JPS5840905A - Multibeam antenna - Google Patents

Multibeam antenna

Info

Publication number
JPS5840905A
JPS5840905A JP13939881A JP13939881A JPS5840905A JP S5840905 A JPS5840905 A JP S5840905A JP 13939881 A JP13939881 A JP 13939881A JP 13939881 A JP13939881 A JP 13939881A JP S5840905 A JPS5840905 A JP S5840905A
Authority
JP
Japan
Prior art keywords
mirror
plane
curve
reflector
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13939881A
Other languages
Japanese (ja)
Other versions
JPH0352246B2 (en
Inventor
Hiroyuki Kumazawa
熊沢 弘之
Makoto Ando
真 安藤
Shuji Urasaki
修治 浦崎
Yoshihiro Honma
本間 嘉弘
Shigeru Makino
滋 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Nippon Telegraph and Telephone Corp
Original Assignee
Mitsubishi Electric Corp
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Nippon Telegraph and Telephone Corp filed Critical Mitsubishi Electric Corp
Priority to JP13939881A priority Critical patent/JPS5840905A/en
Publication of JPS5840905A publication Critical patent/JPS5840905A/en
Publication of JPH0352246B2 publication Critical patent/JPH0352246B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • H01Q25/007Antennas or antenna systems providing at least two radiating patterns using two or more primary active elements in the focal region of a focusing device

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

PURPOSE:To increase the side lobe level and to decrease the gain, by having an offset type mirror surface system to get rid of the blocking of a secondary reflector as well as a nonsecondary curved mirror surface to reduce the aberration within all faces. CONSTITUTION:A ray having a thetaS inclination to an axis Z within a horizontal face is made incident to a mirror surface curve M1M4. A mirror curves T1T5 of a secondary reflector 9 is decided under the conditions of a certain length of the optical path so that the ray goes toward the phase center F3 of a horn 1f after reflected at the curve T1T5. If the ray is made incident to the curve T1T5 from the phase center F2, a mirror curve N1N4 of a main reflector 10 can be decided. Then a mirror curve N1'N4' of the reflector 10 can be decided when the ray is made incident from the phase center F1. Furthermore a ray having a thetaS inclination is made incident to the curves N1N4 and N1'N4', and the mirror curve of the reflector 9 can be decided so as to have the convergence to the center F3 respectively. The above-mentioned procedures are successively repeated.

Description

【発明の詳細な説明】 この発明は複数個の給電ホーン、副反射鏡及び主反射鏡
からなる複反射鏡形マルチビームアンテナの改良に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement of a double-reflector type multi-beam antenna consisting of a plurality of feeding horns, a sub-reflector, and a main reflector.

従来のこの種アンテナは第1図に示すように、複数個の
給電ホーン(1)、及び回転対称形の双曲面鏡(2)、
放物面鏡(3)で構成されていた。ζこで、各鏡面は鏡
軸(4)に関して回転対称である。
As shown in Fig. 1, a conventional antenna of this type includes a plurality of feeding horns (1), a rotationally symmetrical hyperboloid mirror (2),
It consisted of a parabolic mirror (3). ζ Here, each mirror surface is rotationally symmetrical with respect to the mirror axis (4).

給電ホーン(1a)の位相中心が双曲面鏡(2)の焦点
foに一致している場合1図中9点線で示すrayとな
シ、収差無しで鏡軸(局方向に電波を放射できる。次に
+foより離れた点flに給電ホーン(1b)を配置し
た場合は9図中、破線で示すようなyayとなり放射方
向が変わり、マルチビームを形成できるが収差が発生し
てサイドロープレベルの上昇、利得低下等の性能劣化を
もたらす欠点があった。このため、第2図に示すように
、1iL焦点Fl * r、をもつような特殊な鏡面形
状をRay Lattice Methodによって求
める手法が開発された。ここで、副反射鏡(5)、主反
射鏡(6)とも鏡軸(4)K関して回転対称であり、ま
た点I’s 、 F*が鏡軸(4)に関して対称である
。したがって1点F1からの電波が収差無しでθS方向
に放射できれば1点F、からの電波は一θS方向に収差
無しで放射できる。しかし、副反射鏡(5)が電波の進
行方向にあるため障害となりサイドローブレベルの上昇
、利得低下をもたらす。この欠点は第8図に示すように
鏡面をオフセット形にすることによって除去できること
が知られている。ここで、オフセット形の副反射鏡(5
a) 。
When the phase center of the feeding horn (1a) coincides with the focal point fo of the hyperboloid mirror (2), radio waves can be emitted in the direction of the mirror axis (center direction) without aberration, as shown by the 9-dotted line in Figure 1. Next, if the feeding horn (1b) is placed at a point fl away from +fo, the radiation direction will change as shown by the broken line in Figure 9, and the radiation direction will change, making it possible to form a multi-beam, but aberrations will occur and the side rope level will change. This has the disadvantage of causing performance deterioration such as increase in light intensity and decrease in gain.For this reason, a method was developed to obtain a special mirror surface shape with a 1iL focal point Fl*r using the Ray Lattice Method, as shown in Fig. 2. Here, both the sub-reflector (5) and the main reflector (6) are rotationally symmetrical with respect to the mirror axis (4) K, and the points I's and F* are symmetrical with respect to the mirror axis (4). .Therefore, if the radio waves from one point F1 can be radiated in the θS direction without aberration, the radio waves from one point F can be radiated in the θS direction without aberration.However, the sub-reflector (5) is in the direction in which the radio waves travel. This becomes an obstacle, causing an increase in the sidelobe level and a decrease in gain.It is known that this drawback can be eliminated by making the mirror surface an offset type, as shown in Figure 8.Here, an offset type sub-reflector ( 5
a).

主反射鏡(6a)は第2図に示した回転対称形の鏡面の
一部分を用いたものであシ、副反射鏡(5a)によるプ
ロッヤングが無くなるように、使用する碗面部金選択し
ている。このアンテナにおいて紙面に垂直な面内に複数
個の給電ホーンを設ける場合、上記の鏡面の選択ではマ
ルチビームを形成できない。さらに1紙面上のマルチビ
ームにおいて、双焦点F、 、 P、が鏡軸に関して対
称という条件から給電ホーンの配置に制約をうける欠点
があった。
The main reflecting mirror (6a) uses a part of the rotationally symmetrical mirror surface shown in Fig. 2, and the bowl surface metal used is selected so that the protrusion caused by the sub-reflecting mirror (5a) is eliminated. . In this antenna, when a plurality of feeding horns are provided in a plane perpendicular to the paper, multiple beams cannot be formed by selecting the mirror surface described above. Furthermore, in the case of multiple beams on one sheet of paper, the bifocals F, , P are symmetrical with respect to the mirror axis, which imposes restrictions on the placement of the feeding horn.

本発明はこの欠点を除去するために紙面内。The present invention aims to eliminate this drawback.

及びそれに垂直な面内に各々、双焦点をもち。and each has a bifocal point in a plane perpendicular to it.

合計で4焦点として広い角度範囲において、マルチビー
ムを形成するものであり、以下図面を用いて詳細に説明
する。
It forms multi-beams in a wide angular range with a total of four focal points, and will be described in detail below with reference to the drawings.

第4図はこの発明の一実施例における紙面内の鏡面形状
を示している。())はオフセット形副反射鏡の鏡面曲
線、(8)はオフセット形主反射鏡の鏡面曲線である。
FIG. 4 shows a mirror surface shape within the plane of the paper in an embodiment of the present invention. ()) is the mirror surface curve of the offset type sub-reflector, and (8) is the mirror surface curve of the offset type main reflector.

これらの鏡面曲471(71,(8)は双焦点P、 、
 F、をもつように設計できる。まず、曲線(7) 、
 (8)上の点を各々、81.M、とし、これらを初期
値として与える。また9点F、から点8、、Mlを経た
後の放射方向をここでは鏡軸(4)に平行な方向とする
。したがって、 M+Ps  h鏡軸(4)に平行であ
る。ここで1点P1は主反射鏡(8)の開口面上の点で
ある。次に、鏡軸(4)と6だけ傾いたrayが点M+
に入射させる。このO1だけ傾いた開口面と上記ray
との交点を91とする。r O7Qt Mtは、すでに
定まっている点鳩の法線ベクトルを用いて反射方向が求
まる。点Q+から点F+ 1での光路長の条件及び上記
反射方向上の点であることから1曲線(7)上の点S、
が求まる。次に1点F、からyayを出発させて点s、
 K向かわせる。点S、の法線ベクトルは定まっている
からe r O7F g 8 gの反射方向が求まる。
These mirror curves 471 (71, (8) are bifocal P,
It can be designed to have F. First, curve (7),
(8) Each point above is 81. M, and give these as initial values. Also, the radiation direction after passing through points 9, F, and 8, . . . , Ml is here parallel to the mirror axis (4). Therefore, M+Ps h is parallel to the mirror axis (4). Here, one point P1 is a point on the aperture plane of the main reflecting mirror (8). Next, the ray tilted by 6 with respect to the mirror axis (4) is the point M+
Inject it into the This aperture surface tilted by O1 and the above ray
Let the intersection point be 91. The reflection direction of r O7Qt Mt is determined using the already determined normal vector of the point pigeon. Point S on curve (7) from point Q+ to point F+ because of the condition of the optical path length from point Q+1 and because it is a point on the above-mentioned reflection direction,
is found. Next, start yay from point F, point s,
Let K go. Since the normal vector of point S is fixed, the reflection direction of e r O7F g 8 g can be determined.

この反射方向上の点であること及び点F、から開口面上
の点P、までの光路長の条件から曲線(8)上の点M。
The point M on the curve (8) is based on the condition that the point is on the reflection direction and the optical path length from the point F to the point P on the aperture surface.

が求まる。以下、この過程を繰り返して曲線(73、(
8)を決定できる。このように双焦点F、 F、からの
rayは、二次元的には収差無しでマルチビームを形成
できる。なお、ここでは点F、からのrayは鏡軸(4
)に平行としたがこれに限るものではない。
is found. Hereafter, this process is repeated until the curve (73, (
8) can be determined. In this way, the rays from the bifocals F, F can form multiple beams without aberration in two dimensions. Note that here, the ray from point F is the mirror axis (4
), but it is not limited to this.

第す図は本発明の一実施例である概略構成図を示す。(
ld) 、 (le)は第4図の双焦点P、 、 P。
FIG. 2 shows a schematic configuration diagram of an embodiment of the present invention. (
ld), (le) are the bifocals P, , P in Fig. 4.

を位相中心とする給電ホーン、  (if)、 (IG
)は紙面に垂直な面上の双焦点F、 、 F、を位相中
心とする給電ホーン、(9)はオフセット形の副反射鏡
、叡呻はオフセット形の主反射鏡である。なお。
The feeding horn whose phase center is (if), (IG
) is a feeding horn whose phase center is bifocals F, , F on a plane perpendicular to the plane of the paper, (9) is an offset-type sub-reflector, and (9) is an offset-type main reflector. In addition.

17) 、 (8)は第4図に示した鏡面曲線である。17) and (8) are the mirror curves shown in FIG.

ここで、鏡面(9) 、 Hの非対称面をzfxf面、
原点Oを上記4個の゛焦点の中心とする座標系0−xF
zも定義する。鏡面(9)、(11mはすでに求まって
いる非対称面内の鏡面曲線M、 M、を初期値として次
のように決定できる。
Here, the mirror surface (9), the asymmetric surface of H is the zfxf surface,
Coordinate system 0-xF with origin O as the center of the four focal points
Also define z. The mirror surfaces (9) and (11m) can be determined as follows, using the already determined mirror surface curves M, M, in the asymmetric surface as initial values.

まず、鏡面曲線MI O4へ、水平面内において2軸と
O5だけ傾い一7’Lrayを入射させる。M、 O4
での法線ベクトルは定まっているので1反射方向が決定
される。副反射鏡(9)の鏡面曲線’rt ’r。
First, a 7'Lray with an inclination of 2 axes and O5 in the horizontal plane is incident on the mirror curve MI O4. M, O4
Since the normal vector at is fixed, one reflection direction is determined. The mirror surface curve 'rt'r of the sub-reflector (9).

は、この曲線’r、 ’r、で反射した後、ホーン(1
f)の位相中心F、に向うように光路長一定の条件から
決定される。ここで、鏡面(91,(Elはxx面に−
シて対称であるから、鏡面MIM4に−01だけ傾いた
rayを入射させると、ホーン(IG)の位相中心F4
に集束させることができる。次に、このようにして求ま
った副反射鏡(9)の鏡面曲線’r、’r。
is reflected by the curves 'r, 'r, and then the horn (1
It is determined based on the condition that the optical path length is constant so that the optical path is directed toward the phase center F of f). Here, the mirror surface (91, (El is −
Since the beam is symmetrical, when a ray tilted by -01 is incident on the mirror surface MIM4, the phase center of the horn (IG) is F4.
can be focused on. Next, the mirror surface curves 'r, 'r of the sub-reflector (9) thus determined.

に位相中心F、からのrayが入射した場合、第4図に
示した開口面P1p4までの光路長一定の条件から主反
射鏡a呻の鏡面曲線N、 N4を9位相中心F1からの
rayが入射した場合は第4図の開口面QIQ4までの
光路長で定の条件から主反射鏡α呻の鏡面曲線N1′N
4Fを決定できる。さらに、鏡面曲線NI N4及びN
、’ N4tに03だけ傾いたrayを入射させ、各々
、光路長一定の条件から点F、に集束するように副反射
鏡(9)の鏡面曲線を決定できる。この過程を順次、繰
シ返して、副反射鏡(9)、主反射鏡(111の鏡面を
構成できる。このような鏡面座標及びその点における法
線ベクトルは離散的に求まる。したがって、鏡面の連続
性を吟味する必要がある。まず、第4図に示した2次元
的な場合について、第6図によって説明する。離散的に
求まった点をS、 、 S、とし。
When a ray from the phase center F is incident on , the mirror surface curve N, N4 of the main reflecting mirror a is given by the condition that the optical path length to the aperture plane P1p4 is constant as shown in Fig. 4. In the case of incident light, the mirror surface curve N1'N of the main reflector α is determined based on the constant optical path length to the aperture surface QIQ4 in Fig. 4.
4F can be determined. Furthermore, the mirror curves NI N4 and N
, ' A ray tilted by 03 is incident on N4t, and the specular curve of the sub-reflector (9) can be determined so that each ray is focused on point F under the condition that the optical path length is constant. By repeating this process in sequence, the mirror surfaces of the sub-reflector (9) and the main reflector (111) can be constructed.Such mirror surface coordinates and the normal vector at that point can be found discretely. It is necessary to examine continuity. First, the two-dimensional case shown in Figure 4 will be explained using Figure 6. Let the discretely determined points be S, , S.

各々、この点における法線ベクトルをnt I nlと
する。これら2点間を接続する場合、与えられた条件か
ら三次曲線となる。第6図(a)の場合は単調であるが
、第6図6)の場合は変曲線が存在し、鏡面を構成する
ことの意味を失う。第6図の三次元的な場合も、隣シ合
54点間を曲面で接続する場合、波をうつよう表曲面に
なれば鏡面として採用でき表い。
Let the normal vector at this point be nt I nl, respectively. When connecting these two points, it becomes a cubic curve based on the given conditions. In the case of FIG. 6(a), the surface is monotonous, but in the case of FIG. 6(6), there is an inflection curve, and the meaning of forming a mirror surface is lost. In the three-dimensional case of Fig. 6, when 54 adjacent points are connected by a curved surface, if the surface is curved so as to transmit waves, it can be used as a mirror surface.

し九がりて、波をうたない曲面系を選定し。After much consideration, we selected a curved surface system that would not cause waves.

かつ4個の焦点近傍にホーンを配置すれば、第7図の斜
線部で示した角度範囲で収差を小さくしたまま、かつ副
反射鏡(9)のブロッキング無しでマルチビームを形成
することができる。
Moreover, by arranging horns near the four focal points, it is possible to form multiple beams within the angular range shown by the shaded area in Fig. 7 while keeping aberrations small and without blocking the sub-reflector (9). .

なお1以上は副反射鏡を凸面形状としたが。In addition, in one or more cases, the sub-reflector was made to have a convex shape.

本発明は凹面形状に使用してもよい。The invention may also be used in concave geometries.

以上のように本発明によれば、鏡面系をオフセット形に
して副反射鏡のブロッキングを除いたこと、鏡面形状を
一つの面内ばかシでなくあらゆる面内で収差が小さくな
るような非二次曲面にしたことにより、サイドロープレ
ベルの上昇、利得低下の小さなマルチビームを得る利点
がある。
As described above, according to the present invention, the mirror system is made into an offset type to eliminate blocking of the sub-reflector, and the mirror surface shape is changed to a non-dual shape that reduces aberrations not only in one plane but in all planes. The use of a curved surface has the advantage of obtaining a multi-beam with small increase in side lobe level and small decrease in gain.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第8図は従来のマルチビームアンテナ
の概略構成図、第4図は本発明の一実施例を説明する図
、第す図は本発明の一実施例の概略構成図、第6図、第
7図は本発明の一実施例を説明する図であ99図中、(
1)は給電ホ、−ン、(9)はオフセット形の副反射鏡
、 allはオフセット形の主反射鏡である。 代理人  葛 野 信 − @1図 w2図 第3図 @4図 第5図
Figures 1, 2, and 8 are schematic configuration diagrams of a conventional multi-beam antenna, Figure 4 is a diagram explaining an embodiment of the present invention, and Figure 2 is a schematic diagram of an embodiment of the present invention. , FIG. 6, and FIG. 7 are diagrams explaining one embodiment of the present invention. In FIG. 99, (
1) is a power supply horn, (9) is an offset type sub-reflector, and all is an offset type main reflector. Agent Makoto Kuzuno - @Figure 1 w2 Figure 3 @4 Figure 5

Claims (1)

【特許請求の範囲】 yz面を水平面、zx面を一非対称面とし、この非対称
面における主反射鏡の鏡面曲線MO。 副反射鏡の鏡面曲線8oはy軸まわシにyz面をθa、
−θaだけ回転させ友方向からの平面波を上記非対称面
内の点Fl、 F、に集束させる曲線とし、上記鏡面曲
線MoにX軸まわりにzx面をθSだけ回転させた方向
からの平面波を12面である水平面内の点F、に集束さ
せる副反射鏡の鏡面曲線S1を定め1次に、上記点F、
 、 P。 からのこの鏡面曲線8sK向う波が主反射鏡で反射した
後、各々、θa、−θa方向の平面波となるように主反
射鏡の鏡面曲線M、 、 M、を定め、とのM、 、 
M、にも上記θSだけ傾いた平面波が点F、に集束する
ように鏡面構成を順次0行い。 かつ副反射鏡、主反射鏡とも上記非対称面に関して対称
であるため上記θ3とZX面に関して対称な方向である
一θSの平面波に対して9点F、の対称表点F4にも集
束するようにし、これら4点Fl + Fl e Fl
及びF4の近傍に複数個の給電ホーンを配置したことを
特徴とするマルチビームアンテナ。
[Claims] The yz plane is a horizontal plane and the zx plane is an asymmetrical plane, and the mirror curve MO of the main reflecting mirror on this asymmetrical plane. The mirror surface curve 8o of the sub-reflector is rotated around the y-axis by θa on the yz plane,
A curve that rotates the plane wave by -θa and focuses the plane wave from the friendly direction on the points Fl, F in the asymmetric plane, and a plane wave from the direction that rotates the zx plane by θS around the X axis to the mirror curve Mo is 12 Determine the mirror surface curve S1 of the sub-reflector to focus on the point F in the horizontal plane, which is a surface, and firstly calculate the point F,
, P. The mirror curves M, , M, of the main reflector are determined so that after this mirror curve 8sK onward wave from the main reflector is reflected by the main reflector, it becomes a plane wave in the θa and -θa directions, respectively.
For M, a mirror configuration is sequentially performed so that the plane wave tilted by θS is focused on point F. In addition, since both the sub-reflector and the main reflector are symmetrical with respect to the asymmetric plane, the plane wave of 1 θS, which is a symmetrical direction with respect to θ3 and the ZX plane, is focused at point F4 on the symmetry table, which is 9 points F. , these four points Fl + Fl e Fl
and a multi-beam antenna characterized in that a plurality of feeding horns are arranged near F4.
JP13939881A 1981-09-04 1981-09-04 Multibeam antenna Granted JPS5840905A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13939881A JPS5840905A (en) 1981-09-04 1981-09-04 Multibeam antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13939881A JPS5840905A (en) 1981-09-04 1981-09-04 Multibeam antenna

Publications (2)

Publication Number Publication Date
JPS5840905A true JPS5840905A (en) 1983-03-10
JPH0352246B2 JPH0352246B2 (en) 1991-08-09

Family

ID=15244344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13939881A Granted JPS5840905A (en) 1981-09-04 1981-09-04 Multibeam antenna

Country Status (1)

Country Link
JP (1) JPS5840905A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59196609A (en) * 1983-04-22 1984-11-08 Mitsubishi Electric Corp Antenna device
JPS60129709U (en) * 1984-02-08 1985-08-30 日本電気株式会社 offset antenna
JPH05121919A (en) * 1991-10-29 1993-05-18 Harada Ind Co Ltd Antenna extending mechanism

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59196609A (en) * 1983-04-22 1984-11-08 Mitsubishi Electric Corp Antenna device
JPH0519842B2 (en) * 1983-04-22 1993-03-17 Mitsubishi Electric Corp
JPS60129709U (en) * 1984-02-08 1985-08-30 日本電気株式会社 offset antenna
JPH05121919A (en) * 1991-10-29 1993-05-18 Harada Ind Co Ltd Antenna extending mechanism

Also Published As

Publication number Publication date
JPH0352246B2 (en) 1991-08-09

Similar Documents

Publication Publication Date Title
KR101292230B1 (en) Compact nonaxisymmetric double-reflector antenna
GB1600163A (en) Antenna structures
JPH0417482B2 (en)
JPS5840905A (en) Multibeam antenna
JPS603210A (en) Antenna in common use for multi-frequency band
US5140337A (en) High aperture efficiency, wide angle scanning reflector antenna
GB2262387A (en) Multibeam antenna
JPS6013322B2 (en) multibeam antenna
JPS62154905A (en) Multibeam antenna
JP2013187619A (en) Reflector antenna, and light beam radiation method in reflector antenna
JPS5939104A (en) Shaped beam antenna
JPH045287B2 (en)
JPS5840906A (en) Multibeam antenna
JP2710416B2 (en) Elliptical aperture double reflector antenna
JPS5892106A (en) Multibeam antenna
JP3668913B2 (en) Reflector antenna
JPH053762B2 (en)
JPH11317617A (en) Spherical mirror antenna device
JPS6128247B2 (en)
JPS6297407A (en) Antenna system
JPH0612853B2 (en) Multi-beam antenna
JPH0543201B2 (en)
JPS5884505A (en) Formed beam antenna
JPS59231903A (en) Electromagnetic lens antenna
JPS63296503A (en) Spherical mirror antenna