JPH0654843B2 - Multi-frequency band shared antenna - Google Patents

Multi-frequency band shared antenna

Info

Publication number
JPH0654843B2
JPH0654843B2 JP58110698A JP11069883A JPH0654843B2 JP H0654843 B2 JPH0654843 B2 JP H0654843B2 JP 58110698 A JP58110698 A JP 58110698A JP 11069883 A JP11069883 A JP 11069883A JP H0654843 B2 JPH0654843 B2 JP H0654843B2
Authority
JP
Japan
Prior art keywords
partial mirror
mirror surface
primary radiator
radiator system
partial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58110698A
Other languages
Japanese (ja)
Other versions
JPS603210A (en
Inventor
光裕 草野
真 安藤
健治 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Nippon Telegraph and Telephone Corp
Original Assignee
NEC Corp
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Telegraph and Telephone Corp filed Critical NEC Corp
Priority to JP58110698A priority Critical patent/JPH0654843B2/en
Publication of JPS603210A publication Critical patent/JPS603210A/en
Publication of JPH0654843B2 publication Critical patent/JPH0654843B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • H01Q5/45Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements using two or more feeds in association with a common reflecting, diffracting or refracting device

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は、マイクロ波帯および準ミリ波帯のアンテナに
関する。特に、2つ以上の周波数帯域を共用し、各周波
数帯域ごとに少なくとも1個以上の送受信ビームを有す
る多周波帯域共用アンテナに関する。
Description: TECHNICAL FIELD The present invention relates to a microwave band antenna and a quasi-millimeter wave band antenna. In particular, the present invention relates to a multi-frequency band shared antenna that shares two or more frequency bands and has at least one transmission / reception beam for each frequency band.

〔従来技術の説明〕[Description of Prior Art]

複数の地上局を相手とする衛星搭載用アンテナには、地
上局が散在する特定の地域を効率よく照射するために、
放射ビームの断面形状が成形された放射特性を持ち、し
かも衛星の姿勢変動に対しても高い指向精度を持つこと
が望まれる。このようないわゆる成形ビームアンテナと
しては、例えば特開昭50−99060 に記載されたアンテナ
のように、成形するビームの断面形状に合わせて主反射
鏡鏡面を通常の回転放物面より修整するアンテナが知ら
れている。
In order to efficiently irradiate a specific area where ground stations are scattered, satellite-mounted antennas for multiple ground stations are
It is desired that the cross-sectional shape of the radiation beam has a shaped radiation characteristic and that it has high pointing accuracy even with respect to the attitude change of the satellite. As such a so-called shaped beam antenna, for example, an antenna described in Japanese Unexamined Patent Publication No. 50-99060, in which the main reflector mirror surface is modified from a normal paraboloid of revolution in accordance with the sectional shape of the beam to be shaped. It has been known.

しかしながら、上記アンテナを例えばマイクロ波帯と準
ミリ波帯で共用する場合には、各周波数帯域ごとに独立
に主反射鏡の直径や放射ビームの方向を選定できない欠
点があつた。また前述した高い指向精度を得る目的で、
アンテナに自己追尾用のトラツキングパターンを具備し
ようとする場合には、主反射鏡の鏡面を非対称に修整し
ているために所望のトラツキングパターンが得られず、
高精度の自己追尾機能を持たせることが困難である欠点
があつた。
However, when the above antenna is shared in the microwave band and the quasi-millimeter wave band, for example, the diameter of the main reflecting mirror and the direction of the radiation beam cannot be independently selected for each frequency band. In addition, for the purpose of obtaining the high pointing accuracy described above,
When trying to equip the antenna with a tracking pattern for self-tracking, the desired tracking pattern cannot be obtained because the mirror surface of the main reflecting mirror is modified asymmetrically,
There is a drawback that it is difficult to provide a highly accurate self-tracking function.

〔発明の目的〕[Object of the Invention]

本発明は、上記欠点を改良するもので、各周波数帯域ご
とに開口直径およびビームの方向がそれぞれ独立して選
定することができ、かつ高精度の自己追尾機能を具備す
る多周波帯域共用アンテナを提供することを目的とす
る。
The present invention is to improve the above-mentioned drawbacks, and to provide a multi-frequency band shared antenna in which an aperture diameter and a beam direction can be independently selected for each frequency band and which has a highly accurate self-tracking function. The purpose is to provide.

〔発明の要旨〕[Summary of Invention]

本発明は、従来の鏡面修整された鏡面の中央部または周
辺部に回転放物面の一部分より成り、前記鏡面修整され
た鏡面の焦点とは異なつた焦点を有する鏡面を追加して
1つの主反射鏡を構成し、複数の1次放射器系を用いて
この主反射鏡を照射することにより、所望の放射ビーム
を合成するように構成されたことを特徴とする。
According to the present invention, a mirror surface having a focal point different from the focal point of the mirror surface having a conventional mirror surface is formed at a central portion or a peripheral portion of a conventional mirror surface having a mirror surface. It is characterized in that a reflecting mirror is configured and a desired radiation beam is combined by irradiating the main reflecting mirror using a plurality of primary radiator systems.

〔実施例による説明〕[Explanation by Examples]

次に本発明の実施例を図面に基づいて詳しく説明する。 Next, embodiments of the present invention will be described in detail with reference to the drawings.

第1図は本発明第一実施例アンテナの中央横断側面図、
第2図はそのアンテナの主反射鏡の正面図である。第1
図および第2図において、主反射鏡1は、回転放物面の
一部分よりなる部分鏡面2、3、4、5が組合わされて
構成される。部分鏡面2、3、4は、点Fを焦点として
各回転放物面の回転中心軸はそれぞれ異なる方向に配設
される。また部分鏡面5は、上記部分鏡面2、3、4の
周辺部に配設され、点Fを焦点とし軸Zをその回転
中心軸とする。
FIG. 1 is a cross-sectional side view of the antenna of the first embodiment of the present invention,
FIG. 2 is a front view of the main reflecting mirror of the antenna. First
In FIGS. 2 and 2, the main reflecting mirror 1 is configured by combining partial mirror surfaces 2, 3, 4, 5 which are part of a paraboloid of revolution. The partial mirror surfaces 2, 3 and 4 are arranged with the center of rotation of each paraboloid of revolution with the point F as the focal point in different directions. The partial mirror surface 5 is arranged in the peripheral portion of the partial mirror surfaces 2, 3 and 4, and the point F 5 is the focal point and the axis Z 5 is the rotation center axis thereof.

さらに点Fには周波数帯域、例えば準ミリ波帯の1次放
射器系10が配設され、点Fには低い周波数帯域、例え
ばマイクロ波帯の1次放射器系11が配設される。この1
次放射器系10は主として部分鏡面2、3、4を照射し、
1次放射器系11は主反射鏡面1全体を照射するように構
成される。
Further, a primary radiator system 10 in a frequency band, for example, a quasi-millimeter wave band is arranged at a point F, and a primary radiator system 11 in a low frequency band, for example, a microwave band is arranged at a point F 5. . This one
The secondary radiator system 10 mainly irradiates the partial mirror surfaces 2, 3, and 4,
The primary radiator system 11 is configured to illuminate the entire main reflecting mirror surface 1.

上記部分反射鏡2、3、4は高い周波数帯域で、第3図
の破線30で示すような観測球面上の等利得線図となるよ
うに各部分鏡面の大きさおよび回転中心軸の向きが定め
られる。すなわち、1次放射器系10より放射された球面
波波源は、部分鏡面2、3、4で反射した後、部分鏡面
2、3、4の各回転中心軸方向に進行し、部分鏡面2、
3、4の各形状に準じた拡がりを持つ平面波群として放
射され、この平面波群により第3図の破線30のようない
わゆる成形ビームが合成できる。第3図に示す点Pは、
第1図の基準軸Zと観測球面との交点であり、縦軸40は
垂直角度、横軸41は水平角度をそれぞれ示す軸である。
In the high frequency band, the partial reflecting mirrors 2, 3 and 4 are arranged such that the size of each partial mirror surface and the direction of the rotation center axis are such that an equal gain diagram on the observing sphere as shown by the broken line 30 in FIG. 3 is obtained. Determined. That is, the spherical wave wave source radiated from the primary radiator system 10 is reflected by the partial mirror surfaces 2, 3 and 4 and then travels in the direction of the central axis of rotation of the partial mirror surfaces 2, 3 and 4, and the partial mirror surface 2,
It is radiated as a plane wave group having a divergence according to each of the shapes of 3 and 4, and a so-called shaped beam as shown by a broken line 30 in FIG. 3 can be synthesized by this plane wave group. The point P shown in FIG. 3 is
It is the intersection of the reference axis Z and the observation sphere in FIG. 1, the vertical axis 40 is the vertical angle, and the horizontal axis 41 is the horizontal angle.

一方、前記した部分鏡面2、3、4の組合わせによる鏡
面修整は、準ミリ波帯で行われ、しかも破線30で示す等
利得線の照射する角度範囲も小さいため、例えば自由空
間波長で約5倍の長さを有するマイクロ波帯では鏡面修
整の効果はほとんどない。このためマイクロ波帯では部
分鏡面2、3、4の組合わせによる鏡面は、概略点Fを
焦点とし、Z軸を回転中心軸とする回転放物面鏡とみな
すことができる。
On the other hand, the mirror surface modification by the combination of the partial mirror surfaces 2, 3, and 4 described above is performed in the quasi-millimeter wave band, and the angular range of irradiation of the equal gain line indicated by the broken line 30 is small. In the microwave band having a length of 5 times, there is almost no effect of mirror surface modification. Therefore, in the microwave band, the mirror surface obtained by combining the partial mirror surfaces 2, 3, and 4 can be regarded as a rotary parabolic mirror having the approximate point F as the focal point and the Z axis as the rotation center axis.

したがつてマイクロ波帯の1次放射器系11より放射され
た球面波波源のうち、部分鏡面2、3、4で反射された
電波は、第1図の破線20でその通路を示すようにZ軸よ
り下向きに進行するほぼ平面波状の電波として放射さ
れ、その最大放射方向は例えば第3図の点P′で示すよ
うに点Pより下側に位置する。
Therefore, among the spherical wave wave sources radiated from the primary radiator system 11 in the microwave band, the radio waves reflected by the partial mirror surfaces 2, 3, and 4 are as shown by the broken line 20 in FIG. It is radiated as a substantially plane wave-shaped radio wave traveling downward from the Z-axis, and its maximum radiation direction is located below the point P as shown by a point P'in FIG. 3, for example.

一方マイクロ波帯の一次放射器系11より放射された球面
波波源のうち、部分鏡面5で反射された電波は、第1図
の破線21でその通路を示すようにその回転中心軸Z
向に進行する平面波として放射され、その最大放射方向
は軸Zと観測球面との交点Pの方向となる。全体と
しては前記2つの平面波の重合わせとして第3図の実線
31で示すような等利得線図となる。
On the other hand, of the spherical wave source radiated from the primary radiator system 11 in the microwave band, the radio wave reflected by the partial mirror surface 5 is directed in the direction of the rotation center axis Z 5 as indicated by the path indicated by the broken line 21 in FIG. Is radiated as a plane wave traveling in the direction of, and the maximum radiating direction is the direction of the intersection P 5 of the axis Z 5 and the observation sphere. As a whole, the solid line in FIG. 3 is used as a superposition of the two plane waves.
It becomes the equal gain diagram as shown by 31.

なお、第3図の等利得線図に示す破線30は、自由空間波
長が1cm程度、部分鏡面2、3、4の組合わせによる鏡
面の開口直径が約1m、利得33dB程度を推定し、実
線31は、自由空間波長が約10cm強で主反射鏡1全体の
開口直径が約2m、利得27dBの程度を推定したもの
である。また部分鏡面5の準ミリ波帯の等利得線図への
影響は1次放射器系10の放射ビームが部分鏡面2、3、
4の組合わせによる鏡面部分以外では十分減衰するよう
にすることにより、無視できるまで小さくすることがで
きる。
The broken line 30 shown in the equal gain diagram of FIG. 3 indicates that the free space wavelength is about 1 cm, the aperture diameter of the mirror surface due to the combination of the partial mirror surfaces 2, 3 and 4 is about 1 m, and the gain is about 33 dB. Reference numeral 31 is an estimate of a free space wavelength of about 10 cm, an aperture diameter of the entire main reflecting mirror 1 of about 2 m, and a gain of 27 dB. The influence of the partial mirror surface 5 on the quasi-millimeter wave band equal gain diagram is that the radiation beam of the primary radiator system 10 has partial mirror surfaces 2, 3,
By sufficiently attenuating the portion other than the mirror surface portion due to the combination of 4, it is possible to make it as small as negligible.

これにより、準ミリ波帯とマイクロ波帯とで独立に開口
直径が選定でき、かつビームの方向もほぼ独立に選定可
能な多周波数帯域共用のアンテナが実現できる。
As a result, it is possible to realize an antenna common to multiple frequency bands in which the aperture diameter can be selected independently for the quasi-millimeter wave band and the microwave band, and the beam directions can be selected almost independently.

第4図は本発明第二実施例アンテナの中央縦断側面図、
第5図はそのアンテナの主反射鏡の正面図である。第4
図および第5図において、主反射鏡1は、第一実施例と
同様に回転放物面の一部分よりなる部分鏡面2、3、
4、5が組合わされて構成され、部分鏡面2、3、4は
点Fを焦点とし各回転放物面の回転中心軸はそれぞれ異
なる方向に配設され、また部分鏡面5は点Fを焦点と
し軸Zはその回転中心軸とするが、本実施例の特徴あ
る構成は、上記部分鏡面5が上記部分鏡面2、3、4の
中央部に配設され、その焦点である点Fが点Fより主
反射鏡1に近い位置に配置されるところにある。
FIG. 4 is a side view of the central longitudinal section of the antenna of the second embodiment of the present invention,
FIG. 5 is a front view of the main reflecting mirror of the antenna. Fourth
In FIG. 5 and FIG. 5, the main reflecting mirror 1 is a partial mirror surface 2, 3, consisting of a part of a paraboloid of revolution similar to the first embodiment.
4 and 5 is configured by combining the partial mirror 2, 3, 4 are disposed in different directions the rotation center axis of the paraboloid of revolution and the point F and focal, also partial mirror 5 points F 5 Although the axis Z 5 is the focal point and the rotation center axis thereof, the characteristic configuration of the present embodiment is that the partial mirror surface 5 is arranged at the central portion of the partial mirror surfaces 2, 3 and 4, and the focal point is the point F. 5 is located closer to the main reflecting mirror 1 than the point F.

さらに点Fには準ミリ波帯とマイクロ波帯を共用する1
次放射器系12が配設される。この1次放射器12は主反射
鏡1全体を照射する。また点Fには準ミリ波帯の自己
追尾用の1次放射器系13が配設される。この1次放射器
13は部分鏡面5を照射するように構成される。
Furthermore, the point F shares the quasi-millimeter wave band and the microwave band 1
A secondary radiator system 12 is provided. This primary radiator 12 irradiates the entire main reflecting mirror 1. A primary radiator system 13 for self-tracking in the quasi-millimeter wave band is arranged at the point F 5 . This primary radiator
13 is configured to illuminate the partial mirror surface 5.

上記部分鏡面5は観測球面上の所望の位置にトラツキン
グパターンが合成できるようにその開口直径と回転中心
軸が定められる。すなわち第6図に示すように、和信号
が実線35、差信号が4つの破線34、垂直方向の零軸が実
線36、水平方向の零軸が実線37、零点がZ軸と観測球
面との交点P5の自己追尾用の等利得線図が得られる。
The opening diameter and the rotation center axis of the partial mirror surface 5 are determined so that the tracking pattern can be synthesized at a desired position on the observation spherical surface. That is, as shown in FIG. 6, the sum signal is a solid line 35, the difference signal is four broken lines 34, the vertical zero axis is a solid line 36, the horizontal zero axis is a solid line 37, and the zero point is the Z 5 axis and the observation sphere. An isogain diagram for self-tracking of the intersection point P 5 of is obtained.

また上記部分反射鏡2、3、4は準ミリ波帯では、部分
鏡面5の影響も含めて、第6図の破線32で示すような観
測球面上での等利得線図となるように、各部分鏡面の大
きさおよび回転中心軸の向きが定められる。すなわち、
1次放射器系12より放射された準ミリ波帯の球面波波源
は、部分鏡面2、3、4で反射した後、各部分鏡面2、
3、4の各回転中心軸方向に進行し、部分鏡面2、3、
4の各形状に準じた拡がりを持つ平面波群として放射さ
れる。また1次放射器12より放射された準ミリ波帯の球
面波波源のうち、部分鏡面5で反射された電波は、点F
が点Fより偏位しているため、第4図の破線22でその
通路を示すようにZ軸より下向きに進行するほぼ平面
波状の電波として放射される。以上4つの平面波群によ
り第6図の破線32に示すようないわゆる波形ビームが合
成できる。
Further, in the quasi-millimeter wave band, the partial reflecting mirrors 2, 3 and 4 include the effect of the partial mirror surface 5 so as to have an equal gain diagram on the observing spherical surface as shown by a broken line 32 in FIG. The size of each partial mirror surface and the direction of the rotation center axis are determined. That is,
The quasi-millimeter wave band spherical wave source radiated from the primary radiator system 12 is reflected by the partial mirror surfaces 2, 3 and 4, and then the partial mirror surfaces 2,
3 and 4, the partial mirror surface 2, 3,
It is radiated as a plane wave group having a spread according to each shape of No. 4. Of the quasi-millimeter wave spherical wave source radiated from the primary radiator 12, the radio wave reflected by the partial mirror surface 5 is a point F.
Is deviated from the point F 5, so that it is radiated as a substantially plane wave-like electric wave traveling downward from the Z 5 axis, as shown by the path of the broken line 22 in FIG. A so-called waveform beam as shown by a broken line 32 in FIG. 6 can be synthesized by the above four plane wave groups.

一方マイクロ波帯においては、第1図の実施例でも説明
したように部分鏡面2、3、4の組合わせによる鏡面
は、概略点Fを焦点とし、Z軸を回転中心軸とする回転
放物面鏡とみなすことができるため、1次放射器系12よ
り放射された球面波波源は、第4図の破線23でその通路
を示すようにZ軸方向に進行するほぼ平面波状の電波と
して放射される。
On the other hand, in the microwave band, as described in the embodiment of FIG. 1, the mirror surface formed by the combination of the partial mirror surfaces 2, 3, and 4 is a paraboloid of revolution having the approximate point F as the focal point and the Z axis as the central axis of rotation. Since it can be regarded as a plane mirror, the spherical wave wave source radiated from the primary radiator system 12 is radiated as a substantially plane wave-shaped radio wave traveling in the Z-axis direction as shown by the path of the broken line 23 in FIG. To be done.

また部分鏡面5で反射された電波は、前記した準ミリ波
帯の場合と同様に、第4図の破線22でその通路を示すよ
うにZ軸より下向きに進行するほぼ平面波状の電波と
して放射される。全体として、マイクロ波帯の観測球面
上での等利得線図は第6図の実線33で示すようなほぼ円
形の等利得線図となる。
Further, the radio wave reflected by the partial mirror surface 5 is, as in the case of the quasi-millimeter wave band described above, a substantially plane wave-like radio wave traveling downward from the Z 5 axis as shown by the path indicated by the broken line 22 in FIG. Is emitted. As a whole, the equal gain diagram on the observation spherical surface in the microwave band is a substantially circular equal gain diagram as shown by the solid line 33 in FIG.

したがつて、通信用信号と自己追尾用信号のビームをほ
ぼ独立に選定することができ、例え衛星搭載用のアンテ
ナに用いた場合には、自己追尾用の地上局の設置位置が
自由に選定できる利点がある。
Therefore, the beams for communication signals and self-tracking signals can be selected almost independently, and if they are used as satellite-mounted antennas, the position of the ground station for self-tracking can be freely selected. There are advantages.

なお、以上の説明では自己追尾用の1次放射器系として
は4ホーンより構成される放射器系を用いたが、他の方
法例えば高次姿態を用いる方法も適用することができ
る。
In the above description, the radiator system including four horns was used as the primary radiator system for self-tracking, but other methods such as a method using a higher-order form can be applied.

また、以上の説明では部分鏡面が4つの場合について説
明したが、部分鏡面の数が5個以上の場合にも適用する
ことができる。
Further, in the above description, the case where the number of partial mirror surfaces is four has been described, but the present invention can be applied to the case where the number of partial mirror surfaces is five or more.

さらに、説明の都合上、アンテナは送信アンテナとして
扱つたが、アンテナの相反性より受信アンテナにも適用
することができる。したがつて上記説明で用いた「照
射」および「放射」の語は、本発明を送信アンテナに限
定するものではない。
Further, for convenience of explanation, the antenna is treated as a transmitting antenna, but it can be applied to a receiving antenna due to the reciprocity of the antenna. Therefore, the terms "illumination" and "radiation" used in the above description do not limit the invention to a transmitting antenna.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明によれば焦点を共有し回転
中心軸の向きの異なる複数の部分鏡面を組合わせて成る
鏡面の中央部または周辺部に前記共通の焦点とは異なる
位置に焦点を有する部分鏡面を組合わて主反射鏡を構成
し、前記各焦点位置にそれぞれ1次放射器系を配設する
ことにより、各1次放射器系に対応してほぼ独立のビー
ムを合成でき、各周波数帯域ごとに開口直径およびビー
ムの方向をそれぞれ独立して選定することができる優れ
た効果がある。例えばアンテナ全体の寸法に制限があ
り、かつ多周波数帯域を用いることの多い衛星搭載用ア
ンテナに用いれば多大な効果を発揮することができる。
As described above, according to the present invention, a focal point is formed at a position different from the common focal point at the central portion or the peripheral portion of the mirror surface formed by combining a plurality of partial mirror surfaces sharing a focal point and having different directions of the rotation center axis. By constructing a main reflecting mirror by combining the partial mirror surfaces and by arranging a primary radiator system at each of the focal positions, almost independent beams can be combined corresponding to each primary radiator system, There is an excellent effect that the aperture diameter and the beam direction can be independently selected for each frequency band. For example, if the antenna is mounted on a satellite, which has a limited size of the entire antenna and often uses multiple frequency bands, a great effect can be exhibited.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明第一実施例アンテナの中央縦断側面図。 第2図はその主反射鏡の正面図。 第3図は本発明第一実施例アンテナの放射特性図。 第4図は本発明第二実施例アンテナの中央縦断側面図。 第5図はその主反射鏡の正面図。 第6図は本発明第二実施例アンテナの放射特性図。 1……主反射鏡、2、3、4、5……部分鏡面、10、1
1、12、13……1次放射器系。
FIG. 1 is a side view of the central longitudinal section of the antenna according to the first embodiment of the present invention. FIG. 2 is a front view of the main reflecting mirror. FIG. 3 is a radiation characteristic diagram of the antenna of the first embodiment of the present invention. FIG. 4 is a vertical sectional side view of the antenna of the second embodiment of the present invention. FIG. 5 is a front view of the main reflecting mirror. FIG. 6 is a radiation characteristic diagram of the antenna of the second embodiment of the present invention. 1 ... Main reflecting mirror 2, 3, 4, 5 ... Partial mirror surface, 10, 1
1, 12, 13 ... Primary radiator system.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 安藤 真 神奈川県横須賀市武1丁目2356番地 日本 電信電話公社横須賀電気通信研究所内 (72)発明者 上野 健治 神奈川県横須賀市武1丁目2356番地 日本 電信電話公社横須賀電気通信研究所内 (56)参考文献 特開 昭57−81706(JP,A) 特開 昭50−99060(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Makoto Ando 1-2356 Takeshi, Yokosuka City, Kanagawa Prefecture Yokosuka Electro-Communications Research Laboratories, Nippon Telegraph and Telephone Public Corporation (72) Kenji Ueno 1-2356 Takeshi Yokosuka City, Kanagawa Prefecture Japan Telegraph Telephone Public Corporation Yokosuka Electro-Communication Research Laboratory (56) References JP-A-57-81706 (JP, A) JP-A-50-99060 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】1個の主反射鏡と、この主反射鏡を直接ま
たは1個以上の副反射鏡を介して照射する送受信ビーム
形成用の通信用1次放射器系と自己追尾用の受信1次放
射器系とより構成された多周波帯域共用アンテナにおい
て、 上記主反射鏡は、回転放物面の一部分よりなる複数の部
分鏡面が組み合わされてなる構造であって、 この複数の部分鏡面は、少なくとも2個以上の部分鏡面
群とこの2個以上の部分鏡面群の中央部に配設された1
個の部分鏡面とにより構成され、 上記2個以上の部分鏡面群は、共通の焦点を有しかつ各
回転放物面の回転中心軸がそれぞれ異なる方向に配設さ
れ、 上記1個の部分鏡面は、上記主反射鏡の基準軸上の上記
2個以上の部分鏡面群の焦点と異なる位置にその焦点を
置くように配設され、 上記通信用の1次放射器系は、上記2個以上の部分鏡面
群の共通の焦点位置に配設され、 上記自己追尾用の1次放射器系は、上記1個の部分鏡面
の焦点位置に配設された ことを特徴とする多周波帯域共用アンテナ。
1. A main reflector, a communication primary radiator system for forming a transmit / receive beam for irradiating the main reflector directly or through one or more sub-reflectors, and a receiver for self-tracking. In a multi-frequency band shared antenna configured with a primary radiator system, the main reflecting mirror has a structure in which a plurality of partial mirror surfaces each of which is a part of a paraboloid of revolution are combined. Is at least two or more partial mirror surface groups and 1 arranged in the central portion of the two or more partial mirror surface groups.
The group of two or more partial mirror surfaces has a common focal point and the rotation center axes of the paraboloids of rotation are arranged in different directions, respectively. Is arranged so that its focal point is located at a position different from the focal points of the two or more partial mirror surface groups on the reference axis of the main reflecting mirror, and the primary radiator system for communication is two or more. Is arranged at a common focal point of the partial mirror surface group, and the primary radiator system for self-tracking is arranged at the focal point of the one partial mirror surface. .
JP58110698A 1983-06-20 1983-06-20 Multi-frequency band shared antenna Expired - Lifetime JPH0654843B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58110698A JPH0654843B2 (en) 1983-06-20 1983-06-20 Multi-frequency band shared antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58110698A JPH0654843B2 (en) 1983-06-20 1983-06-20 Multi-frequency band shared antenna

Publications (2)

Publication Number Publication Date
JPS603210A JPS603210A (en) 1985-01-09
JPH0654843B2 true JPH0654843B2 (en) 1994-07-20

Family

ID=14542181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58110698A Expired - Lifetime JPH0654843B2 (en) 1983-06-20 1983-06-20 Multi-frequency band shared antenna

Country Status (1)

Country Link
JP (1) JPH0654843B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2595874B1 (en) * 1986-03-13 1989-11-17 Boeing Co DUAL MODE SIGNAL SEPARATOR
JPH0820895B2 (en) * 1986-11-13 1996-03-04 オムロン株式会社 Program setting input device for control equipment
US5136294A (en) * 1987-01-12 1992-08-04 Nec Corporation Multibeam antenna
US5258767A (en) * 1989-03-14 1993-11-02 Kokusai Denshin Denwa Co., Ltd. Antenna system for shaped beam
FR2653941B1 (en) * 1989-10-31 1992-02-28 Thomson Lgt MULTIFOCAL RECEPTION ANTENNA WITH SINGLE POINT DIRECTION FOR MULTIPLE SATELLITES.
JP2734264B2 (en) * 1991-11-29 1998-03-30 日本電気株式会社 Mirror modified antenna
JPH06152232A (en) * 1992-11-06 1994-05-31 Fujitsu General Ltd Parabolic antenna
JP2012050074A (en) * 2010-07-27 2012-03-08 Maspro Denkoh Corp Antenna device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5739082B2 (en) * 1973-12-27 1982-08-19
JPS5781706A (en) * 1980-11-11 1982-05-21 Nippon Telegr & Teleph Corp <Ntt> Multifrequency shared antenna

Also Published As

Publication number Publication date
JPS603210A (en) 1985-01-09

Similar Documents

Publication Publication Date Title
RU2380802C1 (en) Compact multibeam mirror antenna
US4342036A (en) Multiple frequency band, multiple beam microwave antenna system
JPH0654843B2 (en) Multi-frequency band shared antenna
WO2018096307A1 (en) A frequency scanned array antenna
Veruttipong et al. Design considerations for beamwaveguide in the NASA deep space network
US4591864A (en) Frequency independent twisted wave front constant beamwidth lens antenna
JPH0566763B2 (en)
EP1184939B1 (en) Gridded reflector antenna
RU2664751C1 (en) Multi-beam range two-mirror antenna with irradiated radiation
JP3034262B2 (en) Aperture antenna device
RU2794970C1 (en) Antenna system for radar locator complex
RU2664870C1 (en) Non-inclined multiple multi-beam band double-reflector antenna
JPH01233381A (en) Radar
US10601143B2 (en) Antenna apparatus
JPS5939104A (en) Shaped beam antenna
JPH0295003A (en) Scanning antenna
JPH0467364B2 (en)
JP2022054720A (en) Reflector antenna
JPH07101813B2 (en) Antenna device
JPS59231903A (en) Electromagnetic lens antenna
JPS6347061Y2 (en)
JPS5884506A (en) Formed beam antenna
JPS5884505A (en) Formed beam antenna
JPH0385005A (en) Dual reflection mirror antenna
JPS6056003B2 (en) Double reflector antenna device