JPS62154905A - Multibeam antenna - Google Patents

Multibeam antenna

Info

Publication number
JPS62154905A
JPS62154905A JP29324385A JP29324385A JPS62154905A JP S62154905 A JPS62154905 A JP S62154905A JP 29324385 A JP29324385 A JP 29324385A JP 29324385 A JP29324385 A JP 29324385A JP S62154905 A JPS62154905 A JP S62154905A
Authority
JP
Japan
Prior art keywords
reflector
correction
reflecting mirror
main
curved surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29324385A
Other languages
Japanese (ja)
Inventor
Ryuichi Iwata
岩田 龍一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP29324385A priority Critical patent/JPS62154905A/en
Publication of JPS62154905A publication Critical patent/JPS62154905A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form a multibeam antenna which is smaller in main reflection mirror size and also smaller in antenna-axial size than a conventional antenna by adding a subordinate reflection mirror which has a torus curved surface to a conventional torus antenna and correcting aberrations by a correcting reflection mirror. CONSTITUTION:An electromagnetic wave radiated by a primary radiator 4 is reflected by the correction mirror 2, and then reflected by the subordinate reflection mirror 2, and then reflected by a main reflection mirror 1, so that the wave is radiated in a beam direction 51. An electromagnetic wave radiated by the primary radiator 42, on the other hand, is reflected by a correcting reflection mirror 32 and reflected by the subordinate reflection mirror 2, and then reflected by the main reflection mirror 1, so that the wave is radiated in a beam direction 52. The main reflection mirror and subordinate reflection mirror 2 are composed of a torus curved surface having its center of rotation at an axis 5 of rotation. The correcting reflection mirrors 31 and 32 are provided so as to correct astigmatism originating from the torus curved surface.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、静止軌道上の複数個の衛星と一つのアンテナ
で同時に通信を行うだめのマルチビームアンテナに関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a multi-beam antenna for simultaneously communicating with a plurality of satellites in a geostationary orbit using one antenna.

〔従来の技術〕[Conventional technology]

従来、この種のアンテナには特開昭51−863号に示
されているようなトーラス曲面を用いるものがある。こ
れは、第5図および第6図(a) 、 (b)に示すよ
うに、放物線等の母曲線15を回転軸5を中心に回転し
てできるトーラス曲面11を主反射鏡として用いている
。このときの回転半径をトーラス半径と名付ける。ここ
で、第6図(、)は2回転軸5と一次放射器14の中心
軸を含む面による第5図のアンテナの断面図であり、】
5は主反射鏡11の断面曲線、17は補正反射鏡13の
断面曲線である。!また。第6図(1))は、主反射鏡
11から補正反射鏡13へ向かう一本の光線を含み、第
6図(a)で説明した断面に垂直な平面による断面図で
あり、16は主反射鏡11の断面曲線であり。
Conventionally, some antennas of this type use a torus curved surface as shown in Japanese Patent Laid-Open No. 51-863. As shown in FIGS. 5 and 6 (a) and (b), a torus curved surface 11 formed by rotating a generating curve 15 such as a parabola around the rotation axis 5 is used as the main reflecting mirror. . The radius of rotation at this time is called the torus radius. Here, FIG. 6(,) is a cross-sectional view of the antenna of FIG. 5 along a plane including the two rotational axes 5 and the central axis of the primary radiator 14,
5 is a cross-sectional curve of the main reflecting mirror 11, and 17 is a cross-sectional curve of the correction reflecting mirror 13. ! Also. FIG. 6(1)) is a cross-sectional view taken along a plane perpendicular to the cross-section explained in FIG. 6(a), including one light ray heading from the main reflecting mirror 11 to the correction reflecting mirror 13. This is a cross-sectional curve of the reflecting mirror 11.

18は補正反射鏡13の断面曲線である。18 is a cross-sectional curve of the correction reflecting mirror 13.

第6図(a)に示すように、主反射鏡の断面曲線15を
たとえば放物線と(−でおけば、第6図(a)の面内で
は曲線15に入射する平行光線は焦点19に収束する。
As shown in FIG. 6(a), if the cross-sectional curve 15 of the main reflecting mirror is set as a parabola (-), parallel rays incident on the curve 15 in the plane of FIG. 6(a) converge to a focal point 19. do.

しかし、第6図(b)の面内では、断面曲線16が円弧
であるため1曲線16に入射する平行光線は一点に収束
せず、収差をもつ。補正反射鏡13はこの収差を補正す
るだめのもので、断面曲線18ば、光線がすべて焦点2
1に収束するように決められている。
However, in the plane of FIG. 6(b), since the cross-sectional curve 16 is a circular arc, parallel rays of light incident on one curve 16 do not converge to one point and have aberrations. The correction reflector 13 is only for correcting this aberration, and the cross-sectional curve 18 allows all the light rays to be at the focal point 2.
It is determined that it converges to 1.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このアンテナは、任意のビー ム分離度をもつアンテナ
が構成できるという利点を有するが、実用上は次のよう
な欠点を持つ。
Although this antenna has the advantage of being able to construct an antenna with arbitrary beam separation, it has the following practical drawbacks.

(1)複数の補正反射鏡13が互いにぶつかり合わない
ようにするだめには、トーラス半径を大きくし補正反射
鏡13の大きさを小さくしなげればならない。しかly
 eそのためには第6図(b)かられかるように円弧の
擬焦点20(トーラス回転軸5から円弧16の半径の1
/2の距離にある点)の近くに補正反射鏡13を配置せ
ねばならない。したがって、主反射鏡11から補正反射
鏡13までの距離が長い大きなアンテナとなる。
(1) In order to prevent the plurality of correction reflection mirrors 13 from colliding with each other, the torus radius must be increased and the size of the correction reflection mirrors 13 must be reduced. But only
e To do this, as shown in Fig. 6(b), the quasi-focal point 20 of the arc (1 of the radius of the arc 16 from the torus rotation axis 5) is
The correction reflector 13 must be placed near the point (a point at a distance of /2). Therefore, it becomes a large antenna with a long distance from the main reflecting mirror 11 to the correction reflecting mirror 13.

(2)主反射鏡1】がトーラス回転軸5と垂直な方向に
長円形とな92通常の単一ビームアンテナの主反射鏡よ
り大きくなる。また、地球上から見た衛星の静止軌道は
、第7図のように、一般には水平面64に対して傾いて
いる。このため、静止軌道上の2つの衛星61.62と
同時に通信を行うには、主反射鏡11の長円の長軸を水
平面64から傾けてアンテナを設置せねばならない。こ
の場合、アンテナの背面支持骨格構造物が大きく複雑な
ものとなる。
(2) The main reflector 1] has an oval shape in the direction perpendicular to the torus rotation axis 5 and is larger than the main reflector of a normal single beam antenna. Further, the geostationary orbit of the satellite as seen from the earth is generally inclined with respect to the horizontal plane 64, as shown in FIG. Therefore, in order to simultaneously communicate with the two satellites 61 and 62 on the geostationary orbit, the antenna must be installed with the long axis of the ellipse of the main reflector 11 tilted from the horizontal plane 64. In this case, the back support frame structure of the antenna becomes large and complicated.

(3)第6図(b)の光線群をみてわかるように主反射
鏡の断面曲線16上の等しい間隔で並んだ点から焦点2
1へ至る光線が焦点2】を中心として等しい角度で並ん
でいない。すなわち、一次放射器】4から放射された軸
対称の電界分布が主反射鏡で反射された後には偏りが生
じてし1つことになる。このため、開口能率の低丁およ
び交さ偏波特性の劣化を招いている。本発明の目的は上
記の欠点を解消したマルチビームアンテナを提供するこ
とにある。
(3) As can be seen from the group of rays in Fig. 6(b), the focal point 2 is
The rays leading to 1 are not lined up at equal angles with the focal point 2] as the center. That is, after the axially symmetrical electric field distribution radiated from the primary radiator 4 is reflected by the main reflecting mirror, a deviation occurs. This results in low aperture efficiency and deterioration in cross-polarized wave characteristics. An object of the present invention is to provide a multi-beam antenna that eliminates the above-mentioned drawbacks.

〔問題点を解決するための手段〕[Means for solving problems]

本発明によるアンテナは、トーラス曲面を有する主反射
鏡、トーラス曲面を有する副反射鏡、複数個の補正反射
鏡と、これら複数の補正反射鏡にそれぞれ少なくとも一
つずつ対向させた複数個の一次放射器から成り、各反射
鏡にあらかじめ定められた修正を加えたことを特徴とす
る。
The antenna according to the present invention includes a main reflecting mirror having a torus curved surface, a sub-reflecting mirror having a torus curved surface, a plurality of correction reflecting mirrors, and a plurality of primary radiation beams each facing at least one of the plurality of correction reflecting mirrors. It is characterized by a predetermined modification applied to each reflecting mirror.

〔実施例〕 次に2本発明の実施例を図面を参照]7て説明する。〔Example〕 Next, two embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例を示し、一つの主反射鏡1.
一つの副反射鏡2,2個の補正反射鏡31.32と2個
の一次放射器41.42から成る。一次放射器41から
放射された電磁波は、補正反射鏡3まで反射され2次に
副反射鏡2で反射された後、主反射鏡まで反射されてビ
ーム方向51へ放射される。一方、一次放射器42から
放射された電磁波は補正反射鏡32で反射され2次に副
反射鏡2で反射された後主反射鏡まで反射されてビーム
方向52へ放射される。ここで、主反射鏡1と副反射鏡
2は回転1!1115を回転中心とするトーラス曲面で
構成されている。捷た。補正反射鏡31.32はトーラ
ス曲面による非点収差を補正する目的で設けられている
FIG. 1 shows an embodiment of the present invention, in which one main reflecting mirror 1.
It consists of one sub-reflector 2, two correction reflectors 31.32 and two primary radiators 41.42. The electromagnetic waves radiated from the primary radiator 41 are reflected to the correcting reflector 3, secondarily reflected by the sub-reflector 2, and then reflected to the main reflector and radiated in the beam direction 51. On the other hand, the electromagnetic waves radiated from the primary radiator 42 are reflected by the correction reflector 32, secondarily reflected by the sub-reflector 2, and then reflected to the main reflector and radiated in the beam direction 52. Here, the main reflecting mirror 1 and the sub-reflecting mirror 2 are constituted by a torus curved surface whose rotation center is rotation 1!1115. I cut it. The correction reflecting mirrors 31 and 32 are provided for the purpose of correcting astigmatism due to the torus curved surface.

従来のトーラスアンテナの場合、第6図(a)に示すよ
うに、一次放射器に対応した焦点21が複数個配置でき
るのは、1・−ラス回転軸5に垂直な一平面内に限られ
ていた。もし、一次放射器を該平面に対して垂直な方向
に変位させると、焦点ずれによる収差が生じ、アンテナ
の特性が劣化する。
In the case of a conventional torus antenna, as shown in FIG. 6(a), a plurality of focal points 21 corresponding to the primary radiators can be arranged only within one plane perpendicular to the 1-rus rotation axis 5. was. If the primary radiator is displaced in a direction perpendicular to the plane, aberrations will occur due to defocus, and the characteristics of the antenna will deteriorate.

これは、トーラス回転軸5を含む平面でのアンテナの断
面(第6図(a))を考えた場合、たとえば主反射鏡の
断面曲線15と、副反射鏡の断面曲線17がだ円の場合
、主反射鏡の断面曲線I5に入射する平行光線が放物線
の輔22に平行な場合に限って光線が焦点21に集1す
、他の方向からの平行光線が主反射鏡の断面曲線15に
入射しでも光線が一点に収束しないためである。
When considering the cross section of the antenna in a plane including the torus rotation axis 5 (Fig. 6(a)), for example, if the cross-sectional curve 15 of the main reflector and the cross-sectional curve 17 of the sub-reflector are ellipsoids. , if the parallel rays incident on the cross-sectional curve I5 of the main reflector are parallel to the parabola base 22, the light rays will be focused at the focal point 21, and the parallel rays from other directions will be focused on the cross-sectional curve 15 of the main reflector. This is because the light rays do not converge to one point even when they are incident.

これに対し2本′アンデナの場合を第2図により説明す
る。第2図は第1図のアンテナのト−ラス回転軸5を含
む補正反射鏡3Iの対称面(而Al30)による断面曲
線3,4.71と、トーラス回転軸5を含む補正反射鏡
32の対称面(而CDO)による断面曲線3,4.72
とが同一平面に含丑れるように、一方の断面曲線3,4
.72を1・−ラス回転軸5を中心に角度βだげ回転し
て重ね合わせて描いたものである。
On the other hand, the case of two 'andenas will be explained with reference to FIG. FIG. 2 shows cross-sectional curves 3 and 4.71 of the symmetry plane (Al30) of the correction reflector 3I including the torus rotation axis 5 of the antenna shown in FIG. Cross-sectional curve by plane of symmetry (CDO) 3, 4.72
One of the cross-sectional curves 3 and 4 is included in the same plane.
.. 72 rotated by an angle β around the 1-ras rotation axis 5 and superimposed on each other.

ここでは説明を簡単にするために、主反射鏡の断面曲線
3は放物線、副反射鏡の断面曲線4はだ円とする。この
とき、放物線の焦点とだ円の一つの焦点を一致させてお
けば、放物線3の軸に平行な方向55から平行光線が入
射すると、第2図の断面内では、だ円4の他の焦点81
に収束する。
Here, to simplify the explanation, the cross-sectional curve 3 of the main reflecting mirror is assumed to be a parabola, and the cross-sectional curve 4 of the sub-reflecting mirror is assumed to be an ellipse. At this time, if the focus of the parabola is made to coincide with the focus of one of the ellipses, then when a parallel ray enters from the direction 55 parallel to the axis of the parabola 3, it will cause other focus 81
converges to.

したがって、補正反射鏡の断面曲線71を、たとえば位
相中心91と焦点8】を2つの焦点にもつだ円としてお
けば、主反射鏡に入射する平行光線を第2図の断面内で
は子べて一点91に光路長一定で収束させることができ
る。
Therefore, if the cross-sectional curve 71 of the correction reflector is made into an ellipse with two focal points, for example, the phase center 91 and the focal point 8, the parallel rays incident on the main reflector will be reflected in the cross-section shown in FIG. It is possible to converge on one point 91 with a constant optical path length.

以上はすべて第2図の断面内について考えだが。The above is all about the cross section in Figure 2.

主反射鏡の断面曲線3と副反射鏡の断面曲線4を母曲線
としてトーラス回転軸5を中心にトーラス曲面を形成し
た場合、第2図の断面以外では、主反射鏡に方向55か
ら入射する平行光線は点81の位置で一点に収束しない
。補正反射鏡31の第2図の断面内以外の曲面形状はこ
の収差を補正する曲面として定められる。すなわち、主
反射鏡1に入射した平行光線が主反射鏡1.副反射鏡2
で反射された後に、補正反射鏡3まで反射され、i路長
一定で位相中心91に収束する条件から補正反射鏡31
の曲面形状が求められる。
When a torus curved surface is formed around the torus rotation axis 5 with the cross-sectional curve 3 of the main reflecting mirror and the cross-sectional curve 4 of the sub-reflecting mirror as generating curves, the light is incident on the main reflecting mirror from the direction 55 at the cross section other than that shown in FIG. Parallel rays do not converge to one point at point 81. The curved surface shape of the correction reflecting mirror 31 other than the section shown in FIG. 2 is defined as a curved surface that corrects this aberration. That is, the parallel rays incident on the main reflecting mirror 1 are reflected by the main reflecting mirror 1. Secondary reflector 2
After being reflected by the correction reflecting mirror 3, the correction reflecting mirror 31
The curved surface shape of is required.

次に、補正反射鏡32の曲面形状の決め方について述べ
る。第2図において、第一のビーム方向55と角度αだ
げ異なる方向56から主反射鏡の断面曲線3に平行光線
が入射した場合を考える。
Next, a method of determining the curved shape of the correction reflecting mirror 32 will be described. In FIG. 2, consider the case where a parallel ray is incident on the cross-sectional curve 3 of the main reflecting mirror from a direction 56 that is different from the first beam direction 55 by an angle α.

このとき、主反射鏡によって反射された光線は副反射鏡
断面曲線4へ向かい、ここで反射されるが。
At this time, the light beam reflected by the main reflecting mirror heads toward the sub-reflecting mirror cross-sectional curve 4 and is reflected there.

断面曲線4は55の方向の平行光線に対し、て点81に
収束するように定められているので、56って、補正反
射鏡32を補正反射鏡3】と同一にしたのでは位相中心
92の位置でも収差をもつ。
The cross-sectional curve 4 is determined so that parallel rays in the direction of 55 converge at a point 81, so if the correction reflecting mirror 32 is made the same as the correction reflecting mirror 3], the phase center 92 There is aberration even at the position.

しかし、補正反射鏡32をこの収差を補正するように新
たにその曲面形状を定めれば、56の方向のビームに対
しても収差のないアンテナが構成できるO このようにして各反射鏡の鏡面形状を決めておけば、補
正反射鏡32と一次放射器42の相対位置を保ったまま
トーラス回転軸5を中心に補正反射鏡32と一次放射器
42を任意の角度回転しても幾何光学的条件は全く変化
しない。したがって。
However, if the curved surface shape of the correction reflecting mirror 32 is newly determined to correct this aberration, an antenna without aberration can be constructed even for beams in 56 directions.In this way, the mirror surface of each reflecting mirror can be constructed. If the shapes are determined, the correction reflector 32 and the primary radiator 42 can be rotated by any angle around the torus rotation axis 5 while maintaining the relative positions of the correction reflector 32 and the primary radiator 42 without geometric optics. Conditions do not change at all. therefore.

トーラス回転軸に垂直な面の方向に任意の角度βだけビ
ームを偏移させることができる。
The beam can be deflected by any angle β in the direction of a plane perpendicular to the axis of rotation of the torus.

さて9本発明によるアンテナを用いて静止軌道上の2つ
の衛星と通信を行なう場合は次のようになる。
Now, when communicating with two satellites on a geostationary orbit using the antenna according to the present invention, the procedure is as follows.

静止軌道を地−ヒから見ると一般には第3図のように水
平面に対して傾いて見える。この場合、2つの衛星61
.62のそれぞれの位置PとQの地上のアンテナから見
た分離角をδとし2分離角δを水平方向分離角βと、鉛
直方向分離角αとに分解する。そして、第1図と第2図
の説明に用いたαとβがこれらの角度に対応するように
アンテナ構成を決めればよい。
When a geostationary orbit is viewed from the ground, it generally appears tilted with respect to the horizontal plane, as shown in Figure 3. In this case, two satellites 61
.. The angle of separation seen from the ground antenna at each of the positions P and Q of 62 is assumed to be δ, and the two angles of separation δ are decomposed into a horizontal separation angle β and a vertical separation angle α. Then, the antenna configuration may be determined so that α and β used in the explanation of FIGS. 1 and 2 correspond to these angles.

このとき2回転角βによって主反射鏡1は水平方向に長
い長円形となるが、従来の1・−ラスアンテナのように
長円長軸を軌道の傾き角度δだげ傾ける必要はない。し
かも、長円長軸は従来のものより短くできるので主反射
鏡の面積が小さくて済む。なぜならば、従来のトーラス
アンテナでは。
At this time, the main reflecting mirror 1 becomes a horizontally elongated ellipse due to the two rotation angles β, but there is no need to incline the long axis of the ellipse by the orbital inclination angle δ as in the conventional 1-rath antenna. Furthermore, since the long axis of the ellipse can be made shorter than in the conventional case, the area of the main reflecting mirror can be reduced. Because with the conventional torus antenna.

前述したように、2つの補正反射鏡がぶつかり合うのを
避けるだめに、主反射鏡からトーラス回転軸までの距離
(R2とする)を大きく 、I−らねばならない。これ
に対し2本発明によるアンテナでは補正反射鏡31およ
び32の配置に自由、度があり。
As mentioned above, in order to avoid the two correction reflecting mirrors colliding with each other, the distance (referred to as R2) from the main reflecting mirror to the torus rotation axis must be increased. On the other hand, in the two antennas according to the present invention, there is freedom in the arrangement of the correction reflectors 31 and 32.

1−−ラス回転軸5がら主反射鏡までの距離(R1とす
る)を短くできる。さら(て、従来のト−ラスアンテナ
では、主反射鏡の長軸の長さはおおよそR25inδ十
りだけ必要なのに対し2本発明のアンテナではR,si
nβ十りだげ必要である。第3図より角度βは角度δよ
り小さいので本発明のアンテナの主反射鏡の方が小さく
女る。ここで、Dは」二反射鏡の有効開口径すなわち、
主反射鏡の短軸JJ向の長さをトーラス回転軸5に沿っ
て測っ/こ長さである。
1--The distance (referred to as R1) from the lath rotation axis 5 to the main reflecting mirror can be shortened. Furthermore, in the conventional torus antenna, the length of the major axis of the main reflector needs to be approximately R25inδ, whereas in the antenna of the present invention, the length of the long axis of the main reflector is approximately R,si
As much as nβ is required. From FIG. 3, since the angle β is smaller than the angle δ, the main reflecting mirror of the antenna of the present invention is smaller. Here, D is the effective aperture diameter of the two reflecting mirrors, that is,
The length of the main reflecting mirror in the short axis JJ direction is measured along the torus rotation axis 5.

次に問題となるのは、マルチビームアンテナでの静[1
,、衛星の追尾の方法である。通営、静止軌道上の衛星
は静止位置を中心に不規則左位置変動を行って−る。こ
の微動分を追尾するために9通常の単一ビームアンテナ
ではアンテナ全体を動かす方法を用いてbる。しかし、
マルチビームアンテナで2つの衛星を同時に追尾するに
は、省衛星が互いに無関係に変動するので従来の方法は
使えない。
The next problem is static [1
, is a method of tracking satellites. Satellites in stationary and geostationary orbits are irregularly moving to the left around their geostationary position. In order to track this minute movement, a normal single beam antenna uses a method of moving the entire antenna. but,
Conventional methods cannot be used to simultaneously track two satellites using a multi-beam antenna because the number of satellites fluctuates independently of each other.

本発明によるマルチビームアンテナでは、補助反射鏡3
1と32にそれぞれ駆動装置を取り付け。
In the multi-beam antenna according to the present invention, the auxiliary reflector 3
Attach a drive device to 1 and 32 respectively.

これらを独立して微調整することにより2つのビームを
独立して微動させ、2つの衛星を同時に追尾することを
可能にしている。これと同じ作用をさせるには、一次放
射器41と42に駆動装置を取り付け、一次放射器のみ
を微動させてもよい。
By making fine adjustments to these independently, the two beams can be made to move slightly independently, making it possible to track two satellites at the same time. To achieve the same effect, a drive device may be attached to the primary radiators 41 and 42 to slightly move only the primary radiators.

あるいは補助反射鏡と一次放射器の両方を微動させても
よい。
Alternatively, both the auxiliary reflector and the primary radiator may be slightly moved.

以−Fの説明では、第2図において焦点81と焦点82
が副反射鏡の断面4と補正反射鏡の断面71あるいは7
2との間にある場合を考えたが。
In the following explanation, the focal point 81 and the focal point 82 in FIG.
are the cross section 4 of the sub-reflector and the cross section 71 or 7 of the correction reflector.
I considered a case between 2.

焦点81と82と副反射鏡の断面4との間に補正反射鏡
7]、あるいは72が置かれるように構成することも可
能である。また、第2図では、副反射鏡断面4が凹とな
る。いわゆるグレゴリアンタイプであるが、副反射鏡断
面4が凸となる。いわゆるカセグレンタイプでもよい。
It is also possible to configure the correcting reflector 7] or 72 to be placed between the focal points 81 and 82 and the cross section 4 of the sub-reflector. Further, in FIG. 2, the sub-reflector cross section 4 is concave. Although it is a so-called Gregorian type, the sub-reflector cross section 4 is convex. A so-called Cassegrain type may also be used.

さらに、主反射鏡1.副反射鏡2.補正反射鏡31と3
2の鏡面形状に修正を加えることにより。
Furthermore, main reflecting mirror 1. Secondary reflector 2. Correction reflectors 31 and 3
By modifying the mirror surface shape of 2.

主反射鏡の開口面電界分布を制御することができる。こ
れにより、高能率でしかも主反射鏡開口電界分布に偏り
のないアンテナが構成できる。この場合、焦点81にお
いて光線がすべてこれらの点に収束しないが、一次放射
器に対応(−だ焦点9までは光線はすべてこれらの点に
収束するようにできる。
The aperture electric field distribution of the main reflecting mirror can be controlled. As a result, it is possible to construct an antenna that is highly efficient and has an unbiased main reflector aperture electric field distribution. In this case, at the focal point 81 the rays do not all converge to these points, but up to the focal point 9, which corresponds to the primary radiator, all the rays can converge to these points.

さらにまた、上記の説明から明白なように9本発明は3
個以トのビームを形成するマルチビームも可能である3
、 第4図に31″″−)・のアンテナを構成した実施例を
示す。
Furthermore, as is clear from the above description, 9 the present invention provides 3
Multi-beams that form more than 3 beams are also possible.
, Fig. 4 shows an embodiment in which a 31''-) antenna is constructed.

また2以上の説明では、補正反射鏡の焦点−って対して
1個の一次放射器のみを配置した実施例を示したが、一
つの焦点のまわりに複数個の一次放射器を配置ff〜だ
ものでもよい。このようなアンテナは衛星搭載用として
の応用が考えられる。
In addition, in the above explanation, an example in which only one primary radiator is arranged with respect to the focal point of the correction reflector is shown, but a plurality of primary radiators are arranged around one focal pointff~ It may be something. It is possible that such an antenna could be used onboard a satellite.

鉄工余日 〔発明の効果〕 以上の説明かられかるように2本発明は、従来のトーラ
スアンテナに、1・−ラス曲面を有する副反射鏡を導入
し、補正反射鏡によシ収差を補正することにより、従来
のアンテナより、主反射鏡の大きさが小さく、アンテナ
軸方向の大きさも小さいマルチビームアンテナが構成で
きる。また、静止軌道上の2衛星と通信する場合、従来
のトーラスアンテナのように主反射鏡長軸を傾ける必要
がなく、主反射鏡を支持する前面骨格構造物が簡単とな
る効果がある。しかも2個々の衛星を独立して追尾でき
る。更に、主反射鏡、副反射鏡および補正反射鏡に修正
を加えることにより、従来のトーラスアンテナよシ高能
率で交さ偏波特性のよいアンテナが実現できる。
[Effects of the Invention] As can be seen from the above explanation, the present invention introduces a sub-reflector having a 1-raus curved surface into a conventional torus antenna, and corrects the aberration by the correction reflector. By doing so, a multi-beam antenna can be constructed in which the size of the main reflecting mirror is smaller and the size in the antenna axis direction is smaller than that of conventional antennas. Furthermore, when communicating with two satellites on a geostationary orbit, there is no need to tilt the long axis of the main reflector as in conventional torus antennas, which has the effect of simplifying the front frame structure that supports the main reflector. Moreover, it can track two individual satellites independently. Furthermore, by modifying the main reflector, sub-reflector, and correction reflector, an antenna with higher efficiency and better cross-polarization characteristics than the conventional torus antenna can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例によるマルチビームアンテナ
の概略構成図。 第2図は第1図のあらかじめ定められた面による断面図
。 第3図は本発明のアンテナによって静止軌道−トの2衛
星と通信を行う場合を説明するだめの図。 第4図は本発明による3ビームアンテナの実施例の概略
構成図。 第5図は従来のマルチビームアンテナの概略構成図。 第6図(a) 、 (b)はそり、ぞれ、第5図のあら
かじめ定められた面による断面図。 第7図は従来のマルチビームアンテナを用いて静止軌道
上の2衛星と通信を行う場合を説明するだめの図である
。 】・・・主反射鏡、2・・・副反射鏡、31,32゜3
3・・・補正反射鏡、41,42.43・・・一次放射
器。 第2図 第3図
FIG. 1 is a schematic configuration diagram of a multi-beam antenna according to an embodiment of the present invention. FIG. 2 is a sectional view taken along a predetermined plane in FIG. 1. FIG. 3 is a diagram illustrating a case where the antenna of the present invention communicates with two satellites in a geosynchronous orbit. FIG. 4 is a schematic configuration diagram of an embodiment of a three-beam antenna according to the present invention. FIG. 5 is a schematic configuration diagram of a conventional multi-beam antenna. 6(a) and 6(b) are sectional views taken along predetermined planes of FIG. 5, respectively. FIG. 7 is a diagram illustrating a case where a conventional multi-beam antenna is used to communicate with two satellites in a geostationary orbit. ]...Main reflecting mirror, 2...Sub reflecting mirror, 31, 32°3
3... Correction reflector, 41, 42.43... Primary radiator. Figure 2 Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)主反射鏡、副反射鏡および複数個の補正反射鏡と
該複数個の補正反射鏡にそれぞれ少なくとも一つずつ対
向させた複数個の一次放射器からなるマルチビームアン
テナにおいて、上記主反射鏡が一つの母曲線を一つの直
線を中心に回転して得られる曲面(トーラス曲面)から
成り、上記副反射鏡も一つの母曲線を上記直線を中心に
回転して得られる曲面(トーラス曲面)から成り、上記
複数個の一次放射器のうち一つの一次放射器に対応した
位相中心から発せられた光線群が該一次放射器に対向し
た第1の補正反射鏡、上記副反射鏡および主反射鏡によ
って反射の法則に従って次々と反射された後に一つの方
向に向いた平行光線となり、かつそれぞれの光線に沿っ
て上記位相中心から上記平行光線に垂直な一つの平面ま
で測った長さがそれぞれの光線について等しくなるよう
に、上記副反射鏡の母曲線および第1の補正反射鏡の曲
面形状を定め、第2の補正反射鏡については、これに対
応した第2の位相中心から発せられた光線群が、該第2
の補正反射鏡および上記により定められた副反射鏡およ
び主反射鏡によって反射の法則に従って次々と反射され
た後に、第2の方向に向いた平行光線となり、かつそれ
ぞれの光線に沿って第2の位相中心から第2の平行光線
に垂直な一つの平面まで測った長さがそれぞれの光線に
ついて等しくなるように上記第2の補正反射鏡の曲面形
状を定め、他の補正反射鏡についても上記と同様にそれ
ぞれ異なる方向の平行光線を生じるようにその曲面形状
を決めたことを特徴とするマルチビームアンテナ。
(1) In a multi-beam antenna consisting of a main reflector, a sub-reflector, a plurality of correction reflectors, and a plurality of primary radiators each facing at least one of the plurality of correction reflectors, the main reflector The mirror consists of a curved surface (torus curved surface) obtained by rotating one generating curve around one straight line, and the above-mentioned sub-reflector also consists of a curved surface (torus curved surface) obtained by rotating one generating curve around one straight line. ), in which a group of light rays emitted from the phase center corresponding to one of the plurality of primary radiators passes through the first correction reflector facing the primary radiator, the sub-reflector and the main reflector. After being reflected one after another by a reflecting mirror according to the law of reflection, they become parallel rays pointing in one direction, and the length measured along each ray from the phase center to a plane perpendicular to the parallel ray. The generating curve of the sub-reflector and the curved surface shape of the first correction reflector are determined so that the light rays emitted from the second phase center corresponding to the second correction reflector are equal. The second group of rays
After being successively reflected by the corrective reflector and the sub-reflector and main reflector defined above according to the law of reflection, the beam becomes a parallel ray pointing in the second direction, and along each ray there is a second parallel ray. The curved shape of the second correction reflecting mirror is determined so that the length measured from the phase center to one plane perpendicular to the second parallel ray is equal for each ray, and the other correction reflecting mirrors are also determined in the same manner as above. Similarly, a multi-beam antenna is characterized in that its curved shape is determined so as to produce parallel rays in different directions.
(2)特許請求の範囲第1項記載のマルチビームアンテ
ナにおいて、各補正反射鏡あるいは各一次放射器または
その両方にそれぞれ駆動装置を取り付け、各補正反射鏡
あるいは各一次放射器またはその両方を微動させること
によって主反射鏡から放射される複数個のビームの方向
をそれぞれ独立して変化させることができるようにした
ことを特徴とするマルチビームアンテナ。
(2) In the multi-beam antenna according to claim 1, a driving device is attached to each correction reflector, each primary radiator, or both, and each correction reflector, each primary radiator, or both are slightly moved. A multi-beam antenna characterized in that the directions of a plurality of beams radiated from a main reflecting mirror can be independently changed by changing the direction of each beam.
JP29324385A 1985-12-27 1985-12-27 Multibeam antenna Pending JPS62154905A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29324385A JPS62154905A (en) 1985-12-27 1985-12-27 Multibeam antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29324385A JPS62154905A (en) 1985-12-27 1985-12-27 Multibeam antenna

Publications (1)

Publication Number Publication Date
JPS62154905A true JPS62154905A (en) 1987-07-09

Family

ID=17792291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29324385A Pending JPS62154905A (en) 1985-12-27 1985-12-27 Multibeam antenna

Country Status (1)

Country Link
JP (1) JPS62154905A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02114703A (en) * 1988-10-24 1990-04-26 Nippon Telegr & Teleph Corp <Ntt> Multi-beam antenna
JPH02239702A (en) * 1989-03-13 1990-09-21 Mitsubishi Electric Corp Antenna system
JPH02274003A (en) * 1989-04-17 1990-11-08 Nippon Telegr & Teleph Corp <Ntt> Bifocus antenna
JP2016535473A (en) * 2013-10-04 2016-11-10 クゥアルコム・インコーポレイテッドQualcomm Incorporated A low-cost cableless ground station antenna for medium-orbit satellite communication systems.
US9991948B2 (en) 2015-04-03 2018-06-05 Qualcomm Incorporated Low cost cableless ground station antenna for medium earth orbit satellite communication systems

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02114703A (en) * 1988-10-24 1990-04-26 Nippon Telegr & Teleph Corp <Ntt> Multi-beam antenna
JPH02239702A (en) * 1989-03-13 1990-09-21 Mitsubishi Electric Corp Antenna system
JPH02274003A (en) * 1989-04-17 1990-11-08 Nippon Telegr & Teleph Corp <Ntt> Bifocus antenna
JP2016535473A (en) * 2013-10-04 2016-11-10 クゥアルコム・インコーポレイテッドQualcomm Incorporated A low-cost cableless ground station antenna for medium-orbit satellite communication systems.
US9991948B2 (en) 2015-04-03 2018-06-05 Qualcomm Incorporated Low cost cableless ground station antenna for medium earth orbit satellite communication systems

Similar Documents

Publication Publication Date Title
US4618867A (en) Scanning beam antenna with linear array feed
US4062018A (en) Scanning antenna with moveable beam waveguide feed and defocusing adjustment
US4145695A (en) Launcher reflectors for correcting for astigmatism in off-axis fed reflector antennas
US4535338A (en) Multibeam antenna arrangement
US4855751A (en) High-efficiency multibeam antenna
JPH0352682B2 (en)
US4464666A (en) Multiple reflector antenna
JP2000216626A (en) Compact forward feed type dual reflector antenna system for providing adjacent high gain antenna beam
JPH0417482B2 (en)
AU605227B2 (en) Multibeam antenna
JPS62154905A (en) Multibeam antenna
JP2000216624A (en) Compact foldable optical antenna system for providing adjacent high gain antenna beam
White et al. Scanning characteristics of two-reflector antenna systems
GB1495298A (en) Antenna
JPS62154906A (en) Multibeam antenna
EP0164466A1 (en) High-efficiency multibeam antenna
JP2594137B2 (en) Multi-beam antenna
JP2605939B2 (en) Multi-beam antenna
JP2539104B2 (en) Antenna device
Stadt Optimum location of the wobble axis of secondary mirrors in Cassegrain-type telescopes
JP2000082918A (en) Multi-beam antenna
JP2643560B2 (en) Multi-beam antenna
JPH053762B2 (en)
JP2712922B2 (en) Double reflector antenna
JPS63109603A (en) Multi-beam antenna