JPH01183477A - Method for bonding metal to ceramic - Google Patents

Method for bonding metal to ceramic

Info

Publication number
JPH01183477A
JPH01183477A JP624888A JP624888A JPH01183477A JP H01183477 A JPH01183477 A JP H01183477A JP 624888 A JP624888 A JP 624888A JP 624888 A JP624888 A JP 624888A JP H01183477 A JPH01183477 A JP H01183477A
Authority
JP
Japan
Prior art keywords
metal
ceramic
bonding
contact
deposited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP624888A
Other languages
Japanese (ja)
Other versions
JPH0686340B2 (en
Inventor
Katsushiro Teramoto
寺本 勝四郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagasaki Prefectural Government
Original Assignee
Nagasaki Prefectural Government
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagasaki Prefectural Government filed Critical Nagasaki Prefectural Government
Priority to JP63006248A priority Critical patent/JPH0686340B2/en
Publication of JPH01183477A publication Critical patent/JPH01183477A/en
Publication of JPH0686340B2 publication Critical patent/JPH0686340B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • C04B37/026Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of metals or metal salts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/121Metallic interlayers based on aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/122Metallic interlayers based on refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/123Metallic interlayers based on iron group metals, e.g. steel
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/343Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/345Refractory metal oxides
    • C04B2237/348Zirconia, hafnia, zirconates or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/405Iron metal group, e.g. Co or Ni
    • C04B2237/406Iron, e.g. steel
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/78Side-way connecting, e.g. connecting two plates through their sides

Abstract

PURPOSE:To improve the wetting properties and enable bonding in no need of silver solder in low costs without adverse effect on working environment, by forming metal thin films on the surfaces of the sintered product by vacuum metallization, setting the metal to be joined to the ceramic and bonding them under vacuum. CONSTITUTION:The ceramic base such as alumina is abrased for mirror finishing, cleansed with acetone by the ultrasonic rinsing or by the sputtering. Then, the faces to be bonded is metallized by ion plating with a metal such as Al, Ti, Ni or the like to form thin metal films. The metallized ceramic is brought into contact with the metal to be bonded such as Al or stainless steel and heated over the melting point of the metal to bond the metal to the ceramic.

Description

【発明の詳細な説明】 10発明の目的 (1)産業上の利用分野 本発明は、金属(合金を含む)とセラミックスが真空蒸
着した密着性の良い金属(合金を含む)薄膜を介して均
一に接触し、且つ濡れ易く改善した拡散接合方法に関す
る。
Detailed Description of the Invention 10 Objectives of the Invention (1) Industrial Field of Application The present invention provides a method for uniformly dissolving metals (including alloys) and ceramics through a vacuum-deposited thin film of metals (including alloys) with good adhesion. It relates to a diffusion bonding method that is improved in contact with and wettability.

(2)従来の技術 従来、金属とセラミックスの接合としては次のような方
法でなされている。
(2) Prior Art Conventionally, metals and ceramics have been joined by the following methods.

(ア)ろう材として銀ろうを基調とした酸化物系(非酸
化物系もあり)ろう材を塗布して、両材料を加圧するな
どの拡散接合方法。
(a) A diffusion bonding method in which an oxide-based (non-oxide-based brazing material is also available) based on silver solder is applied as a brazing material, and both materials are pressurized.

(イ)機械的な方法として、ボルト、圧入、焼ばめ、溶
接、鋳ぐるみ等の手段を利用したり、化学的な方法とし
て接着剤を使用したりするなどの方法が考えられていた
が1機械的な接合部分で亀裂が発生してり、接合強度が
十分でなかったりするなどの問題を有していた。
(b) Mechanical methods such as bolts, press fitting, shrink fitting, welding, casting, etc., and chemical methods such as using adhesives were considered. 1) There were problems such as cracks occurring at the mechanical joints and insufficient joint strength.

(つ)セラミックスが非常に脆いため、金属との精密溶
接に最近レーザー等を使用する研究が進められているが
、加工コストが嵩む等′の問題がある。
(1) Since ceramics are extremely brittle, research into using lasers and the like for precision welding with metals has recently been progressing, but there are problems such as increased processing costs.

(3)発明が解決しようとする問題点 本発明は上述した従来の問題点に着目してなされたもの
で、高価な銀ろう材等を必要とせず精密部品に対する接
合も容易であり、材料を溶解したり、接着剤を塗布した
りすることなく金属とセラミックスとの接合を行なうこ
とができる方法を提供することを目的とする。
(3) Problems to be Solved by the Invention The present invention has been made by focusing on the above-mentioned problems of the conventional art. It is an object of the present invention to provide a method that can join metal and ceramics without melting or applying adhesive.

■1発明の構成 (1)問題点を解決するための手段 上記目的を達成するために1本発明は、金属とセラミッ
クスの接合界面が強固であることと熱応力の緩和とは互
いに矛盾する性格が強い因子ではあるが、界面に接合構
造が形成されれば1両者を兼備させることは可能であり
、相互拡散、物理化学の難易、熱膨張の相違、濡れ広が
りの難易を考慮して材料どうしが均一に接触するため、
セラミックス基材表面に金属(合金を含む)の薄膜を蒸
着する。
■1 Structure of the Invention (1) Means for Solving the Problems In order to achieve the above objects, the present invention is based on the following: A strong bonding interface between metal and ceramics and relaxation of thermal stress are contradictory to each other. is a strong factor, but it is possible to have both if a bonding structure is formed at the interface, and it is possible to combine materials by taking into account mutual diffusion, physical and chemical difficulties, differences in thermal expansion, and difficulty in wetting and spreading. contact evenly,
A thin film of metal (including alloys) is deposited on the surface of a ceramic substrate.

この場合、蒸着膜自体を学術上は接合と呼ぶが固着薄膜
は、接合しようとする金属(合金を含む)とセラミック
ス基材の接触角(濡れ性)を改善する役目がある。さら
に、接合金属(アルミニウム。
In this case, the deposited film itself is academically called a bond, but the fixed thin film has the role of improving the contact angle (wettability) between the metal (including alloy) and the ceramic substrate to be bonded. In addition, bonding metal (aluminum).

ステンレス等)を重ねて、両材料を当接し、真空度が1
0−5torr以下の状態で、接合金属の融点以上で拡
散接合されることを特徴とする。
(stainless steel, etc.), place both materials in contact, and make sure the degree of vacuum is 1.
It is characterized in that diffusion bonding is performed at a temperature of 0-5 torr or less and above the melting point of the bonding metal.

(2)作用 イオンプレーティングに際しては、セラミ・ノクス基材
を前処理として鏡面仕上研磨し、アセトンで超音波洗浄
する。100mA、0.8kv、4XIO−2torr
でのアルゴン雰囲気でスパッタクリーニング(物理洗浄
)をする、蒸着材料としては、別添第2図、第3図より
金属−セラミックス接合体の応力分布は、接合界面近く
のセラミツ磨基材の金属蒸着に与える基板加熱の影響は
蒸着粒子形状および表面組織に変化がみられるので適宜
選択する必要がある。
(2) Effect When performing ion plating, the ceramic/nox base material is polished to a mirror finish as a pretreatment and is ultrasonically cleaned with acetone. 100mA, 0.8kv, 4XIO-2torr
Sputter cleaning (physical cleaning) is performed in an argon atmosphere at The influence of substrate heating on the evaporation particle shape and surface structure change, so it is necessary to select the effect appropriately.

電子ビーム蒸発源を用いると高融点材の蒸発が可能であ
るという利点の他に蒸発粒子のイオン化が高まるので電
子ビーム出力に応じ蒸着時間を設定する。よって、イオ
ンを作用させながら基板上に金属蒸発物質を堆積させ密
着性の良い皮膜を形成する。接合しようとする金属を蒸
着薄膜上に重ね両材料を当接し、10 5torr、接
合金属材の融点以上に加熱することにより金属蒸着膜が
、ろう材(接着材)の役目をなすと同時に両材料の接触
面積を均一に拡大し、濡れ性を大巾に改善する。
Using an electron beam evaporation source has the advantage that it is possible to evaporate a high melting point material and also increases the ionization of evaporated particles, so the evaporation time is set in accordance with the electron beam output. Therefore, a metal evaporated substance is deposited on the substrate while ions are applied to form a film with good adhesion. The metal to be bonded is placed on the vapor-deposited thin film, and both materials are brought into contact with each other.The metal vapor-deposited film acts as a brazing material (adhesive) and at the same time, the two materials are heated to 105 torr above the melting point of the bonding metal. uniformly expands the contact area and greatly improves wettability.

(詳細は以下の作用による) つまり、セラミックスと金属表面の凸の部分が接触する
と蒸着膜が接触面積を増加し、この状態で温度が上昇し
、当接による接触圧力も増すことにより金属側の表面が
降伏やクリープにより塑性変形し、接触面積が倍加する
。(第1段階)次に塑性変形よりも蒸着膜による表面拡
散が主になり薄膜金属と接合金属、セラミックスとWl
l金金属反応により空洞の消滅と接触面積の拡大が進む
、(第2段階) 最後に体積拡散が主になるが1反応層(蒸着膜)を用い
ている事により界面の移動、空洞の消滅の進度が従来の
同相拡散接合法(別添第4図)より速く接合が完了する
。又、局部加熱でないので接合温度からの冷却が緩和さ
れ、セラミックスの応力集中をも緩和され割れを生じ難
い。
(Details are based on the following effects.) In other words, when the convex part of the ceramic and metal surface comes into contact, the vapor deposited film increases the contact area, and in this state, the temperature rises and the contact pressure due to contact increases, so that the metal side The surface undergoes plastic deformation due to yielding and creep, and the contact area doubles. (First stage) Next, surface diffusion due to the vapor deposited film becomes the main factor rather than plastic deformation, and the thin film metal and bonding metal, ceramics and Wl
1) The gold metal reaction causes the cavity to disappear and the contact area to expand. (2nd stage) In the end, volumetric diffusion becomes the main cause, but 1) By using a reaction layer (deposited film), the interface moves and the cavity disappears. The progress of bonding is faster than that of the conventional in-phase diffusion bonding method (see attached Figure 4). In addition, since there is no local heating, cooling from the bonding temperature is relaxed, and stress concentration in the ceramics is also relaxed, making it difficult for cracks to occur.

(3)実施例 本発明の実施例を図面にもとづいて説明する。(3) Examples Embodiments of the present invention will be described based on the drawings.

幅5■、厚さ3m、長さ25mの接合材を第1図に示す
ように突き合せる。セラミックス■には膜厚2ミクロン
の金属をイオンプレーティングにより蒸着しており接合
金属■との当接には当接片■を使用する。しかるのち、
真空炉■にて1O−storr、接合金属の溶融点以上
に加熱設定して実験した。また曲げ強度は3点曲げ試験
を行って測定した。その結果を表−1に記した。なお、
セラミックス−金属蒸着膜−接合金属との接触角(濡れ
性)の測定結果は第5図、第6図、第7図。
Bonding materials having a width of 5 cm, a thickness of 3 m, and a length of 25 m are butted together as shown in FIG. A metal with a thickness of 2 microns is deposited on the ceramic (2) by ion plating, and a contact piece (2) is used to contact the bonding metal (2). Afterwards,
An experiment was conducted in a vacuum furnace (1) with heating set to 1 O-storr above the melting point of the joining metal. Further, the bending strength was measured by performing a three-point bending test. The results are shown in Table-1. In addition,
The measurement results of the contact angle (wettability) between ceramic-metal deposited film-bonding metal are shown in Figs. 5, 6, and 7.

第8図に示す、第5図はチタンを蒸着したアルミナ基板
上のアルミニウムの接触角、第6図はアルミニウムを蒸
着したアルミナ基板上のアルミニウムの接触角、第7図
はニッケルを蒸着したアルミナ基板上のステンレス(J
IS規格SUS 310相当品)の接触角及び第8図は
ニッケルを蒸着したジルコニア基板上のステンレス(J
 I SM格5US310相当品)の接触角の実験であ
り、両材料を無拘束の状態で重ね合せた条件での測定結
果を示す。
Figure 8 shows the contact angle of aluminum on an alumina substrate on which titanium is deposited, Figure 6 is the contact angle of aluminum on an alumina substrate on which aluminum is deposited, and Figure 7 is on an alumina substrate on which nickel is deposited. Upper stainless steel (J
The contact angle and Figure 8 show the contact angle of stainless steel (J
This is an experiment on the contact angle of ISM grade 5US310 (equivalent to ISM grade 5US310), and the measurement results are shown under the condition that both materials were overlapped in an unrestricted state.

なお、第5図、第6図の測定試験片の作成条件を表−2
1表−3に示し、第7図、第8図の測定試験片の作成条
件を表−4、表−5に示す、。
The preparation conditions for the measurement test pieces shown in Figures 5 and 6 are shown in Table 2.
1 Table-3 shows the preparation conditions for the measurement test pieces shown in FIGS.

表−1に関係する実験としてチタン及びアルミニウムを
蒸着したアルミナ基板上のアルミニウムの接触角を測定
した結果を別添第5図、第6図に示すが、その試料作成
条件を表−2、表−3に示す。
As an experiment related to Table-1, the results of measuring the contact angle of aluminum on an alumina substrate on which titanium and aluminum were vapor-deposited are shown in attached Figures 5 and 6, and the sample preparation conditions are shown in Table-2 and Table-1. -3.

表−2 第5図よりチタンを蒸着したアルミナ基板上のアルミニ
ウムの接触角は900℃〜950℃にて特に小さくなる
。第6図よりアルミニウムを蒸着したアルミナ基板上の
アルミニウムの接触角は、700℃〜930℃にて小さ
く、濡れ性は良い。
Table 2 From FIG. 5, the contact angle of aluminum on an alumina substrate on which titanium is vapor-deposited becomes particularly small at 900°C to 950°C. From FIG. 6, the contact angle of aluminum on the alumina substrate on which aluminum is vapor-deposited is small at 700° C. to 930° C., and the wettability is good.

表1に従い、ニッケルを蒸着したアルミナ基板及びジル
コニア基板上のステンレス(SUS310)の接触角測
定結果を別添第7図、第8図に示すが、その試料作成条
件を表−4、表−5に示す。
According to Table 1, the contact angle measurement results of stainless steel (SUS310) on an alumina substrate and a zirconia substrate on which nickel is vapor-deposited are shown in attached Figures 7 and 8, and the sample preparation conditions are shown in Tables 4 and 5. Shown below.

表−4 以上、第7図よりニッケルを蒸着したアルミナ基板上の
ステンレス(SUS310)の接触角は1500℃〜1
570℃にて小さく濡れ性は良い。
Table 4 From the above and Figure 7, the contact angle of stainless steel (SUS310) on an alumina substrate coated with nickel is 1500℃~1
It is small and has good wettability at 570°C.

第8図よりニッケルを蒸着したジルコニア基板上のステ
ンレス(SUS 310)の接触角は1470℃以上に
て小さく濡れ性は良い。
From FIG. 8, the contact angle of stainless steel (SUS 310) on a zirconia substrate on which nickel is vapor-deposited is small at 1470° C. or higher, and the wettability is good.

■1発明の詳細 な説明したように、本発明によれば、金属とセラミック
スが真空蒸着した密着性の良い金属薄膜を介して均一に
接触し、従来のろう材等の介装材にみられる加熱昇温時
に見られるダレ及びモレ現象がなく且つ接触面積を拡大
するので濡れ易く改善される。従って高価な銀ろう材等
を必要とせず精密部品に対する接合も容易であり、材料
を溶解したり、接着剤を塗布することもなく作業環境が
改善される。
■1 As explained in detail about the invention, according to the present invention, metal and ceramic are brought into uniform contact through a vacuum-deposited metal thin film with good adhesion, which is similar to that seen in conventional intervening materials such as brazing filler metal. There is no sagging or leaking phenomenon that occurs when the temperature is heated, and the contact area is expanded, which improves wettability. Therefore, it is easy to join precision parts without requiring expensive silver brazing material, and the work environment is improved without melting materials or applying adhesives.

又1局部加熱でないので接合温度からの冷却が緩和され
、セラミックスの応力集中をも緩和され割れを生じ難く
、加工コストが比較的安価ある等のすぐれた効果を有す
る。
In addition, since there is no local heating, cooling from the bonding temperature is eased, stress concentration in the ceramic is also eased, and cracks are less likely to occur, and processing costs are relatively low.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はセラミックスに金属蒸着膜を作成した片に金属
を突き合せて当接し真空炉に設定した状況図。 第2図、第3図、第4図は本発明に係る接合理由(理論
)に関するものである。 第2図は代表的なセラミックスと金属の熱膨張係数比較
図。 第3図はセラミックス−金属接合体を接合温度より冷却
した時に発生する最大引張応力の発生位置と方向図(破
線は破壊の生じる面を示すが■は接合金属、■はセラミ
ックス材) 第4図は同相拡散接合の3段階過程を示す図(■は接合
金属、■はセラミックス材、■は接触面の空洞図、) 第5図はチタンを蒸着したアルミナ基板上のアルミニウ
ムの接触角を測定した結果を示す図。 第6図はアルミニウムを蒸着したアルミナ基板上のアル
ミニウムの接触角を測定した結果を示す図。 第7図はニッケルを蒸着したアルミナ基板上のステンレ
ス(SUS310相当品)の接触角を測定した結果を示
す図。 第8図はニッケルを蒸着したジルコニア基板上のステン
レス(SUS310相当品)の接触角を測定した結果を
示す図。 表−2及び表−3は上記の第4図、第6図に示す接触角
測定用試験片の材質と作成条件を示す表。 表−4及び表−5は上記の第7図、第8図に示す接触角
測定用試験片の材質と作成条件を示す表。
Figure 1 shows a situation in which a piece of ceramic with a metal vapor deposited film is brought into contact with metal and set in a vacuum furnace. FIGS. 2, 3, and 4 relate to the reason (theory) for joining according to the present invention. Figure 2 is a comparison diagram of the thermal expansion coefficients of typical ceramics and metals. Figure 3 shows the location and direction of the maximum tensile stress that occurs when the ceramic-metal bonded body is cooled below the bonding temperature (the broken line indicates the surface where fracture occurs, ■ indicates the bonded metal, and ■ indicates the ceramic material).Figure 4 Figure 5 shows the three-step process of in-phase diffusion bonding (■ is the joining metal, ■ is the ceramic material, and ■ is a cavity diagram of the contact surface). Figure 5 shows the measurement of the contact angle of aluminum on an alumina substrate on which titanium has been deposited. Diagram showing the results. FIG. 6 is a diagram showing the results of measuring the contact angle of aluminum on an alumina substrate on which aluminum is vapor-deposited. FIG. 7 is a diagram showing the results of measuring the contact angle of stainless steel (equivalent to SUS310) on an alumina substrate on which nickel is vapor-deposited. FIG. 8 is a diagram showing the results of measuring the contact angle of stainless steel (equivalent to SUS310) on a zirconia substrate on which nickel is vapor-deposited. Tables 2 and 3 are tables showing the materials and preparation conditions of the test pieces for contact angle measurement shown in FIGS. 4 and 6 above. Tables 4 and 5 are tables showing the materials and preparation conditions of the test pieces for contact angle measurement shown in FIGS. 7 and 8 above.

Claims (1)

【特許請求の範囲】[Claims] AI_2O_3等の焼結体の接合面にイオンプレーティ
ングにてアルミニウム、チタン、ニッケル等の金属を真
空蒸着して金属薄膜を作成し、アルミニウム、ステンレ
ス等の接合金属を重ねて両材料を当接し、10^−^5
torr以下の真空下で接合金属の融点以上に加熱し拡
散接合して金属とセラミックスを接合する事を特徴とす
る金属とセラミックスの接合方法。
A metal thin film is created by vacuum-depositing a metal such as aluminum, titanium, or nickel using ion plating on the bonding surface of a sintered body such as AI_2O_3, and then a bonding metal such as aluminum or stainless steel is layered and both materials are brought into contact. 10^-^5
A method for joining metals and ceramics, characterized by joining metals and ceramics by heating above the melting point of the joining metals and performing diffusion bonding under a vacuum of less than Torr.
JP63006248A 1988-01-16 1988-01-16 Method of joining solid metal and ceramics Expired - Lifetime JPH0686340B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63006248A JPH0686340B2 (en) 1988-01-16 1988-01-16 Method of joining solid metal and ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63006248A JPH0686340B2 (en) 1988-01-16 1988-01-16 Method of joining solid metal and ceramics

Publications (2)

Publication Number Publication Date
JPH01183477A true JPH01183477A (en) 1989-07-21
JPH0686340B2 JPH0686340B2 (en) 1994-11-02

Family

ID=11633190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63006248A Expired - Lifetime JPH0686340B2 (en) 1988-01-16 1988-01-16 Method of joining solid metal and ceramics

Country Status (1)

Country Link
JP (1) JPH0686340B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05117842A (en) * 1991-10-25 1993-05-14 Ulvac Japan Ltd Method for joining of metal with ceramic
US6616032B1 (en) 1998-12-23 2003-09-09 Commissariat A L'energie Atomique Brazing composition and method for brazing parts made of alumina-based materials with said composition
EP1404517B1 (en) * 2001-06-18 2017-11-15 Alfred E. Mann Foundation for Scientific Research Application and manufacturing method for a zirconia ceramic to titanium alloy metal seal
US10103410B2 (en) 2014-05-23 2018-10-16 General Electric Company Method for joining ceramic to metal, and sealing structure thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5918184A (en) * 1982-07-19 1984-01-30 住友電気工業株式会社 Ceramic metallization
JPS59227783A (en) * 1983-06-07 1984-12-21 日本特殊陶業株式会社 Ceramic-aluminum alloy bonded body
JPS61168577A (en) * 1985-01-21 1986-07-30 住友電気工業株式会社 Ceramic composite member

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5918184A (en) * 1982-07-19 1984-01-30 住友電気工業株式会社 Ceramic metallization
JPS59227783A (en) * 1983-06-07 1984-12-21 日本特殊陶業株式会社 Ceramic-aluminum alloy bonded body
JPS61168577A (en) * 1985-01-21 1986-07-30 住友電気工業株式会社 Ceramic composite member

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05117842A (en) * 1991-10-25 1993-05-14 Ulvac Japan Ltd Method for joining of metal with ceramic
US6616032B1 (en) 1998-12-23 2003-09-09 Commissariat A L'energie Atomique Brazing composition and method for brazing parts made of alumina-based materials with said composition
EP1404517B1 (en) * 2001-06-18 2017-11-15 Alfred E. Mann Foundation for Scientific Research Application and manufacturing method for a zirconia ceramic to titanium alloy metal seal
US10103410B2 (en) 2014-05-23 2018-10-16 General Electric Company Method for joining ceramic to metal, and sealing structure thereof

Also Published As

Publication number Publication date
JPH0686340B2 (en) 1994-11-02

Similar Documents

Publication Publication Date Title
US4602731A (en) Direct liquid phase bonding of ceramics to metals
US4763828A (en) Method for bonding ceramics and metals
US4225262A (en) Niobium coatings for joining ceramic to metal
JPH0249267B2 (en)
JPS61111981A (en) Method of bonding ceramic part and metal part
JPS6148135B2 (en)
TW201020332A (en) Sputter target assembly having a low-temperature high-strength bond
JPH04228480A (en) Composite being stable at high temperature and preparation thereof
US4645115A (en) Method of bonding ceramic article
JPH01183477A (en) Method for bonding metal to ceramic
US5998041A (en) Joined article, a process for producing said joined article, and a brazing agent for use in producing such a joined article
JPH0446070A (en) Method for joining metal member to ceramics or cermet member
JP2941382B2 (en) Ceramic-metal bonded body and method of manufacturing the same
JP2004529269A (en) Assembly comprising molybdenum and aluminum; Method of using an intermediate layer when making a target / backing plate assembly
Siddiqui et al. Vacuum brazing of alumina to titanium for implantable feedthroughs using pure gold as the braze metal
Turner et al. Bonding of bulk piezoelectric material to silicon using a gold-tin eutectic bond
CN211688841U (en) Joint structure for connecting ceramic and metal
JPH0142914B2 (en)
JP3930566B2 (en) Titanium member joining method using superplastic intermediate layer
JPS6351994B2 (en)
JPS60200960A (en) Formation of sputtered alloy film for diffusion joining
JPH03210455A (en) Method for testing adhesion strength of flame sprayed film
JPH0223499B2 (en)
JPH0263681A (en) Method of joining aluminum or aluminum alloy and stainless steel
JPS60152382A (en) Diffusion joining method of copper and stainless steel