JPS5884505A - Formed beam antenna - Google Patents

Formed beam antenna

Info

Publication number
JPS5884505A
JPS5884505A JP18336981A JP18336981A JPS5884505A JP S5884505 A JPS5884505 A JP S5884505A JP 18336981 A JP18336981 A JP 18336981A JP 18336981 A JP18336981 A JP 18336981A JP S5884505 A JPS5884505 A JP S5884505A
Authority
JP
Japan
Prior art keywords
plane
axis
reflecting mirror
primary radiator
antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18336981A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Kusano
草野 光裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP18336981A priority Critical patent/JPS5884505A/en
Publication of JPS5884505A publication Critical patent/JPS5884505A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/12Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave

Landscapes

  • Aerials With Secondary Devices (AREA)

Abstract

PURPOSE:To obtain a formed beam antenna which can synthesize formed beams representing excellent characteristics for the radiation characteristics with a broad angle, by constituting one reflecting mirror through the combination of a torus mirror surface and a mirror surface of paraboloid of revolution and feeding power to the reflecting mirror with one primary radiator. CONSTITUTION:A main reflecting mirror 30 is constituted by combining partial reflecting mirrors 31-33 mainly. In the reflecting mirror 31, the negative side of the X axis is a part of a parabola taking a point F as a focus and having a directrix in parallel with the X axis and the positive side of the X axis is a torus being a part of a curve other than a parabola and turning a cut line 38 around the X axis by an angle of + or -theta0, in the cut line 38 of the X-Z plane. The reflecting mirrors 32, 33 consist of a part of the paraboloid of revolution turning a parabola taking the point F as a focus and having a directrix in parallel with the X axis around axes Z32, Z33. Thus, power is fed from a primary radiator 12 located at the point F and formed beams representing excellent characteristics for the radiation characteristics of a broad angle can be synthesized.

Description

【発明の詳細な説明】 (1)  発明の属する技術分野 本発明は無線通信における反射鏡アンテナに属し、放射
ビームの形状が反射鏡の主軸を含む平面内では扇形の拡
がりを有し、これと直交する平面内では真円とはならな
い成形ビームを有するいわゆる成形ビームアンテナに関
する。
DETAILED DESCRIPTION OF THE INVENTION (1) Technical field to which the invention pertains The present invention relates to a reflector antenna for wireless communication, in which the shape of the radiation beam has a fan-shaped spread within a plane including the main axis of the reflector; The present invention relates to a so-called shaped beam antenna having a shaped beam that is not a perfect circle in orthogonal planes.

(2)従来技術 通常の無線通信においては無線局と無線局とが互いに正
1対して通信を行うため、用いられるアンテナには一般
に高利得で低すイPローブの特性が要求される。しかし
例えばある地域内に散在する複数の子局と1つの親局と
の間で通信を行う場合には、親局のアンテナとしては子
局の散在する地域を効率よく照射する成形ビームを有す
ることが望まれる。
(2) Prior Art In normal radio communication, since radio stations communicate in direct pairs with each other, the antennas used are generally required to have high gain and low curve characteristics. However, for example, when communicating between multiple slave stations scattered within a certain area and one master station, the antenna of the master station must have a shaped beam that efficiently illuminates the area where the slave stations are scattered. is desired.

第1図は無線通信を行う親局および子局の配置された平
面図、第2図および第3図はその側面図であって、いず
れも前記したビーム成形の効果を説明するための図であ
る。すなわちA局を親局として、B、0、・D、B局を
それぞれ子局とした場合に、親局のアンテナのビームの
形状は水平面内では第1図の破線1で示すようにすべて
の子局を覆うような層形の拡がりを有することが望まし
い。
Fig. 1 is a plan view showing the arrangement of a master station and a slave station that perform wireless communication, and Figs. 2 and 3 are side views thereof, both of which are diagrams for explaining the effect of beam forming described above. be. In other words, when station A is the master station and stations B, 0, ・D, and B are slave stations, the beam shape of the antenna of the master station is as shown by the broken line 1 in Figure 1 in the horizontal plane. It is desirable to have a layered spread that covers the slave station.

一方垂直面内では、第3図および第3図に示すように子
局の配置される地上高低差、あるいは親局との距離の差
によって、第3図の破線2で示すような通常のペンシル
状ビームよりも第3図の破線3で示すような成形ビーム
を有することが望ましい。
On the other hand, in the vertical plane, depending on the difference in ground height where the slave station is located or the difference in distance from the master station, as shown in Figures 3 and 3, the normal pencil It is preferable to have a shaped beam as shown by the dashed line 3 in FIG. 3 rather than a shaped beam.

従来、この種の成形ビームを合成する方法としては垂直
面内のビーム成形に関してはいわゆるコセカント2カン
の成形ビームを合成する方法が考えられている。(−藤
、横巾「捜索レーダ用反射鏡アンテナの設計理論と実例
」電気通信学会アンテナ伝播研究会資料AP77−75
.1977年11月21日)しかしながら、この方法だ
けでは水平面内のビーム成形を行うことはできない。−
力水平面内のビームを扇形状に合成する方法としては第
4図の従来例扇形ビームアンテナの斜視図に示すように
放物筒反射鏡10の焦!111上に球面波波源の1次放
射器12を配置して構成されるアンテナが考えられてい
る。
Conventionally, as a method of synthesizing this type of shaped beam, a method of synthesizing so-called cosecant two-can shaped beams has been considered for beam shaping in a vertical plane. (-Fuji, Yokotoba "Design Theory and Examples of Reflector Antenna for Search Radar" IEICE Antenna Propagation Study Group Material AP77-75
.. (November 21, 1977) However, this method alone cannot perform beam shaping in the horizontal plane. −
As a method of combining beams in a horizontal plane into a fan shape, as shown in the perspective view of a conventional fan beam antenna in FIG. An antenna configured by arranging the primary radiator 12 of a spherical wave source on the antenna 111 has been considered.

第4図で座標系x−y−zは放物筒反射鏡10の焦1m
11の中心点yを中心とし、Y軸が焦線11上にある直
交座標系である。したがってX−Z平面と平行な平面で
の放物筒反射鏡10の切断線はY軸と平行な単線を有す
る放物線である。
In Fig. 4, the coordinate system x-y-z is the focus of the parabolic tube reflector 10 at 1 m.
It is an orthogonal coordinate system centered on the center point y of 11, and the Y axis is on the focal line 11. Therefore, the cutting line of the parabolic tube reflector 10 in a plane parallel to the X-Z plane is a parabola having a single line parallel to the Y axis.

第4図に示すアンテナの側面図を第S図に、その平面図
を第6図に示す。第4図に示した焦線11の中心点Fに
設置された1次放射器12より放射された電波は放物筒
反射鏡10で反射された後、X−2平面内では例えば第
5図の伝播路14および15で示すように進行方向の一
定した波面として、またY−Z平面内では例えば第6図
の伝播路16および17で示すように発散する波面とし
て放射される。したがってアンテナ全体としては例えば
第7図に示すようにZ軸方向に最大゛放射方向を有u、
X−Z平面では実[19で示すビームのようにビーム幅
の絞られた放射特性を示し、Y−Z平面内では破線20
で示すビームのようにビーム幅の広い放射特性を示す。
A side view of the antenna shown in FIG. 4 is shown in FIG. S, and a plan view thereof is shown in FIG. 6. The radio waves emitted from the primary radiator 12 installed at the center point F of the focal line 11 shown in FIG. It is radiated as a wave front that is constant in the traveling direction, as shown by propagation paths 14 and 15 in FIG. Therefore, the antenna as a whole has a maximum radiation direction in the Z-axis direction, as shown in FIG.
In the X-Z plane, the beam shows radiation characteristics with a narrowed beam width like the beam shown by real [19], and in the Y-Z plane, it shows radiation characteristics as shown by the broken line 20.
It shows radiation characteristics with a wide beam width as shown in the beam shown in .

しかし、このように構成されたアンテナではY−2平面
内では第6図に示すように放物筒反射鏡10からの反射
波は発散する波面であること、さらに伝播路22および
23に沿って放射される1次放射器12からの漏洩電波
が存在することにより広角度の放射特性が劣化し、不要
放射電力を無視することのできない欠点があった。この
広角度の放射特性の劣化は、第1図の破!I20でいえ
ばZ軸よりの角度が36度以上の角度の振幅値が大きい
ことで示され、特KZ軸よりの角度が90度以上の振幅
値は1次放射器12からの漏洩電波の影響が大きい。
However, in the antenna configured in this way, the reflected wave from the parabolic reflector 10 has a diverging wavefront in the Y-2 plane as shown in FIG. The presence of leakage radio waves from the radiated primary radiator 12 deteriorates the wide-angle radiation characteristics, resulting in the disadvantage that unnecessary radiated power cannot be ignored. This deterioration of the radiation characteristics at wide angles is a failure of Figure 1! In terms of I20, it is indicated by a large amplitude value at an angle of 36 degrees or more from the Z axis, and in particular, the amplitude value at an angle of 90 degrees or more from the KZ axis is due to the influence of leakage radio waves from the primary radiator 12. is large.

垂直面も水平面とともにビーム成形する一つの手段とし
て前記した2つの方法を組み合わせて、垂直面でコセカ
ント意乗の成形ピτムを合成する曲線を筒状に配置して
なる一面を用いることが考えられるが、基本的には第4
図に示したアンテナの構成と大差無いため、前記した水
平面内の広角度放射特性の劣化は避けられない。また、
この広角指向特性の劣化をさけるために前記した筒状鏡
面の両端に放物筒反射鏡を2個組み合わせる案も考えら
れるが、これは特願昭55−108087に示唆されて
いる。
As a means of beam shaping on the vertical plane as well as on the horizontal plane, it is thought to combine the two methods described above and use a surface formed by arranging curves that synthesize the cosecant-square shaped pims on the vertical plane in a cylindrical shape. However, basically the fourth
Since there is no major difference in the configuration of the antenna shown in the figure, the aforementioned deterioration of the wide-angle radiation characteristics in the horizontal plane is unavoidable. Also,
In order to avoid this deterioration of the wide-angle directivity characteristic, it may be possible to combine two parabolic reflecting mirrors at both ends of the above-mentioned cylindrical mirror surface, but this is suggested in Japanese Patent Application No. 55-108087.

(3)本発明の目的 本発明は、以上の欠点を除去するもので、円環体の鏡面
と回転放物面鏡とを組み合わせて1個の反射鏡を構成し
、これを1個の1次放射器で給電することにより、広角
度の放射特性についても良好な特性を示す成形ビームを
合成することができる成形ビームアンテナを提供するこ
とを目的とする。
(3) Purpose of the present invention The present invention aims to eliminate the above-mentioned drawbacks by combining a toric mirror surface and a parabolic mirror to form a single reflecting mirror. It is an object of the present invention to provide a shaped beam antenna that can synthesize a shaped beam exhibiting good radiation characteristics even at wide angles by feeding power with a secondary radiator.

(4)本発明の特徴 本発明は、主反射鏡と、この主反射鏡な直接または副反
射鏡を介して照射する1次放射器とを備え、上記主反射
鏡が形成する電波ビームの進行方向KZ軸を想定し上記
主反射鏡を直接照鼾する1次放射器または副反射鏡の位
置近傍に原点を想定しこの原点を含む上記2軸に垂直な
平面にX軸およびY軸を想定するとき、上記主反射鏡が
、Y軸を含み2軸に対して小さい角度をなす平面による
切断面で考えるとき、中央部分反射鏡と、この中央部分
反射鏡に隣接する2つの両端部分反射鏡とを含む成形ビ
ームアンテナにおいて、上記中央部分反射鏡は、Y−Z
平面に平行な平面による切断面では円弧であり、X−z
平面による切断面゛では少なくともその一部が放物線以
外の曲線であり、上記両端部分反射鏡は、上記原点を焦
点とじY−Z平面上でX軸と平行な単線を持つ放物線が
Y−Z平面に含まれ上記原点を通る直線回りに回転され
て作られる回転面の一部であることを特徴とする。
(4) Features of the present invention The present invention comprises a main reflecting mirror and a primary radiator that irradiates directly with the main reflecting mirror or via a sub-reflecting mirror, and the radio wave beam formed by the main reflecting mirror advances. Assuming the direction KZ-axis, the origin is assumed near the position of the primary radiator or sub-reflector that directly illuminates the main reflector, and the X-axis and Y-axis are assumed to be on a plane perpendicular to the above two axes including this origin. When considering the main reflecting mirror as a cut plane by a plane that includes the Y axis and forms a small angle with the two axes, a central partial reflecting mirror and two end partial reflecting mirrors adjacent to this central partial reflecting mirror. In the shaped beam antenna, the central partial reflector has a Y-Z
It is a circular arc when cut by a plane parallel to the plane, and X-z
At least a part of the plane cut surface is a curve other than a parabola, and the both-end partial reflecting mirror has a parabola that focuses on the origin and has a single line parallel to the X axis on the Y-Z plane. It is characterized in that it is a part of a rotating surface created by being rotated around a straight line included in the origin and passing through the origin.

(5)本発明の実施例 以下実施例図面について詳細に説明する。(5) Examples of the present invention The embodiment drawings will be described in detail below.

第8図は本発明第一実施例アンテナの斜視図である。第
8図において、主反射鏡30は部分反射鏡31.32 
、および33を主体に組み合わせて構成され、部分反射
鏡35および36は必要に応じて設けられる。この部分
反射鏡35は部分反・射@31と32との接合変換部で
あり、部分反射鏡36は部分反射f#、31と33との
接合変換部である。どの主反射@30を球n波源の1次
放射器12で給電して、X軸を含みy−z平面と直交す
る平面内では、第3図の破!I3に示す成形ビームを合
成することにより、Y−Z平面内では第1図の破線1に
示す扇形の拡がりを有する成形ビームを合成することが
できる。これをさらに詳しく説明する。
FIG. 8 is a perspective view of an antenna according to a first embodiment of the present invention. In FIG. 8, the main reflecting mirror 30 is a partial reflecting mirror 31.32.
, and 33, and partially reflecting mirrors 35 and 36 are provided as necessary. The partial reflecting mirror 35 is a joining conversion section between partial reflection/reflection @31 and 32, and the partial reflecting mirror 36 is a joining conversion section between partial reflection f#, 31 and 33. Which main reflection @30 is fed by the primary radiator 12 of the spherical n-wave source in a plane that includes the X-axis and is orthogonal to the y-z plane? By synthesizing the shaped beams shown in I3, it is possible to synthesize a shaped beam having a fan-shaped spread as indicated by the broken line 1 in FIG. 1 in the Y-Z plane. This will be explained in more detail.

部分反射鏡31のX−Z平面での切断図を第9図に示す
。切断線(以下「部分反射鏡31−の母線」と呼ぶ。)
38の曲線は通常の鏡面成形の手法を2次元のX−Z平
面内で適用して式(1)で定まる。    ;・pは点
Fと鏡面上の任意′APまでの距−I(φ)は1次放射
器12のX−2平面内での電カッ々ターンを示す関数 H(θ)は合成しようとするX−Z平面内の放射電力特
性を示す関数でその例を第10図に示す。
A cutaway view of the partial reflecting mirror 31 along the X-Z plane is shown in FIG. Cutting line (hereinafter referred to as "generating line of partial reflecting mirror 31-")
The curve 38 is determined by formula (1) by applying a normal mirror surface forming method within the two-dimensional X-Z plane. ;・p is the distance between point F and arbitrary 'AP on the mirror surface - I (φ) is the function H (θ) that indicates the electric sharp turn in the X-2 plane of the primary radiator 12, which is to be synthesized. FIG. 10 shows an example of a function indicating the radiation power characteristics in the X-Z plane.

前記ビーム合成の手法は定性的には以下のように説明さ
れる。例えば第10図に示すよ5なX−2平面内パター
ンを合成しようとする場合に、エネルギーの減衰が急峻
な方向、すなわち角度θ、側へは切断!138′からの
反射波が第9図の破#39で示すよ5にθ=o’の方向
、つまり2軸方向に進行するようにし、エネルギーの減
衰のゆるやかな方向、すなわち角度θ、側へは切断線3
8からの反射波が第9図の破線40で示すようにθ= 
o”からθ−θ、の間に進行す゛るように切断線38を
成形するととになる。したがって第1図の切断線38の
うちX軸の負側は点Fを焦点としX軸と平行な単線を有
する放物線の一部であり、X軸の正側は前記放物線以外
の曲線の一部となる。
The beam combining method can be qualitatively explained as follows. For example, when trying to synthesize 5 patterns in the X-2 plane as shown in Fig. 10, cut in the direction where the energy attenuation is steep, that is, at the angle θ! The reflected wave from 138' is made to travel in the direction of θ=o', that is, in the biaxial direction, as shown by break #39 in Figure 9, and in the direction of gradual energy attenuation, that is, to the angle θ side. is cutting line 3
As shown by the broken line 40 in FIG. 9, the reflected wave from 8 is θ=
If the cutting line 38 is formed so that it progresses between θ and θ, it will become .Therefore, the negative side of the X-axis of the cutting line 38 in FIG. It is a part of a parabola having a single line, and the positive side of the X-axis is a part of a curve other than the parabola.

次に以上のようKして定まった部分反射鏡31の母線を
もとに、主反射鏡30を構成する方法につい【述べる。
Next, a method for configuring the main reflecting mirror 30 based on the generatrix of the partial reflecting mirror 31 determined by K as described above will be described.

第11図に主反射鏡30のY−z平面での切断図を示す
。部分反射鏡31は前記した母線をX軸回りに角度上−
0たけ回転した円環体よりなる0部分反射鏡32および
33はそれ、ぞれ点Fを焦点とし、X軸と平行な準線を
有する放物線を軸z、、および軸Zllの目りに回転し
てなる回転放物面の一部分である゛0部分反射鏡35お
よび36は必ずしも必要でなく、部分反射鏡′31と部
分反射鏡32または33との接合が困難な場合に′設け
る接合変換部である。
FIG. 11 shows a cutaway view of the main reflecting mirror 30 on the Yz plane. The partial reflecting mirror 31 is angled upwardly from the above-mentioned generatrix around the X axis.
The 0-partial reflecting mirrors 32 and 33, each made of a torus rotated by 0 degrees, each have a point F as a focal point, and each rotates a parabola having a directrix parallel to the X-axis to the axis z, and axis Zll. The partial reflecting mirrors 35 and 36, which are part of the paraboloid of revolution, are not necessarily necessary, and can be provided as a joining conversion section when joining the partial reflecting mirror 31 and the partial reflecting mirror 32 or 33 is difficult. It is.

このような構成で、まずこのアンテナから放射される主
ビームの形状について説明する。第11図において、点
FIIC配置された1次放射器12より放射された球面
波のうち、部分反射鏡31で反射された波はX軸が円環
体の回転中心軸であることからX軸を含みy−z平面と
直交する平面内では第10図のII!II、42に示す
ような放射特性を示す。
In such a configuration, first, the shape of the main beam radiated from this antenna will be explained. In FIG. 11, among the spherical waves emitted from the primary radiator 12 arranged at the point FIIC, the wave reflected by the partial reflecting mirror 31 is transmitted along the X axis, since the X axis is the rotation center axis of the torus. II! of FIG. 10 in a plane that includes II, exhibits radiation characteristics as shown in 42.

一方y−z平面と平行な平面内では第8図の伝播路43
および44に示すように点Fを中心とする円形上で放置
の揃った技として放射される。第1−図の破1146 
k部分鏡面31 ecよるY−Z面内での反射波の放射
特性図を示す。
On the other hand, in a plane parallel to the y-z plane, the propagation path 43 in FIG.
And, as shown in 44, the technique is radiated in a circle centered on point F as a uniform technique. Part 1 - Broken diagram 1146
A radiation characteristic diagram of reflected waves in the Y-Z plane by the k-part mirror surface 31 ec is shown.

一方、1次放射器12より放射された球面波のうち部分
反射鏡32および33で反射された波は点Fが部分反射
鏡32および33の焦点であり、しかも軸Zllと軸z
asとがそれぞれの回転対称軸であるため、部分反射鏡
320反射波は軸z0方向に進行する平面波として、ま
た部分反射鏡33の反射波は軸ZSS方向に進行する平
面波として放射される。
On the other hand, among the spherical waves emitted from the primary radiator 12, the waves reflected by the partial reflectors 32 and 33 have point F as the focal point of the partial reflectors 32 and 33, and the axis Zll and the axis z.
As is the axis of rotational symmetry, the wave reflected by the partial reflecting mirror 320 is emitted as a plane wave traveling in the direction of the axis z0, and the wave reflected by the partial reflecting mirror 33 is radiated as a plane wave traveling in the direction of the axis ZSS.

第11図の破線48および49はそれぞれ部分反射鏡3
2および33の伝播路の例を示す。したがって放射特性
はそれぞれ軸2゜と軸z0方向に最大放射方向を有し、
ビーム幅が絞られたものとなる。第12図の2点鎖ll
l50および51に部分反射鏡32および33からのy
−z平面内での放射特性図を示す。
Broken lines 48 and 49 in FIG. 11 indicate the partial reflector 3, respectively.
Examples of propagation paths of 2 and 33 are shown. Therefore, the radiation characteristics have maximum radiation directions in the axis 2° and axis z0 directions, respectively,
The beam width becomes narrower. Two-point chain ll in Figure 12
y from partial reflecting mirrors 32 and 33 to l50 and 51
- Shows a radiation characteristic diagram in the z plane.

なお部分反射鏡35および36は前記したように必ずし
も必要でなく、また主反射鏡30の全体にしめる割合も
小さいことから全体の放射特性に与える影響は無視し得
る量である。
Note that, as described above, the partial reflecting mirrors 35 and 36 are not necessarily necessary, and their proportion to the entire main reflecting mirror 30 is small, so their influence on the overall radiation characteristics is negligible.

またアンテナ全体の放射特性は各部分反射鏡の放射波の
ベクトル和として定まる。まずX軸を含みy−z平面と
直交する平面内では前記説明からも明らかなようにy−
z平面内の角度が±0゜の範囲では第10図の実線42
のような成形ビームを有する特性を示す。一方、Y−Z
平面と平行な平面内では、例えば第12図のy−z平面
内の放射特性例に示すように、Z軸に近い角度範囲では
部分反射鏡31の放射特性を示す破線46が主体となり
、その両端・では部分反射鏡32および33の放射特性
をそれぞれ示す茸点鎖@SOおよび51が主体となり、
全体としては実線52で示すような放射特性となる。し
たがって本実施例アンテナはX軸を含みy−z平面と直
交する平面内では第10図の実線42 K示すような成
形ビームを有し、Y−Z平面と平行な平面内では第1図
の破111に示すような成形ビームを有することになる
Furthermore, the radiation characteristics of the entire antenna are determined as the vector sum of the radiation waves of each partial reflector. First, in a plane that includes the X axis and is perpendicular to the yz plane, as is clear from the above explanation,
In the range where the angle in the z plane is ±0°, the solid line 42 in Figure 10
It exhibits the characteristic of having a shaped beam like this. On the other hand, Y-Z
In a plane parallel to the plane, for example, as shown in the radiation characteristic example in the y-z plane in FIG. At both ends, mushroom dot chains @SO and 51 showing the radiation characteristics of the partial reflecting mirrors 32 and 33, respectively, are the main components.
The overall radiation characteristic is as shown by a solid line 52. Therefore, the antenna of this embodiment has a shaped beam as shown by the solid line 42K in FIG. 10 in a plane that includes the It will have a shaped beam as shown in break 111.

つぎにY−Z平面と平行な平面内での広角度数、耐特性
について説明する。広角度放射特性は第6図と第11図
とを比較することにより明らかとなる。すなわち1次放
射器12がら放射された電波のうち、第6図の破線によ
り示される伝播路22および23 K 1つて進行する
漏洩電波のエネルイーは、第11図の場合は部分反射鏡
32および33で反射され、破線により示される伝播路
43および44に沿つ工進行する電波として軸Z□と軸
ZSSの近傍に集中的に放射され、主ビームの合成に有
効に利用される。したがって第13図の2軸よりの角度
が′″−0−0近辺特性は実線54で示すように、単な
る放物筒反射鏡の放射特性である破線20−に比較して
急峻に減衰する特性を示し、また漏洩電波が減少した分
だけ2軸よりの角度がSO度以上の振幅値も減少する。
Next, the wide angle number and durability characteristics in a plane parallel to the Y-Z plane will be explained. The wide-angle radiation characteristic becomes clear by comparing FIG. 6 and FIG. 11. That is, among the radio waves radiated from the primary radiator 12, the energy of the leakage radio waves traveling along the propagation paths 22 and 23 K shown by the broken lines in FIG. The radio waves are reflected by the beams and are concentratedly radiated near the axis Z□ and the axis ZSS as radio waves traveling along the propagation paths 43 and 44 shown by broken lines, and are effectively used for combining the main beam. Therefore, as shown by the solid line 54, the characteristic in the vicinity of 0-0 where the angle from the two axes in FIG. , and the amplitude value at an angle of more than SO degrees from the two axes also decreases by the amount that the leakage radio waves decrease.

これら広角度の不要放射電力が減少した分だけ主ビーム
内に電力が供給されることになる。
Power is supplied to the main beam by an amount corresponding to the reduction in unnecessary radiation power at these wide angles.

第14図は本発明第二実施例アンテナの部分反射鏡31
のX−2平面での切断図であって、部分反射鏡31の母
線の他の成形方法を説明するための図である。切断線3
8は複数の部分放物線より構成される。第14図の場合
は部分放物線の数は部分放物−38−、,38−、、お
よび381の3つで各部分放物線とも点rを共通の焦点
としている。部分放物−38−、,38−、、および3
81はそれぞれZ軸、zl、軸、および2τ、軸を軸と
している。したがって点rに置かれた球面波波源の1次
放射器12よりX−Z平面内に放射された電波のうち、
部分放物@ 381での反射波t−i z軸方向に進行
し、部外放物$ 38−、および3B−1での反射波は
それぞれ2′、。
FIG. 14 shows a partial reflecting mirror 31 of an antenna according to a second embodiment of the present invention.
FIG. 3 is a cross-sectional view taken on the X-2 plane of FIG. Cutting line 3
8 is composed of a plurality of partial parabolas. In the case of FIG. 14, the number of partial parabolas is three, namely partial parabolas -38-, , 38-, and 381, and each partial parabola has a point r as a common focal point. Partial paraboloids -38-, ,38-, and 3
The axes 81 are the Z axis, the zl axis, and the 2τ axis, respectively. Therefore, among the radio waves radiated in the X-Z plane from the primary radiator 12 of the spherical wave source placed at point r,
The reflected wave at the partial paraboloid @ 381 travels in the z-axis direction, and the reflected waves at the external paraboloid $ 38- and 3B-1 are 2', respectively.

軸、およびz’sa軸方向に進行することになり、全体
としてのX−Z平面内の放射特性は例えば第1S図に示
すようKなる。したがってこのように成形された部分反
射鏡31の母線を本発明に適用することもできる。
The radiation propagates in the directions of the axis and the z'sa axis, and the radiation characteristic as a whole in the X-Z plane becomes K as shown in FIG. 1S, for example. Therefore, the generatrix of the partially reflecting mirror 31 shaped in this manner can also be applied to the present invention.

第1s図は杢発明第三実濃例アンテナの斜視図である。Figure 1s is a perspective view of the third practical example antenna of the heather invention.

本実施例は本発明をいわゆるオフセット形アンテナに適
用した場合であり、第8図に示した主反射鏡30の一部
分を用い、1次放射器12を負の2軸方向より角度αだ
けオフセットした構成である。したがって放射特性は第
10図および第xsv!Jに示したと同様の特性を有す
る。ただしその構成上、第1図に示した実施例アンテナ
のように、反射鏡からの反射波が1次放射器12でブロ
ッキングされることが無い利点を有する。
This embodiment is a case in which the present invention is applied to a so-called offset antenna, in which a part of the main reflector 30 shown in FIG. 8 is used, and the primary radiator 12 is offset by an angle α from the negative two-axis direction. It is the composition. Therefore, the radiation characteristics are shown in Fig. 10 and xsv! It has properties similar to those shown in J. However, due to its configuration, it has the advantage that the reflected wave from the reflecting mirror is not blocked by the primary radiator 12, unlike the antenna of the embodiment shown in FIG.

なお以上の説明では、便宜上各部分反射鏡31.32、
および33の焦点は一点Fに一致しているとしたが、こ
のことは必ずしも必要条件でなく、それぞれの焦点が多
少偏位し、ている場合にも本発明を適用することができ
る。
In the above explanation, for convenience, each partial reflecting mirror 31, 32,
Although the focal points of 33 and 33 coincide with one point F, this is not necessarily a necessary condition, and the present invention can be applied even if the respective focal points are slightly deviated.

また上記説明では、アンテナはすべて送信アンテナとし
て説萌したが、アンテナの相反性により受信アンテナに
も本発明を適用することができる。
Further, in the above description, all antennas are described as transmitting antennas, but the present invention can also be applied to receiving antennas due to the reciprocity of antennas.

(6)本発明の効果 以上説明したように、本発明を用いることにより、照射
領域を有効に照射し、かつ広角度の放射特性が良好な成
形ビームアンテナを実現することができ、ある地域に散
在する複数の局との無線通信を行5必要のある親局のア
ンテナに利用すれば優れた効果を生ずる。
(6) Effects of the present invention As explained above, by using the present invention, it is possible to realize a shaped beam antenna that effectively irradiates an irradiation area and has good wide-angle radiation characteristics, and can be used in a certain area. Excellent effects can be obtained if the antenna of a master station that requires wireless communication with a plurality of scattered stations is used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は無線通信を行う親局および子局の配置された平
面図。 第2図および第3図はその側面図。 第4図は従来例扇形ビームアンテナの斜視図。 第2図はその側面図。 第6図はその平面図。 第1図は第4図に示したアンテナの放射特性図。 第1図は本発明第一実施例アンテナの斜視図。 第9図は第S図のX−Z平面での切断図。 多 第−10図は部分反射鏡31のX−Z平面内の放射特性
図。 第11図は第8図のy−z平面での切断図。 第12図輪よび館13図は第8図に示したアンテナの放
射特性図。 第14図ぽ本発明第二実施例アンテナの部分反射鏡31
のX−Z平面での切断図。 第16図はそのX−Z平面内の放射特性図。 第16図は本発明第三実施例アンテナの斜視図。 10・・・放物筒反射鋳、11・・・放物筒反射鏡の焦
線、12・・・1次放射器、14.15.16.17 
、22.23・−・伝播路、30・・・主反射鏡、31
 、32.33 、35.36・・・部分反射鏡、38
・・・切断線、43 、44 、48.49パ°伝播路
。 特許出願人 日本電気株式会社 代理人 弁理上昇 出 直 孝 第1図 第2図 第3図 第6図 第7図 第8図 第り図 第11図 θ“     θ°      2軸より・泗a實  
     (θ)第15図 第16図
FIG. 1 is a plan view showing the arrangement of a master station and slave stations that perform wireless communication. FIGS. 2 and 3 are side views thereof. FIG. 4 is a perspective view of a conventional fan beam antenna. Figure 2 is its side view. Figure 6 is its plan view. FIG. 1 is a radiation characteristic diagram of the antenna shown in FIG. 4. FIG. 1 is a perspective view of an antenna according to a first embodiment of the present invention. FIG. 9 is a cross-sectional view of FIG. S taken along the X-Z plane. FIG. 10 is a radiation characteristic diagram of the partial reflecting mirror 31 in the X-Z plane. FIG. 11 is a cutaway view on the yz plane of FIG. 8. Figure 12 and Figure 13 are radiation characteristic diagrams of the antenna shown in Figure 8. Fig. 14 Partial reflecting mirror 31 of the antenna according to the second embodiment of the present invention
FIG. FIG. 16 is a radiation characteristic diagram in the X-Z plane. FIG. 16 is a perspective view of an antenna according to a third embodiment of the present invention. 10... Parabolic tube reflection cast, 11... Focal line of parabolic tube reflector, 12... Primary radiator, 14.15.16.17
, 22.23... Propagation path, 30... Main reflecting mirror, 31
, 32.33 , 35.36... partial reflecting mirror, 38
...cutting line, 43, 44, 48.49 pa° propagation path. Patent Applicant: NEC Corporation Representative Takashi Izunao Figure 1 Figure 2 Figure 3 Figure 6 Figure 7 Figure 8 Figure 11
(θ) Fig. 15 Fig. 16

Claims (1)

【特許請求の範囲】[Claims] (1)  主反射鏡(30)と1.この主反射鏡を直接
または副反射鏡を介して照射する1次放射器(12)と
を備え、上記主反射鏡が形成する電波ビームの進行方向
に2軸を想定し上記主反射鏡を直接照射する1次放射器
または副反射鏡の位置近傍に原点を想定しこの原点を含
む上記2軸に垂直な平面にY軸およびY軸を想定すると
き、上記主反射鏡(30)が、Y軸を含み2軸に対して
小さい角度をなす平面による切断面で考えるとき、中央
部分反射鏡(31)と、この中央部分反射鏡に隣接する
2つの両端部分反射鏡(32,33)とを含む成形ビー
ムアンテナにおいて、上記中央部分反射鏡(31)は、
Y−Z平面に平行な平面による切断面では円弧であり、
X−2平雨による切断面では少なくともその一部が放物
線以外の曲線であり、上記両端部分反射鏡(32,33
)は、上記原点を焦点としy−z平面上でY軸と平行な
単線を持つ放物線がy−z平面に含まれ上記原点を通る
直線口りに回転されて作られる回転面の一部であること
を特徴とする成形ビームアンテナ。
(1) Main reflecting mirror (30) and 1. It is equipped with a primary radiator (12) that irradiates the main reflecting mirror directly or via a sub-reflecting mirror, and assumes two axes in the traveling direction of the radio beam formed by the main reflecting mirror, and directly irradiates the main reflecting mirror. When the origin is assumed to be near the position of the primary radiator or sub-reflector to irradiate, and the Y-axis and Y-axis are assumed to be in a plane perpendicular to the two axes that includes this origin, the main reflector (30) When considering a cut plane by a plane that includes the axis and makes a small angle with respect to the two axes, the central partial reflecting mirror (31) and the two end partial reflecting mirrors (32, 33) adjacent to this central partial reflecting mirror are In the shaped beam antenna including:
The cross section taken by a plane parallel to the Y-Z plane is a circular arc,
At least a part of the cross section taken by the
) is a part of a rotating surface created by rotating a parabola with a single line parallel to the Y-axis on the y-z plane, with the origin as the focal point, to a straight line that is included in the y-z plane and passes through the origin. A shaped beam antenna characterized by:
JP18336981A 1981-11-16 1981-11-16 Formed beam antenna Pending JPS5884505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18336981A JPS5884505A (en) 1981-11-16 1981-11-16 Formed beam antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18336981A JPS5884505A (en) 1981-11-16 1981-11-16 Formed beam antenna

Publications (1)

Publication Number Publication Date
JPS5884505A true JPS5884505A (en) 1983-05-20

Family

ID=16134556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18336981A Pending JPS5884505A (en) 1981-11-16 1981-11-16 Formed beam antenna

Country Status (1)

Country Link
JP (1) JPS5884505A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4605935A (en) * 1983-10-28 1986-08-12 Nec Corporation Shaped beam reflector antenna

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4605935A (en) * 1983-10-28 1986-08-12 Nec Corporation Shaped beam reflector antenna

Similar Documents

Publication Publication Date Title
EP3419117B1 (en) Horn antenna
US4489331A (en) Two-band microwave antenna with nested horns for feeding a sub and main reflector
KR101292230B1 (en) Compact nonaxisymmetric double-reflector antenna
US3797020A (en) Microwave antenna structure with aperture blocking elimination
JPS6135721B2 (en)
US6184838B1 (en) Antenna configuration for low and medium earth orbit satellites
JPH0359603B2 (en)
JPH0654843B2 (en) Multi-frequency band shared antenna
JPS5884505A (en) Formed beam antenna
JPS6013322B2 (en) multibeam antenna
JPS6094508A (en) Shaped beam antenna
JPS5939104A (en) Shaped beam antenna
JPH0566763B2 (en)
JPS5884504A (en) Formed beam antenna
JPS5884506A (en) Formed beam antenna
JPS59231903A (en) Electromagnetic lens antenna
JPH0611086B2 (en) Molded beam antenna
JPS5840905A (en) Multibeam antenna
JP3034262B2 (en) Aperture antenna device
JPS6138261Y2 (en)
JPH046127B2 (en)
JPS6162208A (en) Array antenna with reflecting plate
JPS602801B2 (en) Double reflector shaped beam antenna
JPH0467364B2 (en)
JPH0385005A (en) Dual reflection mirror antenna