとする。支柱4を構
成する平面Q1と平面Q2の交線がZ−X内に存在
し、上記交線とZ軸のなす角がθで与えられ、平
面Q1とZ−X面のなす角がで与えられるとす
る。ここで、支柱の面が平面で構成されているも
のとし、平面Q1内に存在するベクトルで、支柱
の長手方向に平行な単位ベクトルa及びこれと直
行する単位ベクトルbは次式で表わされる。
First, as shown in FIG. 2, a support 4 is set which is composed of an orthogonal coordinate system XYZ and planes Q 1 and Q 2 .
Let i, j, and k be unit vectors along each axis of XYZ in the orthogonal coordinate system. The line of intersection between the plane Q 1 and the plane Q 2 that constitutes the pillar 4 exists within Z-X, the angle between the above line of intersection and the Z-axis is given by θ, and the angle between the plane Q 1 and the Z-X plane is given by θ. Suppose that is given by . Here, assuming that the surface of the support is a plane, the unit vector a parallel to the longitudinal direction of the support and the unit vector b perpendicular to this, which are vectors existing in the plane Q1 , are expressed by the following equation. .

a=sinθi+cosθk b=−cos cosθi+sini +cos sinθk …(1) 次に、観測点Pが第3図aで示すように極座標
系Θ,Φで与えられ、平面波がZ軸方向に進行す
るとした場合、平面Q1で反射する反射波の進行
方向erは次式で与えられる。
a=sinθi+cosθk b=-cos cosθi+sini +cos sinθk …(1) Next, if the observation point P is given by the polar coordinate system Θ, Φ as shown in Figure 3a, and the plane wave travels in the Z-axis direction, then the plane The traveling direction e r of the reflected wave reflected at Q 1 is given by the following equation.

er=k−2(n・k)n n=a×b …(2) 一方、erを極座標成分で表わすと er=sinΘ cosΦi+sinΘ sinΦj+cosΘk …(3) となるので(1)式と(2)式より求めたerと(3)式のer
関係よりΘ,Φとθ,の関係は次式で表わされ
る。
e r =k−2(n・k)n n=a×b …(2) On the other hand, if e r is expressed as a polar coordinate component, e r =sinΘ cosΦi+sinΘ sinΦj+cosΘk…(3), so equation (1) and ( From the relationship between e r obtained from equation 2) and e r from equation (3), the relationship between Θ, Φ, and θ is expressed by the following equation.

観測点Pは反射波の進行方向に関係なく存在
し、その点Pの極座標はΘ,Φで与えられる。そ
して、反射波の進行方向は、(4)式を満足する値で
与えられる。第4図は支柱4の形状を表わすパラ
メータθ,と反射波の進行方向Θ,Φの関係を
示したもので、支柱4の形状を表わすθとの値
が与えられた場合、第3図に示す反射波の進行方
向を表わすΘ,Φをパラメータとした極座標
(Θ,Φ)において支柱4による反射波の放射さ
れる方向を示したもので、ΘとΦの読みを第3図
bに与える。
The observation point P exists regardless of the traveling direction of the reflected wave, and the polar coordinates of the point P are given by Θ and Φ. Then, the traveling direction of the reflected wave is given by a value that satisfies equation (4). Figure 4 shows the relationship between the parameter θ, which represents the shape of the pillar 4, and the traveling directions Θ and Φ of the reflected waves.When the value of θ, which represents the shape of the pillar 4, is given, Figure 3 This shows the direction in which the reflected wave from the pillar 4 is radiated in polar coordinates (Θ, Φ) with parameters Θ and Φ representing the traveling direction of the reflected wave shown in Figure 3b. .

また、支柱4が曲面で構成されている場合につ
いて第5図を用いて説明する。支柱4の断面の形
状が曲面で与えられる場合、この支柱4による反
射波の進行方向は、概略的には、曲面を局部的に
平面で置換え、平面からの反射波の集まりとして
考えることができる。すなわち、第5図に示すよ
うに、点A1に入射した平面波の反射方向は、点
A1における接平面P1を仮定し、この接平面P1
平面波が入射した場合の反射方向で表わすことが
できる。この場合、第1図と同様に支柱4がZ軸
に対してθ傾けて設けられているとして反射方向
は、支柱4の傾き角であるθと、接平面P1及び
平面波の進行方向を含む面のなす1とで与えら
れる。点A2に入射した場合も同様に接平面P2
び平面波の進行方向を含む面のなす角2とで与
えられる。
Further, a case where the support column 4 has a curved surface will be explained using FIG. 5. When the cross-sectional shape of the pillar 4 is given by a curved surface, the traveling direction of the waves reflected by the pillar 4 can be roughly considered as a collection of reflected waves from the flat surface by locally replacing the curved surface with a flat surface. . In other words, as shown in Figure 5, the reflection direction of the plane wave incident on point A1 is
Assuming a tangential plane P 1 at A 1 , it can be expressed by the reflection direction when a plane wave is incident on this tangential plane P 1 . In this case, assuming that the support 4 is provided at an angle of θ with respect to the Z axis as in FIG. 1, the reflection direction includes θ, which is the inclination angle of the support 4, the tangential plane P1 , and the traveling direction of the plane wave. It is given by 1 of the face. When the wave is incident on point A 2 , it is similarly given by angle 2 formed by the tangential plane P 2 and the plane that includes the traveling direction of the plane wave.

このように、支柱が曲面の場合、曲面を多面体
に置き換えると、各平面に対応した反射波が存在
し、また各平面の接続部からは回折波が存在し、
反射波の放射方向の間を回折波がつなぐように放
射される。次にこの多面体の平面の数を限りなく
多くすると曲面となる。この場合、反射波と回折
波を明確に区別することは難しく、従つて、ここ
では曲面からの反射波は、各接平面からの反射波
の集合で表わすものとする。
In this way, if the support is a curved surface and the curved surface is replaced with a polyhedron, there will be reflected waves corresponding to each plane, and diffracted waves will exist from the connection of each plane,
The diffracted waves connect the reflected waves in the radiation direction. Next, if we increase the number of planes of this polyhedron as much as possible, it becomes a curved surface. In this case, it is difficult to clearly distinguish between reflected waves and diffracted waves, so here the reflected waves from a curved surface are represented by a set of reflected waves from each tangential plane.

次に、支柱4の形状と回折波の進行方向の関係
について第6図を用いて説明する。第6図に示す
ように、矢印で示す平面波の進行方向と支柱4の
形状が与えられた場合、支柱4を構成する平面
Q1,Q2の交線7(以下、エツジと称する。)と平
面波の進行方向であるZ軸とのなす角をθとする
と、回折波の進行方向はエツジEを中心軸とし、
半頂角がθで与えられる円錐の母線Bに沿つた方
向で与えられる。この半頂角θは第6図に示すよ
うに平面波の進行方向に対するエツジ7の傾きに
等しい。したがつて、第7図に示すような従来の
支柱4では、第5図におけるの値が90゜となる
反射面8による反射波とエツジ7,7による回折
波が存在し、支柱4の形状はθと(=90゜)で表
わされるので、(4)式より反射波の進行方向はΘ=
2θ,Φ=0゜で与えられる方向へ放射される。さら
に回折波は第8図に示すように、θが一定でを
連続的に変化させた方向に放射される。ここで、
Θ,Φの読みは第3図bに示すとおりであり、第
4図の場合と同様である。
Next, the relationship between the shape of the support 4 and the traveling direction of the diffracted waves will be explained using FIG. 6. As shown in FIG. 6, given the traveling direction of the plane wave shown by the arrow and the shape of the support 4, the plane that constitutes the support 4 is
If the angle between the intersection line 7 of Q 1 and Q 2 (hereinafter referred to as edge) and the Z axis, which is the traveling direction of the plane wave, is θ, then the traveling direction of the diffracted wave is centered around edge E, and
It is given in the direction along the generating line B of the cone whose half apex angle is given by θ. As shown in FIG. 6, this half-vertex angle θ is equal to the inclination of the edge 7 with respect to the traveling direction of the plane wave. Therefore, in the conventional support column 4 as shown in FIG. is expressed by θ and (=90°), so from equation (4), the traveling direction of the reflected wave is Θ=
It is radiated in the direction given by 2θ, Φ = 0°. Furthermore, as shown in FIG. 8, the diffracted waves are radiated in a direction in which θ is constant and continuously varied. here,
The readings of Θ and Φ are as shown in FIG. 3b, and are the same as in the case of FIG.

第5図に示す支柱の場合、反射波は特定の方向
へ集中することはないが、回折波は前述のように
多面体とした場合には反射波の放射方向の間をつ
なぐようにθが一定でが連続的に変化する方向
へほぼ一様に放射される。しかし、この多面体の
数を限りなく多くすると前述のように反射波の集
まりとして表わすことができ、回折の寄与がなく
なる。また、Θが零の方向では直接波が存在する
ので放射レベルが強くなる。第7図に示す支柱の
場合、反射波はΘ=2θ,Φ=0゜の方向へ集中し、
回折波はθが一定でが連続的に変化する方向へ
放射される。また、第7図に示す支柱の場合は第
5図に示す支柱の場合と同様にΘが零の方向では
直接波が存在するので、放射レベルが強くなる。
In the case of the pillar shown in Figure 5, the reflected waves are not concentrated in a specific direction, but when the diffracted waves are made into a polyhedron as described above, θ is constant so that the radiation directions of the reflected waves are connected. It is emitted almost uniformly in a direction that changes continuously. However, if the number of polyhedrons is increased to an infinitely large number, it can be expressed as a collection of reflected waves as described above, and the contribution of diffraction disappears. Furthermore, in the direction where Θ is zero, direct waves exist, so the radiation level becomes stronger. In the case of the pillar shown in Figure 7, the reflected waves are concentrated in the direction of Θ = 2θ, Φ = 0°,
The diffracted waves are emitted in a direction in which θ is constant but continuously changes. Further, in the case of the support shown in FIG. 7, as in the case of the support shown in FIG. 5, direct waves exist in the direction where Θ is zero, so the radiation level becomes strong.

これら第5図及び第7図に示した支柱による放
射パターンをそれぞれ第9図a,bに示す。この
第9図aに示す第5図の支柱の放射レベルに対
し、第9図bに示す第7図の支柱の放射レベル
は、Θ=2θ,Φ=0゜の方向では反射波が存在する
ので高くなるが、それ以外のθが一定でが連続
的に変化する方向では、回折波だけが存在するの
で、低くなる。この第9図a,bにおいて線の密
度が高い程放射レベルが高いとする。このように
従来における第5図、第7図に示すような形状の
支柱を用いると、第9図a,bに示すように放射
レベルは円錐状に全体に高くΘの値が大きい領域
でも放射レベルは小さくならず広角放射特性を劣
化させる原因となつている。従つてこのようなア
ンテナを用いた場合、他の無線回線との干渉を生
じるという欠点があつた。
Radiation patterns by the pillars shown in FIGS. 5 and 7 are shown in FIGS. 9a and 9b, respectively. In contrast to the radiation level of the pillar in Figure 5 shown in Figure 9a, the radiation level of the pillar in Figure 7 shown in Figure 9b is that reflected waves exist in the directions of Θ = 2θ and Φ = 0°. However, in other directions where θ is constant but changes continuously, only diffracted waves exist, so it becomes low. In FIGS. 9a and 9b, it is assumed that the higher the line density, the higher the radiation level. In this way, when using the conventional struts having the shapes shown in Figs. 5 and 7, the radiation level is high throughout the conical shape as shown in Figs. 9a and b, and even in areas where the value of Θ is large The level is not reduced and becomes a cause of deterioration of wide-angle radiation characteristics. Therefore, when such an antenna is used, it has the disadvantage of causing interference with other wireless lines.

これらの欠点を除去するために、従来支柱の表
面に電波吸収体を取りつける方法、例えば第10
図に示すように支柱4に一定の周期を有する金属
板9を配列する方法、あるいは波長より小さく、
かつ不規則な凹凸を有する金属体を配置する方法
があるが、第1の方法では電波吸収体で散乱波を
完全に除去することは困難であり、更に耐候性の
良い材料が得にくいという欠点があつた。第2の
方法では一定の周期に配列した金属板の周期に応
じてグレーテイングロブがでるという欠点があつ
た。また第3の方法では、反射波を散乱させるこ
とはできるが、回折波を散乱させることは難しい
という欠点があつた。
In order to eliminate these drawbacks, conventional methods of attaching a radio wave absorber to the surface of the pillar, such as the 10th method, have been proposed.
As shown in the figure, a method of arranging metal plates 9 having a constant period on the support 4, or a method smaller than the wavelength,
There is also a method of arranging a metal body with irregular irregularities, but the first method has the drawback that it is difficult to completely eliminate scattered waves with a radio wave absorber, and it is also difficult to obtain materials with good weather resistance. It was hot. The second method had a drawback in that grating lobes appeared in accordance with the period of the metal plates arranged at a constant period. Furthermore, the third method has the disadvantage that although it is possible to scatter the reflected waves, it is difficult to scatter the diffracted waves.

この発明はこのような欠点を除去するために、
支柱の表面の一部あるいは全部に、厚さが波長に
比べて小さい平板で、一端を支柱の長手方向に沿
つて接続し、他端を波長よりも長い辺からなる不
規則な凹凸となる複数個の構造物を互いに平行に
取り付けることにより、広角放射特性が優れたア
ンテナを実現することにある。以下図面について
詳細に説明する。
In order to eliminate such drawbacks, this invention
A plurality of flat plates whose thickness is smaller than the wavelength on part or all of the surface of the support, one end of which is connected along the longitudinal direction of the support, and the other end of which is irregularly uneven with sides longer than the wavelength. The objective is to realize an antenna with excellent wide-angle radiation characteristics by attaching two structures parallel to each other. The drawings will be explained in detail below.

第11図はこの発明の一実施例を示すもので、
図において4は支柱、5は通過する平面波、11
は構造物である。ここで構造物11は厚さが波長
に比べて小さい平板で、上記平板の一端が上記支
柱4の長手方向に沿つて接続され、その他の端が
波長よりも長い辺からなる不規則な凹凸となつて
いる。そして上記構造物11は、カセグレンアン
テナでは支柱4の主反射鏡側、パラボラアンテナ
では支柱4の反射鏡側の表面の上記支柱4の長手
方向と上記平面波5の進行方向の両者を含む平面
に平行となる両方の側面に、上記平面に平行とな
るように取りつけられている。このような構成に
することによつて支柱4へ入射する平面波5は第
12図a,bに示すように、支柱4の平面波5の
入射する面を曲面としているので、入射する平面
波はこの曲面で反射され、第12図aに示す反射
波10となる。この反射波10のうち構造物11
の平面部に当つた反射波は再び反射され、あるい
は構造物11のエツジ7によつて回折波となつて
散乱される。
FIG. 11 shows an embodiment of this invention.
In the figure, 4 is a column, 5 is a passing plane wave, and 11
is a structure. Here, the structure 11 is a flat plate whose thickness is smaller than the wavelength, one end of the flat plate is connected along the longitudinal direction of the support 4, and the other end is an irregular uneven surface having a side longer than the wavelength. It's summery. The structure 11 is parallel to a plane that includes both the longitudinal direction of the support 4 and the traveling direction of the plane wave 5 on the main reflector side of the support 4 in a Cassegrain antenna, and on the reflector side of the support 4 in a parabolic antenna. It is attached to both side surfaces parallel to the above plane. With this configuration, the plane wave 5 that is incident on the support column 4 is caused by the surface of the support column 4 on which the plane wave 5 is incident being a curved surface, as shown in FIGS. 12a and b. , and becomes a reflected wave 10 shown in FIG. 12a. Of this reflected wave 10, structure 11
The reflected wave hitting the plane part is reflected again or is scattered as a diffracted wave by the edge 7 of the structure 11.

このように、支柱4の曲表面あるいは構造物1
1の平面部につて反射波は種々の方向に散乱さ
れ、また構造物11のエツジ7による回折波もエ
ツジ7が波長よりも長い辺からなる不規な凹凸と
なつているので、エツジ7による回折波も広い領
域に散乱され、さらに位相も各々異なるので、反
射波と回折波の合成からなる散乱波は互いに打消
してこの放射レベルを小さくすることができる。
In this way, the curved surface of the support 4 or the structure 1
1, the reflected waves are scattered in various directions, and the diffracted waves due to the edges 7 of the structure 11 are irregularly uneven, with sides longer than the wavelength. Since the diffracted waves are also scattered over a wide area and have different phases, the scattered waves, which are a combination of the reflected waves and the diffracted waves, cancel each other out, thereby reducing the radiation level.

また、第12図bに示すように入射する平面波
5が構造物11のエツジ7に当たつて散乱される
回折波はエツジ7の傾きで定まる円錐の母線に沿
つた方向に放射される。
Further, as shown in FIG. 12b, the incident plane wave 5 hits the edge 7 of the structure 11 and the diffracted wave is scattered and radiated in a direction along the generating line of the cone determined by the inclination of the edge 7.

この場合の回折波もエツジ7の傾きが相異する
ので広い領域に散乱される。
The diffracted waves in this case are also scattered over a wide area because the inclinations of the edges 7 are different.

なお、構造物10の厚さを波長オーダに設定す
ることによる効果、厚さが波長に比べて小さい平
板で構成する理由は、その厚さが波動的にほぼ無
視され、その厚さ方向に平行な面からの反射波が
Φ=0の面内に放射されるのを防ぐ為である。す
なわちこのようにすることにより、この平板から
の散乱波を回折波のみで表わすことができる。
The effect of setting the thickness of the structure 10 on the wavelength order, and the reason why it is composed of a flat plate whose thickness is smaller than the wavelength, is that the thickness is almost ignored by wave dynamics, and the thickness is parallel to the thickness direction. This is to prevent reflected waves from the plane from being radiated into the plane of Φ=0. That is, by doing so, the scattered waves from this flat plate can be represented only by diffracted waves.

ここで、不規則な凹凸からなる辺の長さは波長
に比べて十分長いものとする。
Here, it is assumed that the length of the side made of irregular unevenness is sufficiently long compared to the wavelength.

これは幾何光学的回折理論に基づくものであ
り、この論理は物体の寸法が波長に比べて十分大
きい場合に適用できる高周波近似解法である。
This is based on the geometric optical diffraction theory, and this logic is a high-frequency approximation method that can be applied when the dimensions of the object are sufficiently large compared to the wavelength.

このため、エツジ7の寸法は波長に比べて小さ
い場合、この「エツジ」の効果は小さく、小さい
「エツジ」を無視した全体の傾きで定まる方向へ
回折波は進行する。
Therefore, when the dimension of the edge 7 is smaller than the wavelength, the effect of this "edge" is small, and the diffracted wave travels in a direction determined by the overall slope, ignoring the small "edge".

しかし、エツジ7の寸法を波長に比べて長くす
ることにより、実際上回折波は第6図に示すよう
な円錐の母線に沿つた方向に放射されるようにな
り、エツジ7の傾きで定まる所望の方向へ回折波
を放射させることができる。
However, by making the dimension of the edge 7 longer than the wavelength, the refracted wave will actually be radiated in the direction along the generating line of the cone as shown in Figure 6, and the desired direction determined by the inclination of the edge 7 will be emitted. Diffracted waves can be emitted in the direction of .

こうして、このエツジ7の傾き角が異なる多数
のエツジを組み合わせることにより、回折波をい
ろいろな方向へ放射させることができ、その回折
波の放射レベルを小さくすることができる。また
第12図a,bに示すように不規則な凹凸とし
て、辺の長さあるいは大きさの異なる複数種類の
凸形を複数個不規則に配列することによつて同様
の効果を得ることができる。したがつて、入射す
る平面波5の一部を広い領域へ散乱させることが
できるので、支柱による散乱波の放射レベルを小
さくすることができる。また第13図に示すよう
に不規則な凹凸として、辺の長さあるいは大きさ
の異なる複数種類の凸形を複数個不規則に配列す
ることによつて同様の効果を得ることができる。
したがつて入射する平面波5を広い領域へ散乱さ
せることができるので、支柱による散乱波の放射
レベルを小さくすることができる。
In this way, by combining a large number of edges 7 with different inclination angles, diffracted waves can be radiated in various directions, and the radiation level of the diffracted waves can be reduced. Furthermore, as shown in Fig. 12a and b, the same effect can be obtained by irregularly arranging multiple types of convex shapes with different side lengths or sizes as irregular irregularities. can. Therefore, a part of the incident plane wave 5 can be scattered over a wide area, so that the radiation level of the scattered wave by the pillar can be reduced. Further, as shown in FIG. 13, the same effect can be obtained by irregularly arranging a plurality of convex shapes of different types having different side lengths or sizes as the irregular concavities and convexities.
Therefore, since the incident plane wave 5 can be scattered over a wide area, the radiation level of the scattered wave by the pillar can be reduced.

第13図は凸形として三角形を用いた場合につ
いて示したが、それに限らず矩形あるいはそれら
を組み合せた形状を用いても同様の効果を得るこ
とができる。また第12図a,bおよび第13図
では、支柱4の両方の側面に同じ形をした構造物
11を取りつけた場合について示したが、両者の
形を変えても同様の効果を得ることができる。さ
らに不規則な凹凸の一部あるいは全部の角を丸め
ても同様の効果を得ることができる。
Although FIG. 13 shows a case where a triangular shape is used as the convex shape, the same effect can be obtained by using not only a rectangular shape but also a rectangular shape or a combination thereof. Furthermore, although FIGS. 12a and 12b and FIG. 13 show the case where structures 11 of the same shape are attached to both sides of the support column 4, the same effect can be obtained even if the shapes of both are changed. can. Furthermore, the same effect can be obtained by rounding some or all of the corners of the irregular irregularities.

以上説明したようにこの発明を用いれば、支柱
による散乱波の放射レベルを小さくすることがで
きるので、広角放射特性が良好なアンテナを実現
することができる。
As explained above, by using the present invention, it is possible to reduce the radiation level of scattered waves caused by the pillars, so it is possible to realize an antenna with good wide-angle radiation characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のアンテナ装置の構成図、第2図
は直交座標系XYZと支柱との配置関係図、第3
図は観測点を示す極座標系図、第4図は支柱の形
状を表わすパラメータθ,と反射波の進行方向
Θ,Φの関係図、第5図は曲面からなる支柱から
の散乱波の進行方向を説明する説明図、第6図は
回折波の進行方向を示す説明図、第7図は平面か
らなる支柱による散乱波を説明する説明図、第8
図は反射波と回折波の放射方向を示す説明図、第
9図a,bは従来の支柱による散乱波の放射パタ
ーン図、第10図は従来の支柱の構成図、第11
図はこの発明の一実施例を示す構成図、第12図
a,bは第11図に示す構成の側面図及び正面
図、第13図はこの発明の他の実施例を示す構成
図である。 図中、1は主反射鏡、2は副反射鏡、3は一次
放射器、4は支柱、5は平面波、6は散乱波、7
はエツジ、8は反射面、9は金属板、10は反射
波、11は構造物、Pは観測点である。なお、図
中同一あるいは相当部分には同一符号を付して示
してある。
Figure 1 is a configuration diagram of a conventional antenna device, Figure 2 is a diagram of the arrangement relationship between the orthogonal coordinate system XYZ and columns, and Figure 3
The figure shows the polar coordinate system diagram showing the observation points, Figure 4 shows the relationship between the parameter θ, which represents the shape of the pillar, and the traveling directions Θ and Φ of the reflected waves, and Figure 5 shows the traveling direction of the scattered waves from the pillar, which has a curved surface. 6 is an explanatory diagram showing the traveling direction of diffracted waves, FIG. 7 is an explanatory diagram illustrating scattered waves by planar supports, and
The figure is an explanatory diagram showing the radiation directions of reflected waves and diffracted waves. Figures 9a and b are radiation pattern diagrams of scattered waves by conventional pillars. Figure 10 is a configuration diagram of conventional pillars.
The figure is a configuration diagram showing one embodiment of this invention, FIGS. 12a and 12b are side and front views of the configuration shown in FIG. 11, and FIG. 13 is a configuration diagram showing another embodiment of this invention. . In the figure, 1 is the main reflector, 2 is the sub-reflector, 3 is the primary radiator, 4 is the column, 5 is the plane wave, 6 is the scattered wave, and 7
is an edge, 8 is a reflective surface, 9 is a metal plate, 10 is a reflected wave, 11 is a structure, and P is an observation point. It should be noted that the same or corresponding parts in the figures are indicated by the same reference numerals.

Claims (1)

【特許請求の範囲】 1 マイクロ波帯、ミリ波帯で用いられる開口面
アンテナで、その開口面内に電波の通過を妨げ、
一次放射器あるいは副反射鏡を支える支柱を有す
るアンテナ装置において、上記支柱の上記開口面
アンテナにおける主反射鏡側あるいは反射鏡側の
表面に、厚さが波長に比べて小さい平板で、上記
平板の一端が上記支柱の長手方向に沿つて接続さ
れ、その他の端が波長よりも長い辺からなる不規
則な凹凸となつている複数個の構造物を、互いに
平行に上記支柱の長手方向と上記電波の進行方向
の両者を含む平面に平行となるように取りつけた
ことを特徴とするアンテナ装置。 2 不規則な凹凸の一部あるいは全部の角に丸み
をもたせたことを特徴とする特許請求の範囲第1
項記載のアンテナ装置。
[Claims] 1. An aperture antenna used in the microwave band and millimeter wave band, which prevents the passage of radio waves within the aperture,
In an antenna device having a support that supports a primary radiator or a sub-reflector, a flat plate having a thickness smaller than the wavelength is provided on the surface of the support on the main reflector side or reflector side of the aperture antenna. A plurality of structures, one end of which is connected along the longitudinal direction of the above-mentioned support, and the other end of which has irregular irregularities with sides longer than the wavelength, are connected parallel to each other in the longitudinal direction of the above-mentioned support and the above-mentioned radio waves. An antenna device characterized in that the antenna device is mounted so as to be parallel to a plane including both traveling directions of the antenna device. 2 Claim 1 characterized in that some or all of the corners of the irregular irregularities are rounded.
Antenna device as described in section.
JP7454780A 1980-06-03 1980-06-03 Antenna device Granted JPS56169905A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP7454780A JPS56169905A (en) 1980-06-03 1980-06-03 Antenna device
CA000378683A CA1172354A (en) 1980-06-03 1981-05-29 Microwave antenna having improved wide angle radiation characteristics
GB8116783A GB2081023B (en) 1980-06-03 1981-06-02 Reflector antenna
US06/269,216 US4369448A (en) 1980-06-03 1981-06-02 Microwave antenna with radiation scattering support member elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7454780A JPS56169905A (en) 1980-06-03 1980-06-03 Antenna device

Publications (2)

Publication Number Publication Date
JPS56169905A JPS56169905A (en) 1981-12-26
JPH0221168B2 true JPH0221168B2 (en) 1990-05-14

Family

ID=13550383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7454780A Granted JPS56169905A (en) 1980-06-03 1980-06-03 Antenna device

Country Status (1)

Country Link
JP (1) JPS56169905A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2493020B1 (en) * 2009-10-21 2018-03-07 Mitsubishi Electric Corporation Antenna device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53105343A (en) * 1977-02-26 1978-09-13 Nippon Telegr & Teleph Corp <Ntt> Antenna unit
JPS54134959A (en) * 1978-04-12 1979-10-19 Mitsubishi Electric Corp Radio-wave shielding board

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53105343A (en) * 1977-02-26 1978-09-13 Nippon Telegr & Teleph Corp <Ntt> Antenna unit
JPS54134959A (en) * 1978-04-12 1979-10-19 Mitsubishi Electric Corp Radio-wave shielding board

Also Published As

Publication number Publication date
JPS56169905A (en) 1981-12-26

Similar Documents

Publication Publication Date Title
US4755826A (en) Bicollimated offset Gregorian dual reflector antenna system
JPH01316008A (en) Vertical antenna
JPH0221169B2 (en)
JPH0221168B2 (en)
JPH0221167B2 (en)
US4369448A (en) Microwave antenna with radiation scattering support member elements
JPH0221166B2 (en)
JPH0221165B2 (en)
JPH0221170B2 (en)
JPH0221171B2 (en)
US4488157A (en) Slot array antenna assembly
GB2081023A (en) Reflector antenna
JPS62204605A (en) Circularly polarized wave shaped beam antenna
US5075692A (en) Antenna system
JPH042490Y2 (en)
JP3314904B2 (en) Multi-beam antenna
JP2533626Y2 (en) Antenna with circular arc reflector
EP0599879A1 (en) Radar reflectors.
JPH0352246B2 (en)
JPS6232844B2 (en)
JPH0349204B2 (en)
JPS6128247B2 (en)
JP3668913B2 (en) Reflector antenna
JPS598406A (en) Scanning type antenna
JPH0491503A (en) Flat mirror antenna