JPH02207985A - Highly corrosion resistant different joining material and production thereof - Google Patents

Highly corrosion resistant different joining material and production thereof

Info

Publication number
JPH02207985A
JPH02207985A JP2837189A JP2837189A JPH02207985A JP H02207985 A JPH02207985 A JP H02207985A JP 2837189 A JP2837189 A JP 2837189A JP 2837189 A JP2837189 A JP 2837189A JP H02207985 A JPH02207985 A JP H02207985A
Authority
JP
Japan
Prior art keywords
joint
corrosion
coating
silicon nitride
joint part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2837189A
Other languages
Japanese (ja)
Inventor
Haruhiko Kajimura
治彦 梶村
Kazuo Yamanaka
和夫 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2837189A priority Critical patent/JPH02207985A/en
Publication of JPH02207985A publication Critical patent/JPH02207985A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PURPOSE:To surely prevent the corrosion in the joint part of a Zr series or Ti series material and stainless steel occurring in an intermetallic compd. at a low cost by coating the circumference of the joint part with silicon nitride of a specific thickness. CONSTITUTION:The circumference of the joint part of the Zr series material or Ti series material and stainless steel is coated with the silicon nitride to >=1mu so as to cover the joint part. The highly corrosion resistant joining material formed in such a manner is excellent not only in the corrosion resistance of the joint part but in mechanical strength and economy as well. While the above- mentioned coating is executing by a plasma CVD method, etc., the coating is executed at the base material temp. limited to <=800 deg.C to avert the growth of the intermetallic compd. at the joint boundary and to prevent the degradation in the mechanical strength. As to the film thickness of the silicon nitride, because of the local defect of the film, the corrosion initiated from this part progresses when the thickness thereof is <1mu. However, peeling arises in some cases when the film thickness exceeds 6mu and, therefore, <=6mu is more preferable.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、Zr系材料またはTi系材料と、ステンレス
鋼との接合材およびその製造方法に関する。なお、本明
細書においてZr系材料とは、工業用純ZrまたはZr
合金を言い、Ti系材料とは、工業用純TlまたはTi
合金を言う。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a bonding material between a Zr-based material or a Ti-based material and stainless steel, and a method for manufacturing the same. In addition, in this specification, Zr-based material refers to industrially pure Zr or Zr
Ti-based materials refer to industrially pure Ti or Ti alloys.
Say alloy.

C従来の技術〕 Zr系材料またはTi系材は、高温高4度の酸に対して
高い耐食性を示すので、化学工業用プラント、酸処理プ
ラント等への広い需要が期待されている。しかし、こら
れの材料は、汎用の高耐食性材料であるステンレス鋼と
比べて著しく高価である。このため、腐食環境の過酷な
部分にのみこれらの材料を使用し、他の部分はステンレ
ス鋼で置き換えられることが有利となる。
C. Prior Art] Since Zr-based materials or Ti-based materials exhibit high corrosion resistance against acids at high temperatures of 4 degrees Celsius, they are expected to be in wide demand for chemical industrial plants, acid treatment plants, and the like. However, these materials are significantly more expensive than stainless steel, which is a general-purpose, highly corrosion-resistant material. For this reason, it would be advantageous to use these materials only in areas with harsh corrosive environments, and replace them with stainless steel in other areas.

このようにZr系材料またはTi系材料を部分的に使用
する場合、これらの材料とステンレス鋼との接合が必要
になる。しかし、両者の溶融溶接は極めて難しく、現場
での直接接合は困難である。
When Zr-based material or Ti-based material is partially used in this way, it is necessary to join these materials to stainless steel. However, fusion welding of the two is extremely difficult, and direct joining on site is difficult.

そのため、通常は、第1図に示すような異材継手1Gが
使用される。これは、接合しようとするZr系材料また
はTk系材料からなる部材11と、ステンレス鋼からな
る部材12とを拡散接合、tJJ着、摩擦接合等の非溶
融溶接法で予め接合したものである。これを用いれば、
接合しようとするZr系材料またはTI系材料21とス
テンレス鋼22との接合は、同種材料の接合となり、T
IG接合等の溶融溶接の使用により現場でも比較的簡単
に行うことが可能となる。
Therefore, a dissimilar material joint 1G as shown in FIG. 1 is usually used. In this case, a member 11 made of a Zr-based material or a Tk-based material to be joined and a member 12 made of stainless steel are joined in advance by a non-fusion welding method such as diffusion welding, tJJ bonding, or friction welding. If you use this,
The joining of the Zr-based material or TI-based material 21 and the stainless steel 22 to be joined is a joining of similar materials, and T
By using fusion welding such as IG joining, it can be performed relatively easily on site.

しかしながら、拡散接合、爆着、摩擦接合等でZr系材
料またはTi系材料とステンレス鋼とを接合すると、非
溶融溶接法で接合されているにもかかわらず、接合界面
で金属間化合物の生成がおこり、耐食性が著しく劣化す
る。その結果、前述の異材継手lOにあっては、それ自
体の接合部13で腐食が進む。このようなZr系材料ま
たはTi系材料とステンレス鋼との接合部腐食に対する
対策としては、両者の間にβ型Zr合金またはβ型T1
合金を介在させる方法(特開昭61−52966号公報
)と、Taを介在させる方法(特開昭62−22029
1号公報)等が公知である。
However, when Zr-based materials or Ti-based materials are joined to stainless steel by diffusion bonding, explosion bonding, friction bonding, etc., intermetallic compounds are generated at the bonding interface, even though they are joined using a non-fusion welding method. corrosion, and corrosion resistance deteriorates significantly. As a result, in the above-mentioned dissimilar material joint 10, corrosion progresses at the joint 13 itself. As a countermeasure against corrosion of the joint between Zr-based material or Ti-based material and stainless steel, it is recommended to use a β-type Zr alloy or β-type T1 between the two.
A method of interposing an alloy (Japanese Unexamined Patent Publication No. 61-52966) and a method of intervening Ta (Japanese Unexamined Patent Publication No. 62-22029)
Publication No. 1) etc. are publicly known.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

いずれの対策も、Zr系材料またはTi系材料とステン
レス鋼とを直接接合する場合に比べれば、金属間化合物
の生成を大幅に押さえることができる。しかし、金属間
化合物の生成を完全に防止できるわけではない0例えば
Taを介在させる方法にあっては、通常の接合条件の場
合にも接合界面部にわずかではあるが金属間化合物が形
成され、接合を高温で長時間かけて行うと、金属間化合
物の顕著な生成が認められる。したがって、これらの対
策も接合部が硝酸等の腐食性の高い溶液に直接さられた
場合には、腐食を押さえることができない、また、Ta
からなるインサート材を介在させる場合にあっては、イ
ンサート材が高価につくことも問題になる。
Either measure can significantly suppress the generation of intermetallic compounds compared to the case where Zr-based material or Ti-based material and stainless steel are directly joined. However, it is not possible to completely prevent the formation of intermetallic compounds. For example, in the method of interposing Ta, a small amount of intermetallic compounds are formed at the bonding interface even under normal bonding conditions. When bonding is performed at high temperatures for a long time, significant formation of intermetallic compounds is observed. Therefore, even these measures cannot prevent corrosion if the joint is directly exposed to highly corrosive solutions such as nitric acid.
In the case of intervening an insert material consisting of, another problem is that the insert material is expensive.

本発明は、このような状況に鑑みなされたもので、金属
間化合物に起因する接合部腐食を低コストで確実に防止
することができる異材接合材およびその製造方法を提供
することを目的とする。
The present invention was made in view of the above situation, and an object of the present invention is to provide a dissimilar material joining material that can reliably prevent joint corrosion caused by intermetallic compounds at low cost, and a method for manufacturing the same. .

〔課題を解決するための手段〕[Means to solve the problem]

Zr系材料またはTi系材料とステンレス鋼との接合部
で腐食が完全に防止できないのは、非溶融溶接法を採用
しても、また接合部にインサート材を介在させても、接
合界面部での金属間化合物の生成を完全に抑え得ないこ
とが原因である。しかし、接合部が腐食溶液に直接さら
されることがなければ、接合界面部に金属間化合物が生
成しても、接合部の腐食は確実に防止される。
Corrosion cannot be completely prevented at joints between Zr-based materials or Ti-based materials and stainless steel, even if a non-melting welding method is used or an insert material is used at the joint. This is because the formation of intermetallic compounds cannot be completely suppressed. However, if the joint is not directly exposed to a corrosive solution, corrosion of the joint can be reliably prevented even if intermetallic compounds are generated at the joint interface.

また、この考えに沿って接合部周囲をコーティングする
にしても、コーテイング材そのものが優れた耐食性を持
たなければならず、しかもコーティング時に高温加熱を
必要としないことが重要である。コーティング時に接合
材が高温に加熱されると、接合界面において金属間化合
物の成長がおこり、接合部の機械的性質が低下する。ま
た、コーテイング材自体が低コストなことも重要でる。
Furthermore, even if the area around the joint is coated in accordance with this idea, it is important that the coating material itself has excellent corrosion resistance and that high-temperature heating is not required during coating. When the bonding material is heated to a high temperature during coating, intermetallic compounds grow at the bonding interface, reducing the mechanical properties of the bonded portion. It is also important that the coating material itself is low cost.

本発明者らは、このような要求に対し、セラミックによ
る接合部コーティングを企画し、種々のセラミック系コ
ーテイング材についてその適性を検討した結果、窒化珪
素が特に有効なことを知見した。すなわち、窒化珪素は
、第1にTa等の高耐食性材料と比べて低コストである
。第2にTlC1SiC,TiN等と比べて硝酸に対す
る耐食性が高い、第3に、コーティングに際してTiC
In response to these demands, the present inventors planned a joint coating using ceramic, and as a result of examining the suitability of various ceramic coating materials, discovered that silicon nitride is particularly effective. That is, firstly, silicon nitride is lower in cost than highly corrosion resistant materials such as Ta. Second, it has higher corrosion resistance to nitric acid than TlC1SiC, TiN, etc. Thirdly, TiC
.

SiC,TiN等はどの基材加熱温度を必要としない、
したがって、接合部を窒化珪素でコーティングした接合
材にあっては、硝酸溶液中でも接合部が溶液から確実に
隔離され、接合部の腐食が防止されるとともに、コーテ
ィングにともなう接合部の機械的強度低下が抑止される
。更に、ここにおける腐食防止は、接合界面部における
金属間化合物の有無に関係なく達成されるので、接合部
にTa等の高価なインサート材を介在させる必要がなく
、窒化珪素自体も低コストであるために、経済性に著し
く優れる。
SiC, TiN, etc. do not require any base material heating temperature.
Therefore, in the case of a bonding material in which the joint part is coated with silicon nitride, the joint part is reliably isolated from the solution even in a nitric acid solution, and corrosion of the joint part is prevented, and the mechanical strength of the joint part decreases due to coating. is suppressed. Furthermore, since corrosion prevention here is achieved regardless of the presence or absence of intermetallic compounds at the joint interface, there is no need to use expensive insert materials such as Ta in the joint, and silicon nitride itself is low cost. Therefore, it is extremely economical.

本発明の接合材は、Zr系材料またはTi系材料とステ
ンレス鋼との接合部周囲に、接合部を覆うように窒化珪
素が1μm以上の厚みにコーティングされた高耐食性異
材接合材であり、接合部の耐食性に優れるだけでなく、
その機械的強度が優れ、経済性にも優れる。
The bonding material of the present invention is a highly corrosion-resistant dissimilar material bonding material in which silicon nitride is coated with a thickness of 1 μm or more around the bonded portion of a Zr-based material or Ti-based material and stainless steel to cover the bonded portion. Not only does it have excellent corrosion resistance, but also
It has excellent mechanical strength and is also economical.

また、本発明の製造方法は、接合部の機械的強度低下が
生じることなく上記接合材を製造する方法で、上記コー
ティングを行うにあたり、基材温度を800°C以下に
制限する方法である。
Further, the manufacturing method of the present invention is a method for manufacturing the above-mentioned bonding material without causing a decrease in the mechanical strength of the bonded portion, and is a method in which the substrate temperature is limited to 800° C. or less when performing the above-mentioned coating.

〔作  用〕[For production]

本発明において、接合部にコーティングする窒化珪素の
膜厚を1amとしたのは、膜厚が1μm未満では窒化珪
素膜の局部的な欠陥により、この部分を起点として腐食
が進行するからである。膜厚の上限は特に定めないが、
6μmを超えると、窒化珪素膜と基材との間の熱膨張差
から窒化珪素膜が剥離する場合があるので、最大膜厚と
しては6μm以下が望ましい。
In the present invention, the reason why the thickness of the silicon nitride coated on the joint is set to 1 am is that if the film thickness is less than 1 μm, corrosion will progress starting from this area due to local defects in the silicon nitride film. There is no particular upper limit to the film thickness, but
If it exceeds 6 μm, the silicon nitride film may peel off due to the difference in thermal expansion between the silicon nitride film and the base material, so the maximum film thickness is preferably 6 μm or less.

窒化珪素をコーティングする場合、窒化珪素膜の密着性
向上のためには、コーティング時の基材温度を高くする
ことが望ましいが、基材温度が800°Cを超えると、
Ti系材料またはZr系材料とステンレス鋼との間の接
合界面において、金属間化合物の成長がおこる。この成
長は、接合部が窒化珪素でコーティングされているので
、耐食性の観点からは大きな問題になることはないが、
接合部の機械的性質、特に曲げ性に対しては著しい性質
低下を発生させるので、コーティングの時の基材温度は
800°C以下に制限する必要がある。
When coating silicon nitride, it is desirable to raise the substrate temperature during coating in order to improve the adhesion of the silicon nitride film, but if the substrate temperature exceeds 800 ° C.
Growth of intermetallic compounds occurs at the bonding interface between Ti-based material or Zr-based material and stainless steel. This growth is not a big problem from a corrosion resistance point of view because the joint is coated with silicon nitride, but
Since this causes a significant deterioration in the mechanical properties of the joint, especially the bendability, the temperature of the substrate during coating must be limited to 800°C or less.

コーティング方法は特に限定しないが、低い基材温度で
効率よくコーティングできる方法がよく、この観点から
プラズマCVD法が好適である。プラズマCVD法は、
高周波によりプラズマを発生させてコーティングを行う
方法で、通常のCVD法(化学気相蒸着法)と比べて基
材温度の低下が可能であり、a o o ”c以下でも
窒化珪素の確実なコーティングを可能ならしめる。
Although the coating method is not particularly limited, it is preferable to use a method that allows efficient coating at a low substrate temperature, and from this point of view, a plasma CVD method is preferable. The plasma CVD method is
This is a coating method that generates plasma using high frequency waves, and it is possible to lower the substrate temperature compared to the normal CVD method (chemical vapor deposition method), and it is possible to reliably coat silicon nitride even at temperatures below a o o ”c. Make it possible.

なお、Zr系材料またはTi系材料とステンレス鋼との
接合は、熱間圧延等による拡散接合、爆着、摩擦接合等
の慣用の非溶融接合法で行い、必要あらば接合部にTa
等のインサート材を介在させることが可能である。
Note that the joining of Zr-based materials or Ti-based materials to stainless steel is performed by conventional non-fusion joining methods such as diffusion bonding, explosion bonding, and friction bonding by hot rolling, etc., and if necessary, Ta is added to the joint.
It is possible to interpose an insert material such as.

〔実施例) 以下に本発明の実施例を述べる。〔Example) Examples of the present invention will be described below.

第1表に示す工業用線Zr、Zr合金、工業用線Tl、
TI合金と、第2表に示す2種類のステンレス鋼とを熱
間圧延法(加熱温度900°C1圧下比4)により非溶
融接合して異材接合材とした。
Industrial wire Zr, Zr alloy, industrial wire Tl shown in Table 1,
The TI alloy and the two types of stainless steel shown in Table 2 were joined by a hot rolling method (heating temperature: 900°C, reduction ratio: 4) to obtain a dissimilar joint material.

一部のものについては、接合部にTaからなるインサー
ト材を介在させた。
In some cases, an insert material made of Ta was interposed at the joint.

そして、製造された異材接合材より第2図に示す寸法の
試験片を採取し、その接合部13が露出している面を含
む全表面に窒化珪素(SiiN4)、TicSSiC,
T1NeCVD法、プラズマCVD法で種々の厚みにコ
ーティングした。
Then, a test piece having the dimensions shown in FIG. 2 was taken from the manufactured dissimilar material bonding material, and silicon nitride (SiiN4), TicSSiC,
Coatings were made to various thicknesses using the T1NeCVD method and the plasma CVD method.

しかる後、試験片を8 N HN Ox +0.2 g
 / 42Cr”沸a!溶液中に48時間浸漬し、この
時の腐食速度を測定するとともに、試験片を切断して光
学顕微鏡で接合界面部の腐食深さを測定した。測定後、
高耐食性を有すると認められた試験片については、更に
半径15mmの曲げ試験を行って、接合部の機械的性質
を評価した。結果を第3表に示す0曲げ試験結果は○(
割れ有り)、×(割れなし)で表わしている。
After that, the test piece was soaked in 8 N HN Ox +0.2 g.
/ 42Cr" boiling a! solution for 48 hours, and the corrosion rate at this time was measured. The test piece was cut and the corrosion depth of the joint interface was measured using an optical microscope. After the measurement,
For the test pieces that were found to have high corrosion resistance, a bending test with a radius of 15 mm was further performed to evaluate the mechanical properties of the joints. The results are shown in Table 3. The zero bending test results are ○(
(with cracks), × (no cracks).

第  1 表 (wt%) 第  2 表(wt%) N111〜6は工業用純ジルコンと5US304L鋼と
の接合材で、接合部の露出する面はプラズマCVD法に
よりSi、N、がコーティングされている。Nl11で
はSt3Nmの膜厚が1μmに達していないために、腐
食が進行している。患2では膜厚が6μmを超え、コー
テイング膜が局部的に剥離した。漱3〜6では膜厚が適
正で、全体的な腐食だけでなく接合界面での腐食も抑制
されている。ただし、Na6についてはコーティング時
の基材加熱温度が800°Cを超えたために、曲げ試験
で接合部に割れが生じた。
Table 1 (wt%) Table 2 (wt%) N111-6 is a bonding material between industrial pure zircon and 5US304L steel, and the exposed surface of the bonded part is coated with Si and N by plasma CVD method. There is. In Nl11, corrosion progresses because the thickness of St3Nm does not reach 1 μm. In case 2, the film thickness exceeded 6 μm, and the coating film peeled off locally. In Sake 3 to 6, the film thickness is appropriate, and not only the overall corrosion but also the corrosion at the bonding interface is suppressed. However, for Na6, the heating temperature of the base material during coating exceeded 800°C, so cracks occurred in the joint during the bending test.

14117〜12は、他の組合せになる接合材で、いず
れも接合部が適正厚みのSi、N、でコーティングされ
、且つコーティング時の基材温度が500°Cに制限さ
れている。したがって、腐食は抑制され、接合部の機械
的強度も高い。
Nos. 14117 to 12 are other combinations of bonding materials, in which the bonded portions are coated with Si and N to an appropriate thickness, and the substrate temperature during coating is limited to 500°C. Therefore, corrosion is suppressed and the mechanical strength of the joint is high.

石13〜15は、コーテイング材としてTiC1SiC
,TiNを使用した接合材であり、コーテイング膜の腐
食が著しく、接合部の保慢が不可能である。耐食性が不
十分なため、曲げ試験までは実施していないが、Tic
、SiC,TiNはSi、N、と比較して同じ膜厚を得
るにも高い加熱温度を必要とし、800℃を超える加熱
温度が必要なTicにあっては、接合部の機械的強度低
下が生じていると推定される。
Stones 13 to 15 are made of TiC1SiC as a coating material.
, TiN is used as a bonding material, and the coating film is severely corroded, making it impossible to maintain the bonded portion. Due to insufficient corrosion resistance, bending tests have not been conducted, but Tic
, SiC, and TiN require higher heating temperatures to obtain the same film thickness than Si and N. For TIC, which requires heating temperatures exceeding 800°C, the mechanical strength of the joint may decrease. It is estimated that this has occurred.

N[Li2はCVD法でコーティングを行った接合材で
あり、適正なコーティングを確保するためには、110
0°Cという高い基材加熱温度が必要になり、その結果
、接合部の機械的強度低下を生じている。
N[Li2 is a bonding material coated by CVD method, and in order to ensure proper coating, 110
A high base material heating temperature of 0°C is required, resulting in a decrease in the mechanical strength of the joint.

Li7.toは従来の接合材で、接合部にコーティング
が行われていないために、腐食を抑制し得ていない。
Li7. TO is a conventional bonding material, and since the bonded portion is not coated, corrosion cannot be suppressed.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発朋の接合材は、接
合部を低コストなコーテイング材で覆い、腐食原因とな
る金属間化合物の生成状況に関係なく、接合部の耐食劣
化を防止し得る。したがって、接合部にTa等の高価な
インサート材を介在させる必要がなく、インサート材を
介在させなくてもインサート材を介在させた場合よりも
優れた耐食性を示し、なおかつ経済性に優れる。更に、
コーティングにともなう接合部の機械的強度低下も殆ど
生じない。
As is clear from the above explanation, our joint material covers the joint with a low-cost coating material and prevents deterioration of the corrosion resistance of the joint, regardless of the state of formation of intermetallic compounds that cause corrosion. obtain. Therefore, there is no need to use an expensive insert material such as Ta in the joint, and even if no insert material is used, it exhibits better corrosion resistance than when an insert material is used, and is more economical. Furthermore,
There is almost no decrease in mechanical strength of the joint due to coating.

また、本発明の製造方法は、接合部の機械的強度の低下
なしに上記接合材を製造することができる。
Moreover, the manufacturing method of the present invention can manufacture the above-mentioned bonding material without reducing the mechanical strength of the bonded portion.

したがって、本発明は例えば異材継手、あるいはその素
材に適用して、異材継手にそのコストを高めることなく
長期間安定な耐久性を付与し得る。
Therefore, the present invention can be applied to, for example, dissimilar material joints or their materials to provide long-term stable durability to dissimilar material joints without increasing their cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は異材継手の説明図、第2図は試験片の寸法図で
ある。 図中:lO:異材継手。
FIG. 1 is an explanatory diagram of a dissimilar material joint, and FIG. 2 is a dimensional diagram of a test piece. In the figure: lO: dissimilar material joint.

Claims (1)

【特許請求の範囲】 1、Zr系材料またはTi系材料とステンレス鋼との接
合部周囲に、接合部を覆うように窒化珪素が1μm以上
の厚みにコーティングされていることを特徴とする高耐
食性異材接合材。 2、請求項1に記載のコーティングを行うにあたり、基
材温度を800℃以下に制限することを特徴とする高耐
食性異材接合材の製造方法。
[Claims] 1. High corrosion resistance characterized by coating the joint between Zr-based material or Ti-based material and stainless steel with silicon nitride to a thickness of 1 μm or more so as to cover the joint. Dissimilar material joining material. 2. A method for producing a highly corrosion-resistant dissimilar material bonding material, which comprises limiting the base material temperature to 800° C. or lower when coating according to claim 1.
JP2837189A 1989-02-07 1989-02-07 Highly corrosion resistant different joining material and production thereof Pending JPH02207985A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2837189A JPH02207985A (en) 1989-02-07 1989-02-07 Highly corrosion resistant different joining material and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2837189A JPH02207985A (en) 1989-02-07 1989-02-07 Highly corrosion resistant different joining material and production thereof

Publications (1)

Publication Number Publication Date
JPH02207985A true JPH02207985A (en) 1990-08-17

Family

ID=12246769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2837189A Pending JPH02207985A (en) 1989-02-07 1989-02-07 Highly corrosion resistant different joining material and production thereof

Country Status (1)

Country Link
JP (1) JPH02207985A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05185250A (en) * 1991-12-13 1993-07-27 Power Reactor & Nuclear Fuel Dev Corp Joining material for different kinds of metal
KR100404612B1 (en) * 2000-12-28 2003-11-05 한국전력공사 Method for the detection of radiation source and the measurement of radiation
JP2010501360A (en) * 2006-08-30 2010-01-21 フルオー・テクノロジーズ・コーポレイシヨン Composition and method for welding dissimilar materials

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05185250A (en) * 1991-12-13 1993-07-27 Power Reactor & Nuclear Fuel Dev Corp Joining material for different kinds of metal
KR100404612B1 (en) * 2000-12-28 2003-11-05 한국전력공사 Method for the detection of radiation source and the measurement of radiation
JP2010501360A (en) * 2006-08-30 2010-01-21 フルオー・テクノロジーズ・コーポレイシヨン Composition and method for welding dissimilar materials
US8695868B2 (en) 2006-08-30 2014-04-15 Fluor Technologies Corporation Compositions and methods for dissimilar material welding

Similar Documents

Publication Publication Date Title
CN104204268A (en) Cast product having alumina barrier layer, and method for manufacturing same
JPH02207985A (en) Highly corrosion resistant different joining material and production thereof
US5998041A (en) Joined article, a process for producing said joined article, and a brazing agent for use in producing such a joined article
JP5950791B2 (en) Composite member made of corrosion-resistant Ni-based alloy and aluminum or aluminum alloy
US6855212B2 (en) Elevated temperature oxidation protection coatings for titanium alloys and methods of preparing the same
CN110402300A (en) The manufacturing method and cylinder type sputtering target of cylinder type sputtering target
JP3240211B2 (en) Copper-aluminum dissimilar metal joint material
US6720086B1 (en) Liquid interface diffusion bonding of nickel-based superalloys
EP0922682A1 (en) Method of forming a joint between a ceramic substrate and a metal component
JP2022095363A (en) Cladding material and production method
JPH0289589A (en) Bond for unlike materials having high corrosion resistance and its production
JPS59178188A (en) Method of diffusing and joining aluminum surface and diffusion joining product
JP2541377B2 (en) Method for producing copper / stainless steel composite material
JPS61245993A (en) Brazing filler metal for joining of al and al alloy
US1043579A (en) Chemical vessel.
JPS6152996A (en) Method of joining stainless steel to ti base or zr base metal
JPH05345969A (en) Al series alloy metallic material excellent in solderability and plating adhesion
JP3587944B2 (en) High frequency resistance welding method for plated steel sheet containing Al in plating layer
JP3753777B2 (en) Brazing method for hot-dip aluminized steel sheet
JP6689309B2 (en) Sputtering target member, sputtering target assembly, and method for manufacturing sputtering target member
JPS60166195A (en) Brazing filler metal consisting of active metal
JPH0671427A (en) Brazing method for tial
JPH01183477A (en) Method for bonding metal to ceramic
JP2682304B2 (en) Amorphous coating method
JPH01278978A (en) Manufacture of dissimilar joining pipe