JPS603211A - Antenna in common use for multi-frequency band - Google Patents
Antenna in common use for multi-frequency bandInfo
- Publication number
- JPS603211A JPS603211A JP11069983A JP11069983A JPS603211A JP S603211 A JPS603211 A JP S603211A JP 11069983 A JP11069983 A JP 11069983A JP 11069983 A JP11069983 A JP 11069983A JP S603211 A JPS603211 A JP S603211A
- Authority
- JP
- Japan
- Prior art keywords
- primary radiator
- frequency band
- partial mirror
- antenna
- main reflecting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q5/00—Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
- H01Q5/40—Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
- H01Q5/45—Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements using two or more feeds in association with a common reflecting, diffracting or refracting device
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Aerials With Secondary Devices (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の属する技術分野〕
本発明は、マイクロ波帯および準ミリ波帯のアンテナに
関する。特に、2つ以上の周波数帯域を共用し、各周波
数帯域ごとに少なくとも1個以上の送受信ビームを有す
る多周波数帯域共用アンテナに関する。DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to an antenna for microwave bands and sub-millimeter wave bands. In particular, the present invention relates to a multi-frequency band antenna that shares two or more frequency bands and has at least one transmission/reception beam for each frequency band.
従来、この種の多周波数帯域共用アンテナには、第1図
にその構成を示すような複数の1次放射器で給電される
パラボラアンテナが知られている。Conventionally, as this type of multi-frequency band antenna, a parabolic antenna whose configuration is shown in FIG. 1 and which is fed with power by a plurality of primary radiators is known.
第1図において、1は焦点をFとする回転放物面の主反
射鏡、10 、11はそれぞれ周波数帯域の異なる1次
放射器である。1次放射器10.11が周波数帯域ごと
にそれぞれ独立であることから、1次放射器10.11
には各周波数帯域に対して要求されるアンテナの利得お
よびビーム幅が得られるように各指向特性を与えること
ができる。In FIG. 1, reference numeral 1 indicates a main reflecting mirror having a paraboloid of revolution having a focal point F, and reference numerals 10 and 11 indicate primary radiators having different frequency bands. Since the primary radiators 10.11 are independent for each frequency band, the primary radiators 10.11
It is possible to give each directivity characteristic to obtain the required antenna gain and beam width for each frequency band.
しかし各ビーム方向間の角度が最小となるのは、複数の
1次放射器を物理的に接触するまで接近させて配置した
場合であり、例えば各周波数帯域ともほぼ同一方向にビ
ームを指向したい場合にはビームの最大方向を同一方向
に合わせることができない欠点があった。また第1図の
構成のアンテナで1次放射器10 、11を通信用ビー
ムの1次放射器とし、これとは独立に、しかも通信用ビ
ーム幅内に零点があるように自己追尾用ビームの1次放
射器を追加したい場合には、自己追尾用の1次放射器の
配置が物理的に不可能になる等の欠点があった。However, the angle between each beam direction is minimized when multiple primary radiators are placed close enough to physically touch each other. For example, when you want to direct the beam in almost the same direction for each frequency band. had the disadvantage that the maximum direction of the beams could not be aligned in the same direction. In addition, in the antenna with the configuration shown in Fig. 1, the primary radiators 10 and 11 are used as the primary radiators of the communication beam, and independently of this, the self-tracking beam is set so that the zero point is within the communication beam width. When it is desired to add a primary radiator, there are drawbacks such as the fact that it becomes physically impossible to arrange the primary radiator for self-tracking.
本発明は、上記欠点を改良するもので、各周波数帯域ご
とに独立してビームを合成して各周波数帯域で侠求され
るアンテナ特性を得ることができ、かつ複数の1次放射
器系を物理的に容易に配設することができる多周波a
’Fj′r域共用アンテナを提供することを目的とする
。The present invention aims to improve the above-mentioned drawbacks, and is capable of independently synthesizing beams for each frequency band to obtain antenna characteristics desired in each frequency band, and by combining multiple primary radiator systems. Multi-frequency a that can be physically easily installed
The purpose is to provide a common antenna for the 'Fj'r region.
本発明は、回転放物面の一部分よりなる複数の部分鏡面
を焦点位置が互いに異なるように組合わせて1個の主反
射鏡を構成し、この主反射鏡を照射する複数の1次放射
器系のうち、高い周波数帯域の1次放射器系は前記各部
分鏡面の焦点位置に配設され、最も低い周波数帯域の1
次放射器系は各部分鏡面の焦点位置より偏在した位置に
配設されたことを%徴とする。The present invention configures one main reflecting mirror by combining a plurality of partial mirror surfaces each consisting of a part of a paraboloid of revolution so that their focal positions are different from each other, and a plurality of primary radiators that irradiate this main reflecting mirror. Among the systems, the primary radiator system in the high frequency band is arranged at the focal position of each partial mirror surface, and the primary radiator system in the lowest frequency band is placed at the focal position of each partial mirror surface.
It is important to note that the secondary radiator system is disposed at a position that is unevenly distributed from the focal point position of each partial mirror surface.
次に本発明の実施例を図面に基づいて詳しく説明する。 Next, embodiments of the present invention will be described in detail based on the drawings.
第2図は本発明第一実施例アンテナの中央縦断面図、第
3図はそのアンテナの主反射鏡の正面図である。第2図
および第3図において、主反射鏡1′は回転放物面の一
部分よりなる部分鏡面2および3が組合わされて構成さ
れる。この部分鏡面2および3のそれぞれの焦点F2お
よびF3は互いに位置を異にし、焦点F2およびF3に
は高い周波数帯域の1次放射器lOおよび11がそれぞ
れ配設される。この1次放射器10は主として部分鏡面
3を照射し、1次放射器11は主として部分鏡面2を照
射する。この部分鏡面2.3の各回転中心軸Z2 、
Z3は、基準軸Zに対して互いに反対方向にそれぞれ角
度θ2、θ3だけ傾くように構成される。FIG. 2 is a central vertical sectional view of the antenna according to the first embodiment of the present invention, and FIG. 3 is a front view of the main reflecting mirror of the antenna. In FIGS. 2 and 3, the main reflecting mirror 1' is constructed by combining partial mirror surfaces 2 and 3, each of which is a part of a paraboloid of revolution. The respective focal points F2 and F3 of the partial mirror surfaces 2 and 3 are located at different positions from each other, and the primary radiators 10 and 11 in the high frequency band are arranged at the focal points F2 and F3, respectively. This primary radiator 10 mainly irradiates the partial mirror surface 3 , and the primary radiator 11 mainly irradiates the partial mirror surface 2 . Each rotation center axis Z2 of this partial mirror surface 2.3,
Z3 is configured to be inclined at angles θ2 and θ3 in opposite directions with respect to the reference axis Z, respectively.
このような構成のアンテナでは、焦点F3より放射され
た球面波波源の電波は、部分鏡面3で反射した後、例え
ば破線20でその通路を示すようにZ3軸方向に進行す
る平面波として放射される。In an antenna with such a configuration, a radio wave from a spherical wave source radiated from the focal point F3 is reflected by the partial mirror surface 3 and then radiated as a plane wave traveling in the Z3 axis direction, for example, as the path is indicated by a broken line 20. .
同僚に、焦点F2より放射された球面波波源の電波は部
分鏡面2で反射した後、破線21でその通路を示すよう
にZ2軸と平行な方向に進行する平面波として放射され
る。My colleague told me that the radio waves from the spherical wave source emitted from the focal point F2 are reflected by the partial mirror surface 2 and then emitted as plane waves that travel in a direction parallel to the Z2 axis, as shown by the broken line 21.
ここで1次放射器系10は、複数の1次放射器と車力分
配器あるいは電力合成器とを備え、しかも部分鏡面3で
反射した後の放射ビームの断面形状が特殊な形状、例え
ばほぼ楕円形となるように構成され、1次放射器系11
は、通常の円錐ホーンとすると、部分鏡面2および3か
ら放射された放射波は、観測球面上ではそれぞれ第4図
の実線31と30に示すような等利得線図として示され
る。Here, the primary radiator system 10 includes a plurality of primary radiators and a power distributor or a power combiner, and furthermore, the cross-sectional shape of the radiation beam after being reflected by the partial mirror surface 3 has a special shape, for example, approximately The primary radiator system 11 is configured to have an elliptical shape.
Assuming that is a normal conical horn, the radiation waves radiated from the partial mirror surfaces 2 and 3 are shown on the observation sphere as equal gain diagrams as shown by solid lines 31 and 30 in FIG. 4, respectively.
同図で点p 、 pg 、 psはそれぞれ軸7. 、
Z! 、Zsと観測球面との交点であり、縦軸40は
垂直角度、横軸41は水平角度をそれぞれ示す。In the figure, points p, pg, and ps are respectively on axis 7. ,
Z! , Zs and the observation sphere, the vertical axis 40 represents the vertical angle, and the horizontal axis 41 represents the horizontal angle.
同図で等利得線図30と31の大きさと等利得線の値は
、部分鏡面3と2の大きさと1次放射器系10と11の
使用周波数゛帯域によりそれぞれ異なるが、第4図に示
す例では、主反射鏡1′全体の開口直径が約2mで、部
分鏡面3の開口直径が約1m弱であり、1次放射器系1
1は、自由空間波長力冨7c!rL程度のいわゆるマイ
クロ波帯で、その等オリ得線の値が約25dBであり、
また1次放射器系Lot’!、自由空間波長が1cIr
L程度のいわゆる準ミリ波帯でその等利得線の値が約3
3dBを想定して(・る。In the figure, the magnitudes of the equal gain lines 30 and 31 and the values of the equal gain lines differ depending on the sizes of the partial mirror surfaces 3 and 2 and the used frequency bands of the primary radiator systems 10 and 11, but they are shown in FIG. In the example shown, the aperture diameter of the entire main reflecting mirror 1' is approximately 2 m, the aperture diameter of the partial mirror surface 3 is approximately 1 m, and the primary radiator system 1
1 is free space wavelength power 7c! In the so-called microwave band of about rL, the value of the iso-original line is about 25 dB,
Also, the primary radiator system Lot'! , free space wavelength is 1cIr
In the so-called quasi-millimeter wave band of approximately L, the value of the isogain line is approximately 3.
Assuming 3 dB (・ru.
以上のことは、一般にアンテナのビーム幅(i自由空間
波長λとアンテナの開口直径りとの比に比例し、逆にア
ンテナの利得はVλに比例することからも類推できる。The above can be inferred from the fact that, in general, the antenna beam width (i) is proportional to the ratio of the free space wavelength λ to the antenna aperture diameter, and conversely, the antenna gain is proportional to Vλ.
したがって、部分鏡面2および3により、2つの周波数
帯域のビームをそれぞれ独立して選定することができる
。Therefore, the partial mirror surfaces 2 and 3 allow beams in two frequency bands to be selected independently.
しかしながら、例えばさらに低い第三の周波数帯域のビ
ームを第4図の点Pの近傍に放射したい場合には、部分
鏡面をさらに追加するのでは主反射鏡1′全体の形状が
大きくなり、また焦点F2あるいは焦点F3の近傍に第
三の周波数帯域の1次放射器糸を別に配置するのは、1
次放射器系の寸法がほぼ自由空間波長に比例することか
らも物理的に困難である。However, if, for example, it is desired to radiate a beam in a third, lower frequency band near point P in FIG. Separately arranging the primary radiator thread of the third frequency band near F2 or focal point F3 is as follows:
This is also physically difficult because the dimensions of the secondary radiator system are approximately proportional to the free space wavelength.
この点金改良するために、本実施例では部分鏡面2およ
び3かも放射されるビーム幅が広いことを利用して、焦
点F2とF3との間に最も低い周波数帯域の第三の1次
放射器12を配設して、この1次放射器12で主反射鏡
1′全体を照射することにより、第4図の破線32に示
すような等利得線を得ている。一般K、焦点より偏在し
た位置より到来した球面波は、回転放物面鏡で反射した
後、その回転中心軸に対しである角度を成す方向に進行
するほぼ平面波状の波として放射される。この回転中心
軸からの傾き角度は、はぼ焦点からの偏在量と焦点距離
との比に比例する値として定まる。In order to improve this point, in this embodiment, the partial mirror surfaces 2 and 3 also utilize the wide beam width to emit the third primary radiation in the lowest frequency band between the focal points F2 and F3. By irradiating the entire main reflecting mirror 1' with the primary radiator 12, equal gain lines as shown by the broken line 32 in FIG. 4 are obtained. In general, a spherical wave arriving from a position unevenly distributed from the focal point is reflected by a rotating parabolic mirror and then radiated as a substantially plane wave-like wave that travels in a direction forming a certain angle with respect to the central axis of rotation. The angle of inclination from the center axis of rotation is determined as a value proportional to the ratio of the amount of uneven distribution from the focal point to the focal length.
したがって、第2図に示す1次放射器系12より放射さ
れた球面波のうち部分鏡面2かもの反射波は、例えば破
線22でその電波の通路を示すようにZ軸からの傾き角
度θ4が角度02以下の方向に放射され、同様に部分鏡
面3かもの反射波は、例えば破線23でその電波の通路
を示すようにZ軸からの傾き角度θ6が角度03以下の
方向に放射され、全体として1次放射器系12より放射
すれた球面波は、はぼZ軸方向に放射される電波となり
、観測球面上では第4図の破線32に示すような等利得
線図となる。Therefore, among the spherical waves emitted from the primary radiator system 12 shown in FIG. Similarly, the reflected wave from the partially mirrored surface 3 is emitted in a direction with an angle of 02 or less, and the reflected wave is radiated in a direction where the inclination angle θ6 from the Z axis is less than or equal to angle 03, as shown by the broken line 23, for example. The spherical wave radiated from the primary radiator system 12 becomes a radio wave radiated approximately in the Z-axis direction, and forms an equal gain diagram on the observation sphere as shown by the broken line 32 in FIG.
第4図の等利得線図は、自由空間波長が約10crIL
強で、その等利得線の値がz7dBi度を想定している
。破線32で示す等利得線図の形状は、各部分鏡面の大
きさ、焦点距離、角度θ2と03、および1次放射器系
12の配設位置等により調整可能である。以上説明した
ように、第2図の実施例により3つの周波数帯にわたっ
てほぼ独立に設計石工能な多周波数帯共用のアンテナか
実現できる。The equal gain diagram in Figure 4 shows that the free space wavelength is approximately 10 crIL.
It is assumed that the value of the equal gain line is z7dBi degree. The shape of the equal gain diagram indicated by the broken line 32 can be adjusted by the size of each partial mirror surface, focal length, angles θ2 and 03, the arrangement position of the primary radiator system 12, and the like. As explained above, the embodiment shown in FIG. 2 makes it possible to realize a multi-frequency band antenna that can be designed almost independently over three frequency bands.
第5図は本発明第二実施例アンテナの中央縦断面図、第
6図はそのアンテナの主反射鏡の正面図である。第5図
および第6図において、各符号は第2図および第3図の
各符号にそれぞれ対応する。FIG. 5 is a central vertical sectional view of an antenna according to a second embodiment of the present invention, and FIG. 6 is a front view of the main reflecting mirror of the antenna. In FIGS. 5 and 6, each reference numeral corresponds to each reference numeral in FIGS. 2 and 3, respectively.
本実施例の特徴ある構成は、部分鏡面2の焦点F2には
>tti (a−用の1次放射器系10が配設され、部
分鏡面3の焦点F3には自己追尾用の1次放射器13が
配設されるところにある。The characteristic configuration of this embodiment is that a primary radiator system 10 for >tti (a-) is provided at the focal point F2 of the partial mirror surface 2, and a primary radiator system 10 for self-tracking is provided at the focal point F3 of the partial mirror surface 3. This is where the container 13 is placed.
また、部分鏡面20回転中心軸は基準軸Zに一致し、部
分鏡面3の回転中心軸は軸Z3となるように構成される
。1
このようなりtj成のアンテナでは、第一実施例の第2
図の説明からも明らかなように、部分鏡面2と3の放射
ビームはほぼ独立に選定でき、観測球面上では例えば第
7図に示すように1次放射器系10の等利得線図は、実
線30に示すようになり、1次放射器系13の等利得線
図は、和信号が実線34、差48号が4つの破線33、
垂直方向の零細が実線35、水平方向の零細が実線36
、零点がZ3軸と観測球面との交点の点P3の自己追尾
用等利得線図となる。Further, the central axis of rotation of the partial mirror surface 20 coincides with the reference axis Z, and the central axis of rotation of the partial mirror surface 3 is configured to be the axis Z3. 1 In such an antenna of tj configuration, the second
As is clear from the explanation of the figure, the radiation beams of the partial mirror surfaces 2 and 3 can be selected almost independently, and on the observation sphere, for example, as shown in FIG. 7, the equal gain diagram of the primary radiator system 10 is As shown by the solid line 30, the equal gain diagram of the primary radiator system 13 has a solid line 34 for the sum signal, four broken lines 33 for the difference number 48,
The thin line in the vertical direction is solid line 35, and the thin line in the horizontal direction is solid line 36.
, the zero point becomes the self-tracking equi-gain diagram of point P3, which is the intersection of the Z3 axis and the observation sphere.
したがって、通信用信号と自己追尾用信号の各ビームを
ほぼ独立して選定することができ、例えば衛星搭載用の
アンテナに用いた場合には自己追尾用の地上局の設置位
置が自由に選定できる利点がある。さらに、第一実施例
の場合と同様にさらに低い周波数帯域のビームを第7図
の点Pの近傍に放射したい場合には、第一実施例のよう
に低い周波数帯域の1次放射器系を焦点F2とF3の間
に配置して主反射鏡1′全体を照射することにより、8
147図の実線37で示すような等利得線図を実現する
ことができる。Therefore, each beam for the communication signal and the self-tracking signal can be selected almost independently, and for example, when used in a satellite-mounted antenna, the installation position of the self-tracking ground station can be freely selected. There are advantages. Furthermore, if you want to radiate a beam in a lower frequency band near point P in FIG. 7 as in the case of the first embodiment, use a primary radiator system in a lower frequency band as in the first embodiment. By placing it between the focal points F2 and F3 and irradiating the entire main reflector 1',
An equal gain diagram as shown by the solid line 37 in FIG. 147 can be realized.
なお、以上の説明では自己追尾用の1次放射器系として
は4ホーンより構成される放射器系を用いる例を示した
が、他の方法例えば高次姿態を用いる方法も適用するこ
とができる。In addition, in the above explanation, an example was shown in which a radiator system composed of four horns is used as the primary radiator system for self-tracking, but other methods such as a method using a higher-order configuration can also be applied. .
また、以上の説明では部分鏡面が2つの場合について説
明したが、部分鏡面の数が3つ以上の場合にも適用する
ことができる。Further, in the above description, the case where there are two partial mirror surfaces has been described, but the present invention can also be applied to a case where the number of partial mirror surfaces is three or more.
さらに、説明の都合上、アンテナは送信アンテすとして
扱ったが、アンテナの相反性により、受信アンテナにも
適用することができる。したがって上記説明で用いた「
照射」および「放射」の語は、本発明を送信アンテナに
限定するものではない。Further, for convenience of explanation, the antenna was treated as a transmitting antenna, but due to the reciprocity of the antenna, it can also be applied to a receiving antenna. Therefore, "
The terms ``irradiation'' and ``radiation'' do not limit the invention to transmitting antennas.
以上説明したように、本発明によれば焦点位置が互いに
異なるように複数の部分鏡面を組合わせて楢成される主
反射鏡を用い、各部分鏡面の焦点位置に高い周波数帯域
の1次放射器糸を配設し、最も低い周波数帯域の1次放
射器系を各部分鏡面の焦点位置から偏在した位置に配設
して主反射鏡全体を照射することにより、各1次放射器
糸に対応してほぼ独立のビームを合成でき、複数の1次
放射器系を物理的に容易に配設することができる優れた
効果がある。例えばアンテナ全体の寸法に制限があり、
かつ多周波数帯域を用いることの多い衛星搭載用アンテ
ナに用いれば多大な効果を発揮することができる。As explained above, according to the present invention, a main reflecting mirror is constructed by combining a plurality of partial mirror surfaces so that the focal positions are different from each other, and primary radiation in a high frequency band is emitted at the focal position of each partial mirror surface. By arranging the primary radiator system with the lowest frequency band at a position unevenly distributed from the focal point of each partial mirror surface and irradiating the entire main reflecting mirror, Correspondingly, almost independent beams can be combined, and a plurality of primary radiator systems can be physically easily arranged, which is an excellent advantage. For example, there are restrictions on the overall dimensions of the antenna,
Moreover, if used in satellite antennas that often use multiple frequency bands, great effects can be achieved.
第1図は従来例パラボラアンテナの側面図。
第2図は本発明第一実施例アンテナの中央縦断面図。
第3図はその主反射鏡の正面図。
第4図は本発明第一実施例アンテナの放射特性図。
第5図は本発明第二実施例アンテナの中央縦断面図。
第6図はその主反射鏡の正面図。
第7図は本発明第二実施例アンテナの放射特性図。
1.1’・・・主反射鏡、2.3・・・部分鏡面、10
.11.12.13・・・1次放射器系。
特許出願人
代理人 弁理士 井 出 直 孝
第1図
第2図
第3図
第4図
第5図
第6図FIG. 1 is a side view of a conventional parabolic antenna. FIG. 2 is a central vertical sectional view of the antenna according to the first embodiment of the present invention. Figure 3 is a front view of the main reflecting mirror. FIG. 4 is a radiation characteristic diagram of the antenna according to the first embodiment of the present invention. FIG. 5 is a central vertical sectional view of an antenna according to a second embodiment of the present invention. Figure 6 is a front view of the main reflecting mirror. FIG. 7 is a radiation characteristic diagram of the antenna according to the second embodiment of the present invention. 1.1'... Main reflecting mirror, 2.3... Partial mirror surface, 10
.. 11.12.13...Primary radiator system. Patent applicant representative Patent attorney Nao Takashi IdeFigure 1Figure 2Figure 3Figure 4Figure 5Figure 6
Claims (1)
個以上の副反射鏡を介して照射する複数の1次放射器系
とを備え、上記各1次放射器系ごとに各別に送受q=ビ
ームが得られるように構成された多周波数帯域共用アン
テナにおいて、上記主反射鏡は、回転放物面の一部分よ
りなる複数の部分鏡面がその各焦点位(白:が互いに異
なる位置になるように組合わされて構成され、上記複数
の1次放射器系のうち高い周波数帯域の電波を放射する
1次放射器系は、上記複数の部分鏡面のうちの特定の部
分鏡面を照射するようにこの特定の部分鏡面の焦点位置
に配設され、上記複数の1次放射器系のうち低い周波数
帯域電波を放射する1次放射器系は、上記主反射鏡のほ
ぼ全体を照射するように上記複数の部分鏡面の全焦点位
置から偏在した位置に配設されたことを特徴とする多周
波数帯域共用アンテナ。(1) One main reflecting mirror and this main reflecting mirror directly or one
A multi-frequency band shared antenna comprising a plurality of primary radiator systems that emit radiation through at least one sub-reflector, and configured so that each of the primary radiator systems can separately transmit and receive q=beams. In the main reflecting mirror, a plurality of partial mirror surfaces formed by a part of a paraboloid of revolution are combined so that their respective focal positions (white) are at different positions, and the plurality of primary radiator systems A primary radiator system that emits radio waves in a higher frequency band is disposed at a focal position of a specific partial mirror surface of the plurality of partial mirror surfaces, so as to irradiate a specific partial mirror surface among the plurality of partial mirror surfaces. Among the primary radiator systems, the primary radiator system that emits a low frequency band radio wave is arranged at a position unevenly distributed from the total focal position of the plurality of partial mirror surfaces so as to irradiate almost the entirety of the main reflecting mirror. An antenna that can be used for multiple frequency bands.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11069983A JPS603211A (en) | 1983-06-20 | 1983-06-20 | Antenna in common use for multi-frequency band |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11069983A JPS603211A (en) | 1983-06-20 | 1983-06-20 | Antenna in common use for multi-frequency band |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS603211A true JPS603211A (en) | 1985-01-09 |
JPH0566763B2 JPH0566763B2 (en) | 1993-09-22 |
Family
ID=14542206
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11069983A Granted JPS603211A (en) | 1983-06-20 | 1983-06-20 | Antenna in common use for multi-frequency band |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS603211A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5136294A (en) * | 1987-01-12 | 1992-08-04 | Nec Corporation | Multibeam antenna |
JPH06152232A (en) * | 1992-11-06 | 1994-05-31 | Fujitsu General Ltd | Parabolic antenna |
EP1207584A2 (en) * | 2000-11-15 | 2002-05-22 | The Boeing Company | Integrated dual beam reflector antenna |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2888674B1 (en) * | 2005-07-13 | 2009-10-23 | Alcatel Sa | NETWORK ANTENNA WITH REFLECTOR (S) CONFORMING (S), HAVING HIGH RECONFIGURABILITY IN ORBIT |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56119504A (en) * | 1980-02-25 | 1981-09-19 | Nec Corp | Antenna shared among multifrequency band |
JPS5781706A (en) * | 1980-11-11 | 1982-05-21 | Nippon Telegr & Teleph Corp <Ntt> | Multifrequency shared antenna |
-
1983
- 1983-06-20 JP JP11069983A patent/JPS603211A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56119504A (en) * | 1980-02-25 | 1981-09-19 | Nec Corp | Antenna shared among multifrequency band |
JPS5781706A (en) * | 1980-11-11 | 1982-05-21 | Nippon Telegr & Teleph Corp <Ntt> | Multifrequency shared antenna |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5136294A (en) * | 1987-01-12 | 1992-08-04 | Nec Corporation | Multibeam antenna |
JPH06152232A (en) * | 1992-11-06 | 1994-05-31 | Fujitsu General Ltd | Parabolic antenna |
EP1207584A2 (en) * | 2000-11-15 | 2002-05-22 | The Boeing Company | Integrated dual beam reflector antenna |
EP1207584A3 (en) * | 2000-11-15 | 2004-01-02 | The Boeing Company | Integrated dual beam reflector antenna |
Also Published As
Publication number | Publication date |
---|---|
JPH0566763B2 (en) | 1993-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6011520A (en) | Geodesic slotted cylindrical antenna | |
US4090203A (en) | Low sidelobe antenna system employing plural spaced feeds with amplitude control | |
CA2129041C (en) | Antenna device | |
RU2380802C1 (en) | Compact multibeam mirror antenna | |
US7394436B2 (en) | Multi-beam and multi-band antenna system for communication satellites | |
US7242904B2 (en) | Dual-band multiple beam antenna system for communication satellites | |
EP1020952A1 (en) | Gregorian antenna system | |
US9054414B2 (en) | Antenna system for low-earth-orbit satellites | |
KR101292230B1 (en) | Compact nonaxisymmetric double-reflector antenna | |
US3045237A (en) | Antenna system having beam control members consisting of array of spiral elements | |
US3797020A (en) | Microwave antenna structure with aperture blocking elimination | |
US3500419A (en) | Dual frequency,dual polarized cassegrain antenna | |
EP1020950A2 (en) | A compact front-fed dual reflector antenna system for providing adjacent, high gain antenna beams | |
US6184838B1 (en) | Antenna configuration for low and medium earth orbit satellites | |
WO2018096307A1 (en) | A frequency scanned array antenna | |
JPS603211A (en) | Antenna in common use for multi-frequency band | |
JPH0654843B2 (en) | Multi-frequency band shared antenna | |
US3392397A (en) | Cassegrain antenna for scanning with elliptically shaped beam | |
US20010003444A1 (en) | Radiating source for a transmit and receive antenna intended to be installed on board a satellite | |
JPH0515081B2 (en) | ||
JP3034262B2 (en) | Aperture antenna device | |
JPH0295003A (en) | Scanning antenna | |
JPH03190305A (en) | Mobile station antenna system | |
JPS601964B2 (en) | ball lens antenna | |
JPH0611086B2 (en) | Molded beam antenna |