JPS6232844B2 - - Google Patents
Info
- Publication number
- JPS6232844B2 JPS6232844B2 JP7890079A JP7890079A JPS6232844B2 JP S6232844 B2 JPS6232844 B2 JP S6232844B2 JP 7890079 A JP7890079 A JP 7890079A JP 7890079 A JP7890079 A JP 7890079A JP S6232844 B2 JPS6232844 B2 JP S6232844B2
- Authority
- JP
- Japan
- Prior art keywords
- reflector
- zsinα
- paraboloid
- parabolic
- revolution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000009826 distribution Methods 0.000 claims description 3
- 150000001875 compounds Chemical class 0.000 description 8
- 238000004891 communication Methods 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- 239000002131 composite material Substances 0.000 description 4
- 230000005855 radiation Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q19/00—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
- H01Q19/10—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
- H01Q19/12—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave
Landscapes
- Aerials With Secondary Devices (AREA)
Description
【発明の詳細な説明】
a 産業上の利用分野
本発明は、小中容量マイクロ波多方向多重通信
用として好適な扇形ビームアンテナに関する。DETAILED DESCRIPTION OF THE INVENTION a. Field of Industrial Application The present invention relates to a fan-shaped beam antenna suitable for small to medium capacity microwave multidirectional multiplex communication.
b 従来の技術
従来、扇形ビームアンテナはレーダー装置等で
多用されている。このレーダー等で使用されてい
る扇形ビームアンテナは、回転放物面反射鏡を長
方形に切断して整形した反射鏡を用いているの
で、主ビームの立上りが鈍く、かつ一次放射器の
励振波が反射鏡の短辺方向より漏洩して側・後方
指向レベルが高くなる、つまり低サイドロープで
ないという欠点がある。そのため指向ビームをよ
り偏平にかつ利得を大きくする場合、長辺の長さ
がきわめて大きな反射鏡を必要とする。b. Prior Art Conventionally, fan-shaped beam antennas have been widely used in radar devices and the like. The fan beam antenna used in this radar uses a rotating paraboloid reflector cut into a rectangular shape, so the rise of the main beam is slow and the excitation wave of the primary radiator is It has the disadvantage that it leaks from the short side direction of the reflector and the side/rear direction level becomes high, that is, it does not have a low side rope. Therefore, in order to make the directional beam more flat and increase the gain, a reflecting mirror with an extremely large long side is required.
ところで小中容量マイクロ波多重通信方式にお
いては、通信回線の経済化を図るためにいわゆる
多方向回線を構成することが好ましい。これを実
施するにさいして、親局に各回線に対応した多数
のパラボラアンテナを設置することは、アンテナ
支持鉄塔の受風圧が増加するなど、無線通信回線
を総合的にみて経済上きわめて不利である。そこ
で上記親局に広角の扇形ビームアンテナを1基設
置して多方向に分散する子局と均等に通信するこ
とが有利である。またこの扇形ビームアンテナは
それらを複数個組合せることによつて全方向の子
局と、あるいは1ないし少数の扇形ビームアンテ
ナと1対1の対向アンテナ(たとえばペンシルビ
ームアンテナ)とを組合わせることによつて必要
数の子局と同時通信することも可能である。もち
ろんこのような場合に使用する扇形ビームアンテ
ナは、他のアンテナとの結合や干渉を阻止するた
め、主ビームの立上りが急岐でかつその側、後方
指向レベルの低いこと、つまり、いわゆる低サイ
ドロープであることが重要であり、かつ小形、経
済的に構成しうることが望まれる。上記レーダー
形式のアンテナは、このような条件を満たすこと
ができないので、上記多方向多重通信には不向き
である。 By the way, in the small to medium capacity microwave multiplex communication system, it is preferable to configure a so-called multidirectional line in order to make the communication line economical. When implementing this, installing a large number of parabolic antennas corresponding to each line at the master station is extremely disadvantageous economically from a comprehensive perspective of wireless communication lines, such as increasing wind pressure on the antenna support tower. be. Therefore, it is advantageous to install one wide-angle fan-shaped beam antenna in the master station to evenly communicate with slave stations distributed in multiple directions. Furthermore, by combining multiple fan beam antennas, it is possible to combine slave stations in all directions, or one or a small number of fan beam antennas and a one-to-one opposing antenna (for example, a pencil beam antenna). Therefore, it is also possible to communicate with a necessary number of slave stations simultaneously. Of course, in order to prevent coupling and interference with other antennas, the fan beam antenna used in such cases must have a main beam with a sharp rise and a low backward directivity level on that side, that is, the so-called low side. It is important that it is a rope, and it is desired that it be compact and economically constructed. The radar type antenna described above cannot satisfy such conditions and is therefore unsuitable for the multidirectional multiplex communication described above.
双曲放物面と回転放物面との組合せ、または、
複数個の回転放物面の組合せによる複合曲面反射
鏡を使用して2次指向ビームを整形するようにし
た小型でかつ広角な扇形ビームアンテナは文献な
どで報告されている。しかし、これ等の複合曲面
反射鏡は、各曲面の交線が複雑な形状を呈するの
で、この形状を求めて原形曲面を切断し、それら
の形状を損なうことなく溶接、接続して所望の複
合曲面形状を有した反射鏡を製作、加工すること
は容易でない。また開口面を平面とするため、そ
の開口形状を円形、楕円形、方形、多角形等にト
リミングすること、およびその周縁を補強するこ
とは簡単でなく、その経済性は少ない。さらに、
上記複合曲面反射鏡アンテナは原形の単一曲面反
射鏡アンテナに比較して側、後方指向特性も後者
を上廻ることはない。 A combination of a hyperbolic paraboloid and a paraboloid of revolution, or
A small wide-angle fan beam antenna that shapes a secondary directional beam using a compound curved reflector formed by a combination of a plurality of paraboloids of revolution has been reported in the literature. However, in these composite curved reflectors, the intersection lines of each curved surface have a complicated shape, so the original curved surface is cut to find this shape, and the desired composite shape is welded and connected without damaging the shape. It is not easy to manufacture and process a reflecting mirror with a curved surface shape. Furthermore, since the opening surface is flat, it is not easy to trim the opening shape into a circular, elliptical, square, polygonal, etc., or to reinforce the periphery, and the cost efficiency is low. moreover,
Compared to the original single curved reflector antenna, the composite curved reflector antenna has side and rear directivity characteristics that do not exceed those of the original single curved reflector antenna.
なお一般マイクロ波多重通信用アンテナは、そ
の鏡面を機械り、またはプレスで成形した軸対
称回転放物面反射鏡を使用しており、その利得は
同一周波数について反射鏡の開口面積に比例し、
またその指向性電力半値幅は、同一使用周波数に
ついて、該反射鏡の開口直径に反比例する。そし
てこのアンテナは、その側、後方指向レベルを改
善する場合、上記反射鏡の開口面周縁に沿つて円
筒形金属遮蔽板を添付するようにしている。 General microwave multiplex communication antennas use an axially symmetric rotating paraboloid reflector whose mirror surface is machined or pressed, and the gain is proportional to the aperture area of the reflector for the same frequency.
Further, the half-value width of the directional power is inversely proportional to the aperture diameter of the reflecting mirror for the same frequency used. In order to improve the backward directivity level of this antenna, a cylindrical metal shielding plate is attached along the periphery of the aperture of the reflecting mirror.
c 発明が解決しようとする問題点
本発明は、上記小中容量マイクロ波多方向多重
通信方式に適用して好適な、製作、加工が容易で
かつ主ビームの立上りが急峻であり、その側、後
方指向レベルを原形の回転放物面反射鏡アンテナ
よりも向上(レベルを低下)することができるな
どすぐれた特性を有する扇形ビームアンテナを提
供することを目的とする。c Problems to be Solved by the Invention The present invention is suitable for application to the above-mentioned small and medium capacity microwave multi-directional multiplex communication system, is easy to manufacture and process, and has a main beam with a steep rise. It is an object of the present invention to provide a fan-shaped beam antenna that has excellent characteristics such as being able to improve (lower) the directivity level compared to the original paraboloid of revolution reflector antenna.
d 問題点を解決するための手段
上記問題点は、特許請求の範囲に記載の扇形ビ
ームアンテナによつて解決された。さらに敷延し
て述べると、両端部に位置させた2つの放物面反
射鏡部と該両放物面反射鏡部間に介装した放物筒
面反射鏡部とからなる複合曲面反射鏡と、上記両
放物面反射鏡部の焦点がほぼ放射の中心となるよ
うに配置させた一次放射器とからなり、上記両放
物面反射鏡部は、回転放物面反射鏡をその光軸に
平行なかつ該光軸を挾んで対向する2つの平面で
分割したならば、その両端部に形成されるであろ
う互いに等しい形状の2つの部分放物面反射鏡と
各々略同一な形状を有する扇形ビームアンテナに
よつて解決された。d. Means for Solving the Problems The above problems have been solved by the fan beam antenna described in the claims. To elaborate further, a compound curved reflector consists of two parabolic reflectors located at both ends and a parabolic cylindrical reflector interposed between both parabolic reflectors. and a primary radiator arranged so that the focal point of both parabolic reflecting mirrors is approximately the center of the radiation, and both parabolic reflecting mirrors are configured to direct the parabolic reflecting mirror of revolution to its light beam. If the optical axis is parallel to the optical axis and divided by two opposing planes sandwiching the optical axis, two partial parabolic reflectors with the same shape that would be formed at both ends of the mirror, each having approximately the same shape. The problem was solved by a fan-beam antenna with
以下に、その形状をさらに詳しく図面を参照し
ながら説明する。 The shape will be explained in more detail below with reference to the drawings.
第1図および第2図に示すように、本発明に係
る扇形ビームアンテナの反射鏡1は、その両端に
位置させた放物面反射鏡部2,4とその中央部に
位置させた放物筒面反射鏡部3とを接合してなる
複合曲面構造を有する。 As shown in FIGS. 1 and 2, a reflector 1 of a fan beam antenna according to the present invention has parabolic reflector sections 2 and 4 located at both ends thereof, and a parabolic reflector section located at the center thereof. It has a compound curved structure formed by joining the cylindrical reflecting mirror part 3.
上記放物面反射鏡部2,4は、たとえば第2図
に一点鎖線で示す原形の軸対称回転放物面反射鏡
5を、その光軸Zに平行なかつ該軸Zより互いに
距離lだけ離間した2つの対向する平面で3分割
(図中、2点鎖線6,6′にて示す)することによ
つて得ることができ、その分割位置は、次のよう
にして決定される。すなわち上記両放物面反射鏡
部2,4の開口面積と前記放物筒面反射鏡部3の
開口面積とが、後述する一次放射器8(第3図参
照)の照度分布特性に応じてほぼ等積となるよう
に案分される位置(前記鏡軸Xよりlだけ離れた
位置)を上記分割位置として決定する。 The parabolic reflecting mirror sections 2 and 4 are configured such that, for example, the original axisymmetric rotating parabolic reflecting mirror 5 shown by the dashed line in FIG. It can be obtained by dividing it into three parts (indicated by two-dot chain lines 6 and 6' in the figure) at two opposing planes, and the dividing position is determined as follows. That is, the opening area of both the parabolic reflecting mirror parts 2 and 4 and the opening area of the parabolic cylindrical reflecting mirror part 3 are determined according to the illuminance distribution characteristics of the primary radiator 8 (see FIG. 3), which will be described later. A position that is divided into approximately equal areas (a position separated by l from the mirror axis X) is determined as the division position.
主ビームの方向をZ軸、Z軸に対して垂直な面
内の2直交軸をX軸、Y軸とするデカルト座標系
において、第2図に一点鎖線で示された原形の軸
対称回転放物面は、焦点距離をf、焦点を原点と
するとき次式で表現される。 In a Cartesian coordinate system in which the direction of the main beam is the Z-axis, and the two orthogonal axes in a plane perpendicular to the Z-axis are the The object surface is expressed by the following equation when the focal length is f and the focal point is the origin.
4f(Z+f)=X2+Y2
また、Z軸から距離lだけ離れた平面は次式で
表現される。 4f(Z+f)=X 2 +Y 2 Also, a plane that is distance l from the Z axis is expressed by the following equation.
Y=±l
軸対称回転放物面と上記平面の交線は、曲面
(4f(Z+f)=X2+Y2)と平面(Y=±l)の共
通部分であるが、これは放物筒面(4f(Z+f)
=X2+l2と平面(Y=±l)の共通部分に等し
い。 Y=±l The line of intersection between the axisymmetric paraboloid of rotation and the above plane is the common part of the curved surface (4f(Z+f)=X 2 +Y 2 ) and the plane (Y=±l), but this is a paraboloid. Surface (4f(Z+f)
=X 2 +l It is equal to the intersection of 2 and the plane (Y=±l).
上記するように上記放物面反射鏡部2,4は、
前記原形の放物面反射鏡5を直線的に切断するこ
とによつて得ることができるので、その加工はき
わめて容易である。また、その切断面の曲線が原
形の回転放物面反射鏡5のZ軸を含む平面と該回
転放物面反射鏡の交線である放物線と同一である
ことから、該切断面の修正、切断面補強部材(リ
ム)の製作・加工等を行うさいに、原形の回転放
物面反射鏡5の製作・加工用治工具ゲージ類がそ
のまゝ利用できる利点がある。なお上記切断時に
切断個所近傍をリム等で固定するようにすれば、
切断端部の形状の変形を防止することができる。 As mentioned above, the parabolic reflecting mirror sections 2 and 4 are
Since it can be obtained by cutting the original parabolic reflecting mirror 5 in a straight line, its processing is extremely easy. In addition, since the curve of the cut plane is the same as the parabola that is the intersection of the plane containing the Z axis of the original paraboloid of revolution reflector 5 and the paraboloid of revolution reflector, correction of the cut plane, When manufacturing and processing the cut surface reinforcing member (rim), there is an advantage that the jigs, tools, and gauges for manufacturing and processing the original paraboloid of revolution reflector 5 can be used as they are. In addition, if you fix the area near the cut point with a rim etc. during the above cutting,
Deformation of the shape of the cut end can be prevented.
上記のようにして得られた2つの放物面反射鏡
部2,4は、各々の開口面が下式に示す角度βを
略なすように互に一致させた各々の焦点Fを中心
として偏位させてある。 The two parabolic reflecting mirrors 2 and 4 obtained as described above are polarized about their respective focal points F, which are made to coincide with each other so that their aperture surfaces approximately form the angle β shown in the following formula. It has been placed.
β=180゜−2α
α=(Φ−Θ)/2
∴β=180゜=(Φ−Θ)
ただしΦ=希望する扇形ビームの指向性電力半
値幅
Θ=前記原形の回転放物面反射鏡からなるアンテ
ナの半分の利得をもつ同形式のアンテナの電力
半値幅
第2図の放物面反射鏡部2,4は、原形の回転
放物面5の一部を(Y、Z)面内でそれぞれ時計
方向と反時計方向に角度αだけ回転したものであ
る。 β = 180° - 2α α = (Φ - Θ) / 2 ∴β = 180° = (Φ - Θ) where Φ = Directional power half width of desired fan beam Θ = Said original paraboloid of revolution reflector The half-power width of an antenna of the same type with half the gain of the antenna consisting of are rotated by an angle α clockwise and counterclockwise, respectively.
このときY=±lの平面は次の式で表現される
位置に移動する。 At this time, the plane of Y=±l moves to a position expressed by the following equation.
Ycosα±Zsinα=±l また放物面反射鏡2は次の式で表現される。 Ycosα±Zsinα=±l Further, the parabolic reflecting mirror 2 is expressed by the following equation.
4f(Ysinα+Zcosα+f) =X2+(Ycosα−Zsinα)2 ただしYcosα−Zsinα>+l 同様に放物面反射鏡4は次の式で表わされる。4f (Ysinα+Zcosα+f) =X 2 +(Ycosα−Zsinα) 2where Ycosα−Zsinα>+l Similarly, the parabolic reflecting mirror 4 is expressed by the following equation.
4f(−Ysinα+Zcosα+f)
=X2+(Ycosα+Zsinα)2
ただしYcosα+Zsinα<−l
一方、前記放物筒面反射鏡部3は、上記、偏位
させた両放物面反射鏡部2,4の切断端縁間で形
成される鏡面欠損部を閉塞するように配置させて
ある。したがつてこの放物筒面反射鏡部3は、平
板を上記両反射鏡部2,4の放物状切断端縁に沿
わせて彎曲させた構成を有し、その曲面は
4f(Z+fcosα+lsinα)
=(X2+l2)cosα
ただしYcosα−Zsinα<+l
かつ、Ycosα+Zsinα>−l
で表わされる。なおこの明細書においてデカルト
座標系とは直線座標系を基底とする直交座標系を
意味する。4f ( -Ysinα +Zcosα+f ) = It is arranged so as to close the mirror defect formed between the edges. Therefore, this parabolic cylindrical reflecting mirror section 3 has a configuration in which a flat plate is curved along the parabolic cut edges of the above-mentioned both reflecting mirror sections 2 and 4, and its curved surface is 4f (Z + fcos α + lsin α). =(X 2 +l 2 )cosα where Ycosα−Zsinα<+l and Ycosα+Zsinα>−l. Note that in this specification, the Cartesian coordinate system means an orthogonal coordinate system based on a linear coordinate system.
なお、上記原形の放射面反射鏡5の大きさは、
得ようとする扇形ビームの要求利得により決定さ
れる。7は、上記のようにして形成された複合曲
面反射鏡1を方向調整ボルトを用いて鉄塔、架台
等に取付けるための座である。 The size of the radiation surface reflector 5 in its original form is as follows:
It is determined by the required gain of the fan beam to be obtained. Reference numeral 7 denotes a seat for attaching the compound curved reflector 1 formed as described above to a steel tower, a pedestal, etc. using direction adjustment bolts.
e 作用
上記構成の複合曲面反射鏡1を備えた本発明に
係る扇形ビームアンテナは、次のように作用す
る。すなわち第3図の動作説明図に示すごとく、
上記回転放物面反射鏡部2,4の焦点Fに放射の
中心をもつ一次放射器8で当該複合曲面反射鏡1
を励振すれば、その反射鏡部2の主方向指向性は
前記原形の回転放物面反射鏡5の光軸Zに対して
角度αだけ右に偏位したシヤープな指向性(図
中破線で示す)となり、同様に反射鏡部4の主方
向指向性は上記軸Zに対しαだけ左に偏位した指
向性となる。一方、上記放物筒面反射鏡部3の
短径方向の指向性は、上記回転放物面反射鏡部
2,4のそれと比較して著しくブロードとなる。
しかして該放物筒面反射鏡部3は、垂直方向が長
径であるのでその水平面内指向性はブロードとな
り、この結果、図中点線で示すす指向性が得ら
れる。この指向性は前記指向性、の中間の
凹所を埋めるので、これら各指向性、および
の合成指向性は実線で示すごとく立上りが急峻
な扇形状となる。e Function The fan beam antenna according to the present invention including the compound curved reflector 1 having the above configuration functions as follows. That is, as shown in the operation explanatory diagram of Fig. 3,
The compound curved reflector 1 is a primary radiator 8 whose radiation center is at the focal point F of the paraboloid of revolution reflector parts 2 and 4.
If excited, the main direction directivity of the reflecting mirror section 2 will be a sharp directivity (indicated by the broken line in the figure) that is shifted to the right by an angle α with respect to the optical axis Z of the original paraboloid of revolution reflector 5. Similarly, the main direction directivity of the reflecting mirror portion 4 is a directivity shifted to the left by α with respect to the axis Z. On the other hand, the directivity of the parabolic cylindrical reflecting mirror section 3 in the short axis direction is significantly broader than that of the paraboloid of revolution reflecting mirror sections 2 and 4.
Since the parabolic cylindrical reflecting mirror section 3 has a long axis in the vertical direction, its directivity in the horizontal plane is broad, and as a result, the directivity shown by the dotted line in the figure is obtained. Since this directivity fills the recess between the above-mentioned directivity, each of these directivity and the combined directivity have a fan shape with a steep rise as shown by the solid line.
前記回転放物面反射鏡部2,4の開口面積と放
物筒面反射鏡部3の開口面積を、一次放射器8の
照度分布特性に応じて案分し、両者がほゞ等積と
なるように選定したのは、上記各指向性、、
の尖頭値レベルを揃えて扇形ビームの先端を平
滑にし、それによつてサービスエリヤ内の子局に
均等に送波するためである。 The aperture areas of the paraboloid of revolution reflectors 2 and 4 and the aperture area of the parabolic cylindrical reflector 3 are divided proportionally according to the illuminance distribution characteristics of the primary radiator 8, so that both have approximately equal areas. The above-mentioned directivity was selected so that
This is to smooth the tip of the fan-shaped beam by aligning the peak value levels of the beams, thereby uniformly transmitting waves to slave stations within the service area.
本発明に係る扇形ビームアンテナは、第2図お
よび第3図から明らかなごとく、その両端に位置
する前記回転放物面反射鏡部2,4の周縁部が前
記一次放射器8を包む態様で前方(開口面側)に
突出しているから、実質的に前記原形の回転放物
面反射鏡5の開口周縁部に遮蔽板を設けた場合と
等価な側、後方広角指向性を呈し、したがつてそ
の水平面内広角指向レベルは、上記遮蔽板を有し
ていない原形の回転放物面反射鏡5のそれより向
上する。 As is clear from FIGS. 2 and 3, the fan beam antenna according to the present invention has a configuration in which the peripheral edges of the paraboloid of revolution reflectors 2 and 4 located at both ends thereof surround the primary radiator 8. Since it protrudes forward (towards the aperture side), it exhibits side and rear wide-angle directivity that is substantially equivalent to the case where a shielding plate is provided around the aperture of the paraboloid of revolution reflector 5 in the original shape. As a result, its wide-angle directivity level in the horizontal plane is improved over that of the original paraboloid of revolution reflector 5 without the shielding plate.
またその利得は、全鏡面各部からの放射波(一
次放射器の励振波の反射波)の位相が開口面で揃
うように前記放物筒面反射鏡部3を光軸に沿つて
適宜前後させて固定することにより向上すること
ができ、そのための加工は容易である。 The gain is determined by moving the parabolic cylindrical reflector 3 back and forth as appropriate along the optical axis so that the phases of the radiation waves (reflected waves of the excitation wave of the primary radiator) from all parts of the mirror are aligned at the aperture surface. This can be improved by fixing the material with a holder, and the processing for this purpose is easy.
f 実施例
第4図の実線曲線9は、2GHz帯で、利得
20dB、電力半値幅約45゜(=Φ)を目標として
設計した本発明に係る扇形ビームアンテナの水平
面内指向性実測値を、また同図の一点鎖線曲線1
0は、このアンテナの複合曲面反射鏡1に対応す
る原形の回転放物面反射鏡5の指向性尖頭包絡値
を各々示す。なお上記原形の回転放物面反射鏡5
は、その開口面直径が2.4米、利得が31dB、電力
半値幅が5.5゜である。また複合曲面反射鏡1の
両側の回転放物面反射鏡部2,4の偏位角αは、
上記原形の回転放物面反射鏡5を使つたアンテナ
の利得より6dB低いパラボラアンテナの電力半値
幅が約9゜(=Θ)である故、α=18゜、即ち、
β=144゜となるように設計されている。f Example The solid line curve 9 in Fig. 4 shows the gain in the 2GHz band.
The actual measured directivity in the horizontal plane of the fan-shaped beam antenna according to the present invention, which was designed with a target of 20 dB and a power half width of approximately 45° (=Φ), is also shown in the dashed-dotted curve 1 in the same figure.
0 indicates the directivity peak envelope value of the original paraboloid of revolution reflector 5 corresponding to the compound curved reflector 1 of this antenna. In addition, the above-mentioned original paraboloid of revolution reflector 5
The aperture diameter is 2.4 square meters, the gain is 31 dB, and the power width at half maximum is 5.5 degrees. In addition, the deviation angle α of the paraboloid of revolution reflectors 2 and 4 on both sides of the compound curved reflector 1 is as follows:
Since the power half width of the parabolic antenna is about 9° (=Θ), which is 6 dB lower than the gain of the antenna using the original parabolic reflector 5 of revolution, α=18°, that is,
It is designed so that β=144°.
同図より明らかなように本発明に係る扇形ビー
ムアンテナは、その電力半値幅が目標値を満足
し、かつその主ビームの立上りも急峻である。ま
た曲線9と10との比較において、ペンシルビー
ムアンテナを広角な扇形ビームアンテナとした場
合の利得低下分約10dBを考慮すると、曲線9は
本発明のアンテナが遮蔽板なしでも顕著な側、後
方指向レベルの低減効果をもつことを表わしてい
る。なお、垂直面内主ビーム指向性は、原形のパ
ラボラアンテナの特性と変らない。 As is clear from the figure, in the fan-shaped beam antenna according to the present invention, the power half width satisfies the target value, and the rise of the main beam is also steep. In addition, in comparing curves 9 and 10, considering the gain reduction of approximately 10 dB when the pencil beam antenna is replaced with a wide-angle fan beam antenna, curve 9 shows that the antenna of the present invention has a pronounced side and rearward direction even without a shielding plate. This indicates that it has the effect of reducing the level. Note that the main beam directivity in the vertical plane is the same as the characteristics of the original parabolic antenna.
本発明はもちろんオフセツト形反射鏡アンテナ
にも適用しうることはいうまでもない。 It goes without saying that the present invention can also be applied to offset reflector antennas.
g 発明の効果
以上のように、本発明に係る扇形ビームアンテ
ナは、従来の回転放物面反射鏡に簡単な加工を施
すことによつて容易に構成することができるので
製造コストがきわめて安い。また立上がりが急峻
で希望する電力半値幅を有する扇形ビームが得ら
れるばかりでなく、遮蔽板なしで側、後方指向性
レベルを改善することができるなどその実用上の
効果は大きい。g. Effects of the Invention As described above, the fan-shaped beam antenna according to the present invention can be easily constructed by applying simple processing to a conventional paraboloid of revolution reflector, and therefore the manufacturing cost is extremely low. Moreover, not only can a fan-shaped beam with a steep rise and the desired half-width power be obtained, but also the side and rear directivity levels can be improved without a shielding plate, which has great practical effects.
第1図は、本発明に係る扇形ビームアンテナの
反射鏡の正面図、第2図は同反射鏡の部分破断側
面図、第3図は本発明のアンテナの動作を説明す
るための図、第4図は本発明に係アンテナの水平
面内指向性の実測値を示すグラフである。
1……複合曲面反射鏡、2,4……回転放物面
反射鏡部、3……放物筒面反射鏡部、5……原形
の回転放物面反射鏡、7……方向調整ボルト取付
座、8……一次放射器。
1 is a front view of a reflector of a fan beam antenna according to the present invention, FIG. 2 is a partially cutaway side view of the reflector, and FIG. 3 is a diagram for explaining the operation of the antenna of the present invention. FIG. 4 is a graph showing actually measured values of the directivity in the horizontal plane of the antenna according to the present invention. 1... Composite curved reflector, 2, 4... Paraboloid of revolution reflector section, 3... Parabolic cylindrical reflector section, 5... Original paraboloid of revolution reflector, 7... Direction adjustment bolt Mounting seat, 8...Primary radiator.
Claims (1)
座標系の3直交軸をX軸、Y軸、Z軸とし、lを
長さのデイメンジヨンを有する任意の実数とする
とき、 (a)式で表現される焦点距離fの回転放物面であ
る第1の回転放物反射鏡部と、(b)式で表現される
放物筒面である放物筒面反射鏡部と、(c)式で表現
される回転放物面である第2の回転放物面反射鏡
部からなる反射鏡と、原点に位置する一次放射器
からなることを特徴とする扇形ビームアンテナ。 4f(Ysinα+Zcosα+f) =X2+(Ycosα−Zsinα)2 ……(a) (ただしYcosα+Zsinα<+l) 4f(Z+fcosα+lsinα) =(X2+l2)cosα ……(b) (ただしYcosα+Zsinα<l かつYcosα−Zsinα<−l) 4f(−Ysinα+Zsinα+f) =X2+(Ycosα+Zsinα)2 ……(c) (ただしYcosα+Zsinα<l) ここにおいてαは角度のデイメンジヨンを有
し、希望する扇形ビームの指向性電力半値幅を
Φ、(d)式で表現される回転放物面反射鏡と原点に
位置する一次放射器からなるビームアンテナの半
分の利得を有する放物面反射鏡の電力半値幅をΘ
とするとき、α=(Φ−Θ)/2で定義される。 4f(Z+f)=X2+Y2 ……(d) 2 上記lが、一次放射器の照度分布特性を考慮
した両回転放物面反射鏡部の開口面積と放物筒面
反射鏡部の開口面積が、α=0において等積とな
るように選ばれていることを特徴とする特許請求
の範囲第1項記載の扇形ビームアンテナ。[Claims] 1. When the three orthogonal axes of a rectangular coordinate system with the direction of the main beam of the antenna as the X-axis are the X-axis, Y-axis, and Z-axis, and l is an arbitrary real number having a dimension of length. , a first paraboloid of revolution reflecting mirror portion that is a paraboloid of revolution with a focal length f expressed by equation (a), and a parabolic cylindrical reflecting mirror that is a parabolic cylinder surface expressed by equation (b). A fan-shaped beam antenna comprising: a second paraboloid of revolution reflecting mirror section that is a paraboloid of revolution expressed by equation (c); and a primary radiator located at the origin. . 4f(Ysinα+Zcosα+f) =X 2 +(Ycosα−Zsinα) 2 …(a) (However, Ycosα+Zsinα<+l) 4f(Z+fcosα+lsinα) =(X 2 +l 2 )cosα ……(b) (However, Ycosα+Zsinα<l and Ycosα− Zsinα<-l) 4f(-Ysinα+Zsinα+f) =X 2 +(Ycosα+Zsinα) 2 ...(c) (However, Ycosα+Zsinα<l) Here, α has the angular dimension and is the directional power half width of the desired fan beam. Φ, the power half width of the parabolic reflector with half the gain of the beam antenna consisting of the rotating parabolic reflector and the primary radiator located at the origin expressed by equation (d) is Θ
When , it is defined as α=(Φ−Θ)/2. 4f (Z + f) = X 2 + Y 2 ...(d) 2 The above l is the aperture area of the bi-rotating parabolic reflector and the aperture of the parabolic cylindrical reflector considering the illuminance distribution characteristics of the primary radiator. 2. Fan beam antenna according to claim 1, characterized in that the areas are chosen to be equal at α=0.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7890079A JPS562704A (en) | 1979-06-22 | 1979-06-22 | Fan-shaped beam antenna |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7890079A JPS562704A (en) | 1979-06-22 | 1979-06-22 | Fan-shaped beam antenna |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS562704A JPS562704A (en) | 1981-01-13 |
JPS6232844B2 true JPS6232844B2 (en) | 1987-07-17 |
Family
ID=13674690
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7890079A Granted JPS562704A (en) | 1979-06-22 | 1979-06-22 | Fan-shaped beam antenna |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS562704A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0642086B2 (en) * | 1984-05-16 | 1994-06-01 | キヤノン株式会社 | Image forming method |
US5258767A (en) * | 1989-03-14 | 1993-11-02 | Kokusai Denshin Denwa Co., Ltd. | Antenna system for shaped beam |
CN110829035B (en) * | 2019-11-19 | 2021-03-16 | 大连海事大学 | Circular polarization patch antenna of wide half-power wave beam |
-
1979
- 1979-06-22 JP JP7890079A patent/JPS562704A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS562704A (en) | 1981-01-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8665166B2 (en) | Compact multibeam reflector antenna | |
KR101292230B1 (en) | Compact nonaxisymmetric double-reflector antenna | |
US20110267251A1 (en) | Wide angle multibeams | |
US3656165A (en) | Lens polarization control | |
JPS6232844B2 (en) | ||
US4783664A (en) | Shaped offset-fed dual reflector antenna | |
JPS603210A (en) | Antenna in common use for multi-frequency band | |
JPS6138261Y2 (en) | ||
JPS6347061Y2 (en) | ||
US6633264B2 (en) | Earth coverage reflector antenna for geosynchronous spacecraft | |
US5075692A (en) | Antenna system | |
JPS603211A (en) | Antenna in common use for multi-frequency band | |
JPH042490Y2 (en) | ||
JPS60264106A (en) | Antenna using shaped reflection mirror | |
JP3034262B2 (en) | Aperture antenna device | |
JPH04100302A (en) | Multi-beam antenna | |
JPH023562B2 (en) | ||
JPS5939104A (en) | Shaped beam antenna | |
JPS5892106A (en) | Multibeam antenna | |
JPS6119528Y2 (en) | ||
JP2710416B2 (en) | Elliptical aperture double reflector antenna | |
JPH046127B2 (en) | ||
JP2000059134A (en) | Method for reducing degradation of orthogonally polarized wave of multi-feed dual offset reflector antenna | |
JPS5884506A (en) | Formed beam antenna | |
Zuji et al. | Introduction to ECRIEE's development on very low sidelobe antenna |