JPS5840906A - Multibeam antenna - Google Patents

Multibeam antenna

Info

Publication number
JPS5840906A
JPS5840906A JP13939981A JP13939981A JPS5840906A JP S5840906 A JPS5840906 A JP S5840906A JP 13939981 A JP13939981 A JP 13939981A JP 13939981 A JP13939981 A JP 13939981A JP S5840906 A JPS5840906 A JP S5840906A
Authority
JP
Japan
Prior art keywords
reflector
plane
axis
sub
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13939981A
Other languages
Japanese (ja)
Other versions
JPH045286B2 (en
Inventor
Hiroyuki Kumazawa
熊沢 弘之
Kenji Ueno
健治 上野
Shuji Urasaki
修治 浦崎
Yoshihiro Honma
本間 嘉弘
Shigeru Makino
滋 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Nippon Telegraph and Telephone Corp
Original Assignee
Mitsubishi Electric Corp
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Nippon Telegraph and Telephone Corp filed Critical Mitsubishi Electric Corp
Priority to JP13939981A priority Critical patent/JPS5840906A/en
Publication of JPS5840906A publication Critical patent/JPS5840906A/en
Publication of JPH045286B2 publication Critical patent/JPH045286B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • H01Q25/007Antennas or antenna systems providing at least two radiating patterns using two or more primary active elements in the focal region of a focusing device

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

PURPOSE:To suppress a rise of the side lobe level without lowering the gain, by using a columnar surface reflector containing two special sections in place of a parabolic reflector and as a result reducing the aberration which is caused on the surface of an opening. CONSTITUTION:The axis (y) is set toward the bus bar of a columnar surface, and a face (yz) is set horizontal. The section curve of a columnar surface reflector 7 on a (zx) surface and the section curve of a secondary columnar surface reflector 6 are decided so that the planar wave sent from the (z) axis direction and the planar surface from the direction having a theta inclination to the axis (z) are focused at a focus F0 respectively. Then plural linear primary radiators are distributed at the areas near the focus F0. In such way, a multibeam having the reduced deterioration of performance is obtained between -theta and theta. Thus the multibeam can be radiated over a wide-angle range. At the same time, a rise of the side lobe level is suppressed without lowering the gain since the aberration caused on the surface of an opening.

Description

【発明の詳細な説明】 この発明は複数個の線状の一次放射器、柱面状の副反射
鏡及び柱面状の主反射鏡からなる複反射鏡形マルチビー
ムアンテナの改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a double-reflector multi-beam antenna consisting of a plurality of linear primary radiators, a cylindrical sub-reflector, and a cylindrical main reflector. .

従来のこの種アンテナは第1図(a)(b)に示すよう
に、複数個の線状の一次放射器(1)、及び放物柱面反
射鏡(2)で構成されていた。ここで、この反射鏡(2
)の鏡軸(3)上に焦線P、があり、このF、からの円
筒波は反射鏡(動で反射して鏡軸(3)方向の平面波と
なる。このP、の近傍に一次放射器(1a)、  (l
b)を配置した場合、この線波源F、 、 F、からの
円筒波は1図中、破線と点線で示すように、各々、この
反射鏡(1りで反射して、おおむねθ、−〇方向に向う
が、完全な千面臥にならない。すなわち、この反射鏡(
2)の開口面上において波面が乱れている。この波面の
乱れのため、利得低下、サイドロープレベルの上昇等の
性能が劣化することが欠点であった。
As shown in FIGS. 1(a) and 1(b), a conventional antenna of this type is composed of a plurality of linear primary radiators (1) and a parabolic cylindrical reflector (2). Here, this reflector (2
There is a focal line P, on the mirror axis (3) of the mirror (3), and the cylindrical wave from this F is reflected by the mirror (movement) and becomes a plane wave in the direction of the mirror axis (3). Radiator (1a), (l
b), the cylindrical waves from the line wave sources F, , F, are reflected by this reflecting mirror (1) and are approximately θ, -〇, as shown by the broken lines and dotted lines in Figure 1. direction, but it does not turn into a complete trance. In other words, this reflector (
2) The wavefront is disordered on the aperture surface. This disturbance of the wavefront has the drawback of deteriorating performance, such as a decrease in gain and an increase in sidelobe level.

この発明はこのような欠点を除去するために、複反射鏡
形式にし、かつその鏡面形状を変えたものであシ、以下
図面を用いて詳細に説明する。
In order to eliminate such drawbacks, the present invention employs a double-reflecting mirror and changes the shape of its mirror surface, and will be described in detail below with reference to the drawings.

第2図はこの発明の一実施例を示すもので。FIG. 2 shows an embodiment of this invention.

(3)は鏡軸、(4)はオフセット形の柱面状の副反射
鏡、(5)はオフセクト形の柱面状の主反射−である。
(3) is a mirror axis, (4) is an offset columnar sub-reflector, and (5) is an offset columnar main reflector.

各反射鏡(4)、(51の母線の方向は紙面に垂直であ
る。これらの鏡面の断面曲線s、 s、 s、 s。
The direction of the generatrix of each reflecting mirror (4), (51) is perpendicular to the plane of the paper.The cross-sectional curves of these mirror surfaces are s, s, s, s.

及びM、M、 M、 M、 M4祉双焦点F@ v F
Iをもつように設計できる。まず、鏡軸(3)方向に沿
った平面波を入射させる。その波面をQa QIQ−Q
aとする。点Fe=Qoを鏡軸(3)上の点とし、また
、この軸上における副反射鏡(4)、主反射鏡(5)の
断面曲線上の点を各々、8.、M、とする。ここで9点
Qo = Me 、Ss −Foを初期条件として与え
る。次に1点?、をパラメータとして与え、この点F、
から点S、に光線を入射させる。点S、での法線方向は
鏡軸(3)方向であるから、この点S、における反射方
向8.M、を決定できる。この点Mlで反射する方向を
鏡軸(3)から0だけ傾いた方向とする。この0方向に
向う平面波の波面をP、 P、 P、P4とする。この
波面をパラメータとして与え9点M8は光路長F、 8
0M、 p1=一定の条件から決定できる。次に、この
点M1へ鏡軸(3)に沿う光線QIM1を入射させる。
and M, M, M, M, M4 bifocal F@ v F
It can be designed to have I. First, a plane wave along the direction of the mirror axis (3) is made incident. The wavefront is Qa QIQ-Q
Let it be a. Let the point Fe=Qo be a point on the mirror axis (3), and let the points on the cross-sectional curves of the sub-reflector (4) and the main reflector (5) on this axis be 8. ,M,. Here, 9 points Qo = Me and Ss - Fo are given as initial conditions. One point next? , is given as a parameter, and this point F,
A ray of light is incident on point S from . Since the normal direction at point S is the mirror axis (3) direction, the reflection direction at point S is 8. M, can be determined. The direction of reflection at this point Ml is assumed to be a direction tilted by 0 from the mirror axis (3). Let the wavefronts of this plane wave heading in the 0 direction be P, P, P, and P4. Given this wavefront as a parameter, 9 points M8 have an optical path length F, 8
0M, p1=can be determined from certain conditions. Next, a light beam QIM1 along the mirror axis (3) is made incident on this point M1.

点M、での法線ベクトルは上記の光線軌跡法F、 8.
 M+ Ptにおいて定まっているので1反射方向M、
 8.は決定できる。点8ta光路長QIM18+ F
o =一定の条件から決定できる。次に1点F、から点
S1に入射させ、同様外操作により点M、を求める。以
下、同様の過程を繰シ返して断面曲線を決定できる。し
たがって、焦線F、 、 F、からの円筒波は副反射鏡
(4)、主反射鏡(5)を経た後、各々、鏡軸(3)、
この軸とθだけ傾いた方向の平面波となる。
The normal vector at point M is calculated using the above ray trajectory method F, 8.
Since it is determined at M+Pt, 1 reflection direction M,
8. can be determined. Point 8ta optical path length QIM18+ F
o = can be determined from certain conditions. Next, point F is made to enter point S1, and point M is obtained by the same external operation. Thereafter, the cross-sectional curve can be determined by repeating the same process. Therefore, the cylindrical waves from the focal lines F, , F, pass through the sub-reflector (4) and the main reflector (5), and then reach the mirror axis (3), respectively.
It becomes a plane wave in a direction tilted by θ with respect to this axis.

このように求めた焦線F、 、 F、近傍に複数個の線
状波源である一次放射器を配置すれば、鏡軸方向、及び
その軸と角度θだけ傾いた方向の近傍に複数個の平面波
を向けることができる。
If multiple primary radiators, which are linear wave sources, are placed near the focal line F, , F obtained in this way, multiple linear wave sources will be placed in the vicinity of the mirror axis and in a direction tilted by an angle θ from the mirror axis. Plane waves can be directed.

とこで、波面の乱れは双焦線のために、小さくなる。し
たがって、利得低下が小さく、かつサイドロープレベル
の低いマルチビームアンテナは第2図に示したものと同
じ鏡軸、副反射鏡(6)、主反射鏡(7)は第2図の鏡
面(4) 、 (5)に、鏡軸(3)を含み紙面に垂直
な面に関する鏡面(4) 、 +51の対称な鏡面を追
加した鏡面である。また、この垂直な面に関する焦線F
、の対称な直線をF3  とすれば、鏡面の対称性から
、とのF8も一〇方向への平面波を得る焦線となる。こ
こで、焦線Fl+F4間の範囲外では一次放射器は副反
射鏡(6)で反射した光線に対して障害となシ、性能劣
化をもたらすので、−次放射器をFl + F4 間の
範囲内に配置する必要がある。なお、この障害について
は送信アンテナの場合で説明している。このi;’、 
t F4 間に複数個の一次放射器を配置すれば、−0
〜0間に性能劣化の小さいマルチビームを得ることがで
き、第2図に比べて広い角度間Ω〜 囲にわたって、マルチビームを放射できる。
However, the disturbance in the wavefront becomes smaller due to the bifocal line. Therefore, a multi-beam antenna with small gain reduction and low side lobe level has the same mirror axis as shown in Fig. 2, sub-reflector (6), and main reflector (7). ), (5), mirror surface (4), +51 symmetrical mirror surface with respect to a plane that includes the mirror axis (3) and is perpendicular to the plane of the paper. Also, the focal line F regarding this perpendicular plane
If the symmetrical straight line of , is F3, due to the symmetry of the mirror surface, F8 of and will also be a focal line that obtains a plane wave in the 10 direction. Here, outside the range between the focal line Fl + F4, the primary radiator does not interfere with the light beam reflected by the sub-reflector (6) and causes performance deterioration, so the -order radiator is placed in the range between Fl + F4. It must be placed within. Note that this failure is explained in the case of a transmitting antenna. This i;',
If multiple primary radiators are placed between t F4, -0
It is possible to obtain multi-beams with little performance deterioration between ~0 and emit multi-beams over a wider range of angles than in Fig. 2.

以上のようにこの発明によれば、放物柱面鏡の代シに2
枚の特殊な断面形状をもつ柱面反射、鏡を用いたことに
より、開口面上に発生する収差を小さくしたため、利得
低下、サイドロープレベルの上昇の小さなマルチビーム
アンテナを得る利点がある。
As described above, according to the present invention, in place of a parabolic cylindrical mirror, two
By using a cylindrical reflection mirror with a special cross-sectional shape, the aberration generated on the aperture surface is reduced, which has the advantage of obtaining a multi-beam antenna with small gain reduction and small increase in side lobe level.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のマルチビームアンテナの概略構成図、第
2図はこめ発明の一実施例の概略構成図、第8図は本発
明の他の一実施例の概略構成図である。図中、(1)は
線波源である一次放射器、(4)はオフセット形の副反
射鏡、(5)はオフセット形の主反射鏡、(6)は面対
称形の副反射鏡。 (7)は面対称形の主反射、鏡である。 代理人  葛 野 信 − 第1図 (6) θ @2図 4
FIG. 1 is a schematic diagram of a conventional multi-beam antenna, FIG. 2 is a schematic diagram of an embodiment of the invention, and FIG. 8 is a schematic diagram of another embodiment of the invention. In the figure, (1) is a primary radiator that is a line wave source, (4) is an offset sub-reflector, (5) is an offset main reflector, and (6) is a plane-symmetric sub-reflector. (7) is a plane-symmetric principal reflection or mirror. Agent Shin Kuzuno - Figure 1 (6) θ @2 Figure 4

Claims (2)

【特許請求の範囲】[Claims] (1)柱面状の主反射鏡、柱面状の副反射鏡及び複数個
の線状の一次放射器からなるマルチビームアンテナにお
いて、y軸を柱面の母線の方向+yz面を水平面とし、
NX面における主反射鏡の断面曲線、及び副反射鏡の断
面曲線を、Z軸方向からの平面波と2軸と0だけ傾いた
方向からの平面波を、各々、焦点F、。 Flへ集束するように決定し、との焦線近傍に、上記線
状の一次放射器を複数個配置したことを特徴とするマル
チビームアンテナ。
(1) In a multi-beam antenna consisting of a cylindrical main reflector, a cylindrical sub-reflector, and a plurality of linear primary radiators, the y-axis is the direction of the generating line of the cylindrical surface + the yz plane is the horizontal plane,
The cross-sectional curve of the main reflecting mirror and the cross-sectional curve of the sub-reflecting mirror in the NX plane are a plane wave from the Z-axis direction and a plane wave from a direction tilted by 0 to the two axes, respectively, at the focal point F. A multi-beam antenna characterized in that a plurality of the linear primary radiators are arranged in the vicinity of the focal line determined to be focused on Fl.
(2)柱面状の主反射鏡、柱面状の副反射鏡及び複数個
の線状のyz面に関して、焦線F1の対称な線を焦線F
、としI FZ面に関して主反射鏡、副反射鏡の対称な
鏡面を追加した面対称なマルチビームアンテナにおいて
、上記焦線F、 、 F、間に複数個の線状の一次放射
器を配置したことを特徴とするマルチビームアンテナ。
(2) Regarding the cylindrical main reflecting mirror, the cylindrical sub-reflecting mirror, and the plurality of linear yz planes, a line symmetrical to the focal line F1 is the focal line F.
, In a plane-symmetric multi-beam antenna with additional symmetrical mirror surfaces of a main reflector and a sub-reflector with respect to the I FZ plane, a plurality of linear primary radiators are placed between the focal lines F, , F, A multi-beam antenna characterized by:
JP13939981A 1981-09-04 1981-09-04 Multibeam antenna Granted JPS5840906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13939981A JPS5840906A (en) 1981-09-04 1981-09-04 Multibeam antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13939981A JPS5840906A (en) 1981-09-04 1981-09-04 Multibeam antenna

Publications (2)

Publication Number Publication Date
JPS5840906A true JPS5840906A (en) 1983-03-10
JPH045286B2 JPH045286B2 (en) 1992-01-31

Family

ID=15244366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13939981A Granted JPS5840906A (en) 1981-09-04 1981-09-04 Multibeam antenna

Country Status (1)

Country Link
JP (1) JPS5840906A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5649550B2 (en) * 2010-11-05 2015-01-07 三菱電機株式会社 Reflector antenna

Also Published As

Publication number Publication date
JPH045286B2 (en) 1992-01-31

Similar Documents

Publication Publication Date Title
JPH0352682B2 (en)
EP0275062B1 (en) Multibeam antenna
JPH0417482B2 (en)
JPS5840906A (en) Multibeam antenna
JPS61200707A (en) Dual reflection mirror antenna
White et al. Scanning characteristics of two-reflector antenna systems
JPS62154905A (en) Multibeam antenna
JPS5840905A (en) Multibeam antenna
JPS5892106A (en) Multibeam antenna
JP2822768B2 (en) Antenna device
JPS6019303A (en) Antenna
JPH045287B2 (en)
JP2605939B2 (en) Multi-beam antenna
JPS63296503A (en) Spherical mirror antenna
JP2712922B2 (en) Double reflector antenna
JPS6128247B2 (en)
JPS63109603A (en) Multi-beam antenna
JP3668913B2 (en) Reflector antenna
JPH053762B2 (en)
JPH11317617A (en) Spherical mirror antenna device
JPS6129569B2 (en)
JPH05191143A (en) Multi-beam antenna
JPH07101813B2 (en) Antenna device
JPS63283209A (en) Aperture plane antenna
JPH0519842B2 (en)