JPH0221166B2 - - Google Patents

Info

Publication number
JPH0221166B2
JPH0221166B2 JP55074545A JP7454580A JPH0221166B2 JP H0221166 B2 JPH0221166 B2 JP H0221166B2 JP 55074545 A JP55074545 A JP 55074545A JP 7454580 A JP7454580 A JP 7454580A JP H0221166 B2 JPH0221166 B2 JP H0221166B2
Authority
JP
Japan
Prior art keywords
plane
wave
waves
support
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP55074545A
Other languages
Japanese (ja)
Other versions
JPS56169903A (en
Inventor
Hideo Sato
Akyoshi Ogawa
Naoto Matsunaka
Takashi Kataki
Takashi Hirukoi
Katsuhiko Aoki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
KDDI Corp
Original Assignee
Kokusai Denshin Denwa KK
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Denshin Denwa KK, Mitsubishi Electric Corp filed Critical Kokusai Denshin Denwa KK
Priority to JP7454580A priority Critical patent/JPS56169903A/en
Priority to CA000378683A priority patent/CA1172354A/en
Priority to GB8116783A priority patent/GB2081023B/en
Priority to US06/269,216 priority patent/US4369448A/en
Publication of JPS56169903A publication Critical patent/JPS56169903A/en
Publication of JPH0221166B2 publication Critical patent/JPH0221166B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/12Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave

Landscapes

  • Aerials With Secondary Devices (AREA)

Description

【発明の詳細な説明】 この発明はマイクロ波やミリ波帯で使用される
開口面アンテナにおいて広角放射特性が優れたア
ンテナ装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an antenna device having excellent wide-angle radiation characteristics in an aperture antenna used in microwave and millimeter wave bands.

従来の開口面アンテナの一例としてカセグレン
アンテナの構成を第1図に示す。第1図におい
て、1は主反射鏡、2は副反射鏡、3は一次放射
器、4は副反射鏡を支える支柱である。このよう
な構成の開口面アンテナにおいて、一次放射器3
から放射された球面波は副反射鏡2および主反射
鏡1で反射された後平面波となり外部へ放射され
る。このとき主反射鏡1で反射された平面波5は
副反射鏡2を支える支柱4に当たりこの支柱によ
つて散乱される。この場合散乱波6は幾何光学的
にスネルの法則を満足する方向へ進行する反射波
とその反射波の進行方向において電界強度が強
く、離れるにつれて徐々に弱くなる回折波から構
成される。
FIG. 1 shows the configuration of a Cassegrain antenna as an example of a conventional aperture antenna. In FIG. 1, 1 is a main reflector, 2 is a sub-reflector, 3 is a primary radiator, and 4 is a support supporting the sub-reflector. In the aperture antenna with such a configuration, the primary radiator 3
After being reflected by the sub-reflector 2 and the main reflector 1, the spherical wave radiated from the spherical wave becomes a plane wave and is radiated to the outside. At this time, the plane wave 5 reflected by the main reflecting mirror 1 hits the support 4 supporting the sub-reflector 2 and is scattered by this support. In this case, the scattered waves 6 are composed of a reflected wave that travels in a direction that satisfies Snell's law in terms of geometrical optics, and a diffracted wave that has a strong electric field strength in the traveling direction of the reflected wave and gradually weakens as it moves away from the reflected wave.

そこで、先ず支柱4と反射波の進行方向との関
係について説明する。従来の支柱4は主反射鏡側
の形状が平面で構成されたもの、あるいは曲面で
構成されたものがあつた。
First, the relationship between the pillar 4 and the traveling direction of reflected waves will be explained. In the conventional support column 4, the shape on the main reflecting mirror side may be a flat surface or a curved surface.

このため、支柱4が平面で構成されている場合
について説明する。
For this reason, a case will be described in which the support column 4 is configured as a plane.

先ず、第2図に示すように直交座標系XYZ及
び平面Q1,Q2で構成される支柱4を設定する。
直交座標系においてXYZの各軸に沿つた単位ベ
クトルをそれぞれi,j,kとする。支柱4を構
成する平面Q1と平面Q2の交線がZ−X内に存在
し、上記交線とZ軸のなす角がθで与えられ、平
面Q1とZ−X面のなす角がで与えられるとす
る。ここで、支柱の面が平面で構成されているも
のとし、平面Q1内に存在するベクトルで、支柱
の長手方向に平行な単位ベクトルa及びこれと直
交する単位ベクトルbは次式で表わされる。
First, as shown in FIG. 2, a support 4 is set which is composed of an orthogonal coordinate system XYZ and planes Q 1 and Q 2 .
Let i, j, and k be unit vectors along each axis of XYZ in the orthogonal coordinate system. The line of intersection between the plane Q 1 and the plane Q 2 that constitutes the pillar 4 exists within Z-X, the angle between the above line of intersection and the Z-axis is given by θ, and the angle between the plane Q 1 and the Z-X plane is given by θ. Suppose that is given by . Here, assuming that the surface of the support is a plane, the unit vector a parallel to the longitudinal direction of the support and the unit vector b perpendicular to this, which are vectors existing in the plane Q1 , are expressed by the following equation. .

a=sinθi+cosθk b=−cos cosθi+sinj +cos sinθk …(1) 次に、観測点Pが第3図aで示すように極座標
系Θ,Φで与えられ、平面波がZ軸方向に進行す
るとした場合、平面Q1で反射する反射波の進行
方向erは次式で与えられる。
a=sinθi+cosθk b=-cos cosθi+sinj +cos sinθk …(1) Next, if the observation point P is given by the polar coordinate system Θ, Φ as shown in Figure 3a, and the plane wave travels in the Z-axis direction, then the plane The traveling direction e r of the reflected wave reflected at Q 1 is given by the following equation.

er=k−2(n・k)n n=a×b …(2) 一方、erを極座標成分で表わすと er=sinΘ cosΦi+sinΘ sinΦj+cosΘk …(3) となるので(1)式と(2)式より求めたerと(3)式のer
関係よりΘ,Φとθ,の関係は次式で表わされ
る。
e r =k−2(n・k)n n=a×b …(2) On the other hand, if e r is expressed as a polar coordinate component, e r =sinΘ cosΦi+sinΘ sinΦj+cosΘk…(3), so equation (1) and ( From the relationship between e r obtained from equation 2) and e r from equation (3), the relationship between Θ, Φ, and θ is expressed by the following equation.

観測点Pは反射波の進行方向に関係なく存在
し、その点Pの極座標はΘ,Φで与えられる。そ
して、反射波の進行方向は、(4)式を満足する値で
与えられる。第4図は支柱4の形状を表わすパラ
メータθ,と反射波の進行方向Θ,Φの関係を
示したもので、支柱4の形状を表わすθとの値
が与えられた場合、第3図に示す反射波の進行方
向を表わすΘ,Φをパラメータとした極座標
(Θ,Φ)において支柱4による反射波の放射さ
れる方向を示したもので、ΘとΦの読みを第3図
bに与える。
The observation point P exists regardless of the traveling direction of the reflected wave, and the polar coordinates of the point P are given by Θ and Φ. Then, the traveling direction of the reflected wave is given by a value that satisfies equation (4). Figure 4 shows the relationship between the parameter θ, which represents the shape of the pillar 4, and the traveling directions Θ and Φ of the reflected waves.When the value of θ, which represents the shape of the pillar 4, is given, Figure 3 This shows the direction in which the reflected wave from the pillar 4 is radiated in polar coordinates (Θ, Φ) with parameters Θ and Φ representing the traveling direction of the reflected wave shown in Figure 3b. .

また、支柱4が曲面で構成されている場合につ
いて第5図を用いて説明する。支柱4の断面の形
状が曲面で与えられる場合、この支柱4による反
射波の進行方向は、概略的には、曲面を局部的に
平面で置換え、平面からの反射波の集まりとして
考えることができる。すなわち、第5図に示すよ
うに、点A1に入射した平面波の反射方向は、点
A1における接平面P1を仮定し、この接平面P1
平面波が入射した場合の反射方向で表わすことが
できる。この場合、第1図と同様に支柱4がZ軸
に対してθ傾けて設けられているとして反射方向
は、支柱4の傾き角であるθと、接平面P1及び
平面波の進行方向を含む面のなす角1とで与え
られる。点A2に入射した場合も同様に接平面P2
及び平面波の進行方向を含む面のなす角2とで
与えられる。
Further, a case where the support column 4 has a curved surface will be explained using FIG. 5. When the cross-sectional shape of the pillar 4 is given by a curved surface, the traveling direction of the waves reflected by the pillar 4 can be roughly considered as a collection of reflected waves from the flat surface by locally replacing the curved surface with a flat surface. . In other words, as shown in Figure 5, the reflection direction of the plane wave incident on point A1 is
Assuming a tangential plane P 1 at A 1 , it can be expressed by the reflection direction when a plane wave is incident on this tangential plane P 1 . In this case, assuming that the support 4 is provided at an angle of θ with respect to the Z axis as in FIG. 1, the reflection direction includes θ, which is the inclination angle of the support 4, the tangential plane P1 , and the traveling direction of the plane wave. It is given by the angle 1 between the faces. Similarly, when incident on point A 2 , the tangent plane P 2
and the angle 2 formed by the plane including the direction of travel of the plane wave.

このように、支柱が曲面の場合、曲面を多面体
に置き換えると、各平面に対応した反射波が存在
し、また各平面の接続部からは回折波が存在し、
反射波の放射方向の間を回折波がつなぐように放
射される。次にこの多面体の平面の数を限りなく
多くすると曲面となる。この場合、反射波と回折
波を明確に区別することは難しく、従つて、ここ
では曲面からの反射波は、各接平面からの反射波
の集合で表わすものとする。
In this way, if the support is a curved surface and the curved surface is replaced with a polyhedron, there will be reflected waves corresponding to each plane, and diffracted waves will exist from the connection of each plane,
The diffracted waves connect the reflected waves in the radiation direction. Next, if we increase the number of planes of this polyhedron as much as possible, it becomes a curved surface. In this case, it is difficult to clearly distinguish between a reflected wave and a diffracted wave, so here the reflected wave from a curved surface is represented by a set of reflected waves from each tangential plane.

次に、支柱4の形状と回折波の進行方向の関係
について第6図を用いて説明する。第6図に示す
ように、矢印で示す平面波の進行方向と支柱4の
形状が与えられた場合、支柱4を構成する平面
Q1,Q2の交線7(以下、エツジと称する。)と平
面波の進行方向であるZ軸とのなす角をθとする
と、回折波の進行方向はエツジEを中心軸とし、
半頂角がθで与えられる円錐の母線Bに沿つた方
向で与えられる。この半頂角θは第6図に示すよ
うに平面波の進行方向に対するエツジ7の傾きに
等しい。したがつて、第7図に示すような従来の
支柱4では、第5図におけるの値が90゜となる
反射面8による反射波とエツジ7,7による回折
波が存在し、支柱4の形状はθと(=90゜)で表
わされるので、(4)式より反射波の進行方向はΘ=
2θ,Φ=0゜で与えられる方向へ放射される。さら
に回折波は第8図に示すように、θが一定でを
連続的に変化させた方向に放射される。ここで、
Θ,Φの読みは第3図bに示すとおりであり、第
4図の場合と同様である。
Next, the relationship between the shape of the support 4 and the traveling direction of the diffracted waves will be explained using FIG. 6. As shown in FIG. 6, given the traveling direction of the plane wave shown by the arrow and the shape of the support 4, the plane that constitutes the support 4 is
If the angle between the intersection line 7 of Q 1 and Q 2 (hereinafter referred to as edge) and the Z axis, which is the traveling direction of the plane wave, is θ, then the traveling direction of the diffracted wave is centered around edge E, and
It is given in the direction along the generating line B of the cone whose half apex angle is given by θ. As shown in FIG. 6, this half-vertex angle θ is equal to the inclination of the edge 7 with respect to the traveling direction of the plane wave. Therefore, in the conventional support column 4 as shown in FIG. is expressed by θ and (=90°), so from equation (4), the traveling direction of the reflected wave is Θ=
It is radiated in the direction given by 2θ, Φ = 0°. Furthermore, as shown in FIG. 8, the diffracted waves are radiated in a direction in which θ is constant and continuously varied. here,
The readings of Θ and Φ are as shown in FIG. 3b, and are the same as in the case of FIG.

第5図に示す支柱の場合、反射波は特定の方向
へ集中することはないが、回折波は前述のように
多面体とした場合には、反射波の放射方向の間を
つなぐようにθが一定でが連続的に変化する方
向へほぼ一様に放射される。しかし、この多面体
の数を限りなく多くすると前述のように反射波の
集まりとして表わすことができ、回折の寄与がな
くなる。また、θが零の方向では直接波が存在す
るので放射レベルが強くなる。第7図に示す支柱
の場合、反射波はΘ=2θ,Φ=0゜の方向へ集中
し、回折波はθが一定でが連続的に変化する方
向へ放射される。また、第7図に示す支柱の場合
は第5図に示す支柱の場合と同様にΘが零の方向
では直接波が存在するので、放射レベルが強くな
る。
In the case of the pillar shown in Figure 5, the reflected waves are not concentrated in a specific direction, but when the diffracted waves are made into a polyhedron as described above, θ is set so as to connect the radiation directions of the reflected waves. It is emitted almost uniformly in a constant but continuously changing direction. However, if the number of polyhedrons is increased to an infinitely large number, it can be expressed as a collection of reflected waves as described above, and the contribution of diffraction disappears. Furthermore, in the direction where θ is zero, a direct wave exists, so the radiation level becomes stronger. In the case of the support column shown in FIG. 7, the reflected waves are concentrated in the directions of Θ=2θ and Φ=0°, and the diffracted waves are emitted in the direction where θ is constant but continuously changes. Further, in the case of the support shown in FIG. 7, as in the case of the support shown in FIG. 5, direct waves exist in the direction where Θ is zero, so the radiation level becomes strong.

これら第5図及び第7図に示した支柱による放
射パターンをそれぞれ第9図a,bに示す。この
第9図aに示す第5図の支柱の放射レベルに対
し、第9図bに示す第7図の支柱の放射レベル
は、Θ=2θ,Φ=0゜の方向では反射波が存在する
ので高くなるが、それ以外のθが一定でが連続
的に変化する方向では、回折波だけが存在するの
で、低くなる。この第9図a,bにおいて線の密
度が高い程放射レベルが高いとする。このよう
に、従来における第5図、第7図に示すような形
状の支柱を用いると、第9図a,bに示すように
放射レベルは円錐状に全体に高くΘの値が大きい
領域でも放射レベルは小さくならず広角放射特性
を劣化させる原因となつている。従つてこのよう
なアンテナを用いた場合、他の無線回線との干渉
を生じるという欠点があつた。
Radiation patterns by the pillars shown in FIGS. 5 and 7 are shown in FIGS. 9a and 9b, respectively. In contrast to the radiation level of the pillar in Figure 5 shown in Figure 9a, the radiation level of the pillar in Figure 7 shown in Figure 9b is that reflected waves exist in the directions of Θ = 2θ and Φ = 0°. However, in other directions where θ is constant but changes continuously, only diffracted waves exist, so it becomes low. In FIGS. 9a and 9b, it is assumed that the higher the line density, the higher the radiation level. In this way, when using conventional pillars with shapes as shown in Figures 5 and 7, the radiation level is high throughout the conical shape, even in areas where the value of Θ is large, as shown in Figures 9a and b. The radiation level does not decrease and becomes a cause of deterioration of wide-angle radiation characteristics. Therefore, when such an antenna is used, it has the disadvantage of causing interference with other radio lines.

これらの欠点を除去するために、従来支柱の表
面に電波吸収体を取りつける方法、例えば第10
図に示すように支柱4に一定の周期を有する金属
板9を配列する方法、あるいは波長より小さく、
かつ不規則な凹凸を有する金属体を配置する方法
があるが、第1の方法では電波吸収体で散乱波を
完全に除去することは困難であり、更に耐候性の
良い材料が得にくいという欠点があつた。第2の
方法では一定の周期に配列した金属板の周期に応
じてグレーテイングロブがでるという欠点があつ
た。また第3の方法では、反射波を散乱させるこ
とはできるが、回折波を散乱させることは難しい
という欠点があつた。
In order to eliminate these drawbacks, conventional methods of attaching a radio wave absorber to the surface of the pillar, such as the 10th method, have been proposed.
As shown in the figure, a method of arranging metal plates 9 having a constant period on the support 4, or a method smaller than the wavelength,
There is also a method of arranging a metal body with irregular irregularities, but the first method has the drawback that it is difficult to completely eliminate scattered waves with a radio wave absorber, and it is also difficult to obtain materials with good weather resistance. It was hot. The second method had a drawback in that grating lobes appeared in accordance with the period of the metal plates arranged at a constant period. Furthermore, the third method has the disadvantage that although it is possible to scatter the reflected waves, it is difficult to scatter the diffracted waves.

この発明はこのような欠点を除去するために支
柱の一部あるいは全部の表面を特殊な形状とした
もので、目的は広角放射特性の優れたアンテナを
実現することにある。
In order to eliminate these drawbacks, the present invention provides a special shape for part or all of the surface of the support column, and the purpose of the present invention is to realize an antenna with excellent wide-angle radiation characteristics.

以下図面について詳細に説明する。 The drawings will be explained in detail below.

第11図はこの発明の一実施例を示すもので、
図において4は支柱、5は通過する平面波、8は
支柱を構成する平面である。ここでカセグレンア
ンテナでは支柱の主反射鏡側、パラボラアンテナ
では支柱の反射鏡側の表面の一部あるいは全部
が、支柱4の長手方向および平面波5の進行方向
の両者を含む面に直交する複数の平面8から構成
され、かつ第12図a,bに示すように支柱4の
長手方向と平面波5の進行方向の両者を含む面に
平行な任意の面内における支柱4の断面の形状が
同一で、波長よりも長い辺からなる不規則な凹凸
となつている。すなわち、任意の面内における支
柱4の断面の反射鏡側の形状が各任意の面内にお
いて同一であり、かつこの断面の反射鏡側の形状
を構成する各辺の長さが波長に比べて長く、さら
に平面波の進行方向と辺のなす角が不規則となつ
ている。このような構成にすることによつて支柱
4による散乱波は平面8による反射波10とエツ
ジ7による回折波の合成で表わされる。平面8が
平面波5の進行方向と支柱4の長手方向の両者を
含む面に垂直でかつ不規則な方向を向いた複数の
平面で構成されているので、反射波10は第3図
におけるΦ=0のΘ軸上に散乱される。また回折
波はエツジ7が不規則な凹凸からできているので
広い領域にほぼ一様に散乱される。
FIG. 11 shows an embodiment of this invention.
In the figure, 4 is a support, 5 is a passing plane wave, and 8 is a plane forming the support. Here, in a Cassegrain antenna, part or all of the surface on the main reflector side of the support column, and in the case of a parabolic antenna, the surface on the reflector side of the support column is a plurality of planes perpendicular to a plane including both the longitudinal direction of the support support 4 and the traveling direction of the plane wave 5. The shape of the cross section of the support 4 in any plane parallel to the plane including both the longitudinal direction of the support 4 and the traveling direction of the plane wave 5 is the same as shown in FIGS. 12a and 12b. , it is irregularly uneven with sides longer than the wavelength. That is, the shape of the cross section of the support 4 on the reflecting mirror side in any plane is the same in each arbitrary plane, and the length of each side constituting the shape of this cross section on the reflecting mirror side is smaller than the wavelength. It is long, and the angle between the plane wave's traveling direction and the sides is irregular. With this configuration, the scattered wave by the pillar 4 is represented by a combination of the reflected wave 10 by the plane 8 and the diffracted wave by the edge 7. Since the plane 8 is composed of a plurality of planes oriented in irregular directions and perpendicular to the plane including both the traveling direction of the plane wave 5 and the longitudinal direction of the support column 4, the reflected wave 10 is oriented according to Φ= in FIG. It is scattered on the Θ axis of 0. Furthermore, since the edges 7 are made up of irregular irregularities, the diffracted waves are scattered almost uniformly over a wide area.

したがつて、支柱4へ入射してくる平面波5を
特定の領域に散乱させることができるので、その
他の領域における散乱波の放射レベルを小さくす
ることができる。
Therefore, since the plane wave 5 that is incident on the support column 4 can be scattered in a specific area, the radiation level of the scattered wave in other areas can be reduced.

隣接平面8の相互間に形成されるエツジからの
回折波は、上記エツジを形成する2つの平面から
それぞれ反射する反射波の方向を含み、かつエツ
ジの方向と入射波の進行方向から定まる円錐の母
線に沿つて放射される。この発明によれば平面8
の傾きを不規則にしているので、平面8からの反
射波も不規則に種々の方向に放射され、さらに回
折波も不規則に種々の方向に放射される。従つ
て、反射波も回折波も特定の方向に放射されず広
い領域に放射されるので、ピークレベルを低くす
ることができる。第13図はこの発明の他の実施
例を示すもので、支柱4の長手方向および平面波
5の進行方向を含む面に平行な両面の平面波5の
入射側における形状が相異する不規則な凹凸で構
成されており、これら両面における不規則な凹凸
の第13図に示すように同数の頂点を有し、相対
向する頂点を結ぶ辺によつて平面波5の入射側に
おける支柱4に多数の平面8を構成する。このよ
うな多数の平面8は平面波5に対して種々の傾き
を有するもので、反射波10を支柱4の長手方向
および平面波5の進行方向を含む面に対して垂直
成分を有する種々の方向に向けることができ、ま
たエツジ7による回折波も第11図に示す場合と
同様に不規則に種々の方向に放射されるので、散
乱波の放射レベルを小さくすることができる。
The diffracted waves from the edges formed between the adjacent planes 8 include the directions of the reflected waves respectively reflected from the two planes forming the edges, and form a cone defined by the direction of the edges and the traveling direction of the incident wave. radiated along the generatrix. According to this invention, the plane 8
Since the inclination of the plane 8 is irregular, the reflected waves from the plane 8 are also irregularly radiated in various directions, and the diffracted waves are also irregularly radiated in various directions. Therefore, both reflected waves and diffracted waves are radiated over a wide area without being radiated in a specific direction, so that the peak level can be lowered. FIG. 13 shows another embodiment of the present invention, in which irregular irregularities have different shapes on the incident side of the plane wave 5 on both surfaces parallel to the plane including the longitudinal direction of the support 4 and the traveling direction of the plane wave 5. It has the same number of vertices, as shown in FIG. 8. Such a large number of planes 8 have various inclinations with respect to the plane wave 5, and direct the reflected waves 10 in various directions having components perpendicular to the plane including the longitudinal direction of the support 4 and the traveling direction of the plane wave 5. Furthermore, since the diffracted waves by the edges 7 are irregularly radiated in various directions as in the case shown in FIG. 11, the radiation level of the scattered waves can be reduced.

ここで、不規則な凹凸からなる辺の長さは波長
に比べて十分長いものとする。
Here, it is assumed that the length of the side made of irregular unevenness is sufficiently long compared to the wavelength.

これは、幾何光学的回折理論に基づくものであ
り、この論理は物体の寸法が波長に比べて十分大
きい場合に適用できる高周波近似解法である。
This is based on the geometric optical diffraction theory, and this logic is a high-frequency approximation method that can be applied when the dimensions of the object are sufficiently large compared to the wavelength.

このため、エツジ7の寸法は波長に比べて小さ
い場合、この「エツジ」の効果は小さく、小さい
「エツジ」を無視した全体の傾きで定まる方向へ
回折波は進行する。
Therefore, when the dimension of the edge 7 is smaller than the wavelength, the effect of this "edge" is small, and the diffracted wave travels in a direction determined by the overall slope, ignoring the small "edge".

しかし、エツジ7の寸法を波長に比べて長くす
ることにより、実際上回折波は第6図に示すよう
な円錐の母線に沿つた方向に放射されるようにな
り、エツジ7の傾きで定まる所望の方向へ回折波
を放射させることができる。
However, by making the dimension of the edge 7 longer than the wavelength, the refracted wave will actually be radiated in the direction along the generating line of the cone as shown in Figure 6, and the desired direction determined by the inclination of the edge 7 will be emitted. Diffracted waves can be emitted in the direction of .

以上説明したようにこの発明を用いれば支柱に
よる散乱波の放射レベルを小さくすることができ
るので、広角放射特性の良好なアンテナを実現す
ることができる。
As explained above, by using the present invention, it is possible to reduce the radiation level of scattered waves caused by the pillars, so it is possible to realize an antenna with good wide-angle radiation characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のアンテナ装置の構成図、第2図
は直交座標系XYZと支柱との配置関係図、第3
図a,bはそれぞれ観測点を示す極座標系図及び
反射波の進行方向Θ,Φの読みを示す説明図、第
4図は支柱の形状を表わすパラメータθ,と反
射波の進行方向Θ,Φの関係図、第5図は曲面か
らなる支柱からの散乱波の進行方向を説明する説
明図、第6図は回折波の進行方向を示す説明図、
第7図は平面からなる支柱による散乱波を説明す
る説明図、第8図は反射波と回折波の放射方向を
示す説明図、第9図a,bは従来の支柱による散
乱波の放射パターン図、第10図は従来の支柱の
構成図、第11図はこの発明の一実施例を示す構
成図、第12図a,bはこの発明の一実施例を示
す正面図及び側面図、第13図はこの発明の他の
実施例を示す構成図である。 図中、1は主反射鏡、2は副反射鏡、3は一次
放射器、4は支柱、5は平面波、6は散乱波、7
はエツジ、8は反射面、9は金属板、10は反射
波、Pは観測点である。なお、図中同一あるいは
相当部分には同一符号を付して示してある。
Figure 1 is a configuration diagram of a conventional antenna device, Figure 2 is a diagram of the arrangement relationship between the orthogonal coordinate system XYZ and the pillars, and Figure 3
Figures a and b are polar coordinate system diagrams showing the observation points and explanatory diagrams showing the readings of the traveling directions Θ and Φ of the reflected waves, respectively. Relationship diagrams, FIG. 5 is an explanatory diagram illustrating the traveling direction of scattered waves from a support made of a curved surface, FIG. 6 is an explanatory diagram showing the traveling direction of diffracted waves,
Fig. 7 is an explanatory diagram illustrating scattered waves by a planar support, Fig. 8 is an explanatory diagram showing the radiation direction of reflected waves and diffracted waves, and Fig. 9 a and b are radiation patterns of scattered waves by a conventional support. 10 is a configuration diagram of a conventional support column, FIG. 11 is a configuration diagram showing an embodiment of the present invention, and FIGS. 12a and 12b are front and side views of an embodiment of the present invention. FIG. 13 is a block diagram showing another embodiment of the present invention. In the figure, 1 is the main reflector, 2 is the sub-reflector, 3 is the primary radiator, 4 is the column, 5 is the plane wave, 6 is the scattered wave, and 7
is an edge, 8 is a reflective surface, 9 is a metal plate, 10 is a reflected wave, and P is an observation point. It should be noted that the same or corresponding parts in the drawings are designated by the same reference numerals.

Claims (1)

【特許請求の範囲】[Claims] 1 マイクロ波帯あるいはミリ波帯で用いられる
カセグレンアンテナまたはパラボラアンテナであ
つて、その開口面内に電波の通過を妨げ、副反射
鏡あるいは一次放射器を支える支柱を有するアン
テナ装置において、上記支柱の長手方向及び電波
の進行方向を含む上記支柱の対向面における形状
が波長よりも長い辺からなる不規則な凹凸からな
り、かつ上記対向面間において相対向する上記凹
凸の頂点を結ぶ辺も上記波長よりも長い辺からな
り、この辺と上記凹凸の辺とからなる複数個の平
面を上記カセグレンアンテナでは上記支柱の主反
射鏡側の表面に、また上記パラボラアンテナでは
上記支柱の反射鏡側の表面に設けたことを特徴と
するアンテナ装置。
1. In an antenna device that is a Cassegrain antenna or a parabolic antenna used in the microwave band or millimeter wave band and has a pillar in its aperture that prevents the passage of radio waves and supports a sub-reflector or primary radiator, The shape of the opposing surfaces of the pillars, including the longitudinal direction and the direction of radio wave propagation, consists of irregular unevenness with sides longer than the wavelength, and the sides connecting the vertices of the opposing unevenness between the opposing surfaces also have the wavelength above. A plurality of planes consisting of this side and the uneven side are placed on the surface of the main reflector side of the above-mentioned support in the above-mentioned Cassegrain antenna, and on the surface of the above-mentioned support on the reflector side of the above-mentioned parabolic antenna. An antenna device characterized in that:
JP7454580A 1980-06-03 1980-06-03 Antenna device Granted JPS56169903A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP7454580A JPS56169903A (en) 1980-06-03 1980-06-03 Antenna device
CA000378683A CA1172354A (en) 1980-06-03 1981-05-29 Microwave antenna having improved wide angle radiation characteristics
GB8116783A GB2081023B (en) 1980-06-03 1981-06-02 Reflector antenna
US06/269,216 US4369448A (en) 1980-06-03 1981-06-02 Microwave antenna with radiation scattering support member elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7454580A JPS56169903A (en) 1980-06-03 1980-06-03 Antenna device

Publications (2)

Publication Number Publication Date
JPS56169903A JPS56169903A (en) 1981-12-26
JPH0221166B2 true JPH0221166B2 (en) 1990-05-14

Family

ID=13550325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7454580A Granted JPS56169903A (en) 1980-06-03 1980-06-03 Antenna device

Country Status (1)

Country Link
JP (1) JPS56169903A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53105343A (en) * 1977-02-26 1978-09-13 Nippon Telegr & Teleph Corp <Ntt> Antenna unit
JPS54134959A (en) * 1978-04-12 1979-10-19 Mitsubishi Electric Corp Radio-wave shielding board

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53105343A (en) * 1977-02-26 1978-09-13 Nippon Telegr & Teleph Corp <Ntt> Antenna unit
JPS54134959A (en) * 1978-04-12 1979-10-19 Mitsubishi Electric Corp Radio-wave shielding board

Also Published As

Publication number Publication date
JPS56169903A (en) 1981-12-26

Similar Documents

Publication Publication Date Title
US5121129A (en) EHF omnidirectional antenna
US4755826A (en) Bicollimated offset Gregorian dual reflector antenna system
JPH06119805A (en) Reflector and designing method of cross-sectional curve for reflector
JPH0221169B2 (en)
JPH0221166B2 (en)
JPH0221168B2 (en)
US4369448A (en) Microwave antenna with radiation scattering support member elements
JPH0221167B2 (en)
JPH0221171B2 (en)
JPH0221165B2 (en)
JPH0221170B2 (en)
Veruttipong et al. Design considerations for beamwaveguide in the NASA deep space network
US4488157A (en) Slot array antenna assembly
GB2081023A (en) Reflector antenna
JPS62204605A (en) Circularly polarized wave shaped beam antenna
JPH042490Y2 (en)
US5075692A (en) Antenna system
JPH0352246B2 (en)
EP0599879A1 (en) Radar reflectors.
TWI713252B (en) Toroidal compact antenna test range
JP3314904B2 (en) Multi-beam antenna
JP2533626Y2 (en) Antenna with circular arc reflector
JPH0349204B2 (en)
JPH0380606A (en) Multiple reflector antenna
JPS6232844B2 (en)