JPH03210455A - Method for testing adhesion strength of flame sprayed film - Google Patents

Method for testing adhesion strength of flame sprayed film

Info

Publication number
JPH03210455A
JPH03210455A JP597790A JP597790A JPH03210455A JP H03210455 A JPH03210455 A JP H03210455A JP 597790 A JP597790 A JP 597790A JP 597790 A JP597790 A JP 597790A JP H03210455 A JPH03210455 A JP H03210455A
Authority
JP
Japan
Prior art keywords
jig
test piece
flat surface
flame sprayed
adhesion strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP597790A
Other languages
Japanese (ja)
Inventor
Masato Kurita
真人 栗田
Kazuo Toyama
外山 和男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP597790A priority Critical patent/JPH03210455A/en
Publication of JPH03210455A publication Critical patent/JPH03210455A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PURPOSE:To accurately measure adhesion strength by fixing the surface of the flame sprayed film of a test piece and the flat surface of a jig in a pressure contact state after cleaning the flame sprayed film formed to the flat surface of the test piece and the flat surface of the jig in contact with the film and applying tensile force or shearing force to the test piece and the jig. CONSTITUTION:After, the flatened surface of a flame sprayed film 3 and the flat surface of a jig 2 are polished electrochemically, sputtering is applied to the surface of the flame sprayed film 3 of a test piece 1 and the flat surface of the jig 2 to shave off the surfaces of both of them and the impurities in the vicinity thereof. Next, the flame sprayed film 3 of the test piece 1 and the flat surface of the jig 2 are mutually abutted and pressed for a predetermined time to be bonded by interatomic attraction. Subsequently, tensile force is allowed to act on the test piece 1 and the jig 2 so as to relatively move both of them and shearing force is further allowed to act on both of them in the direction parallel to the surface of the flame sprayed surface of the test piece 1 to measure the max. adhesion strength of the flame sprayed film 3 immediately before the film 3 is released.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は母材表面を保護するためにその表面に溶射され
る金属、セラミックス、サーメット等の溶射被膜の母材
に対する密着強度を試験する方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is a method for testing the adhesion strength of a thermally sprayed coating of metal, ceramics, cermet, etc. to a base material, which is thermally sprayed onto the surface of the base material in order to protect the surface of the base material. Regarding.

〔従来の技術] 溶融状態にある金属、セラミックス等を母材表面に連続
的に吹き付け、該表面に積層せしめて被膜を形成する溶
射法は、母材及び被膜材料の選択範囲が広いことから、
母材の表面保護のための有効な方法として従来から広く
採用されている。
[Prior Art] The thermal spraying method, in which metals, ceramics, etc. in a molten state is continuously sprayed onto the surface of a base material and is laminated on the surface to form a coating, has a wide selection range of base materials and coating materials.
It has been widely adopted as an effective method for protecting the surface of base materials.

特に近年、溶射技術の進歩により、溶射被膜の欠点であ
る密着強度の改善が図られ、優れた特性を有する溶射被
膜の形成が可能となるに従って、溶射法の用途は更に拡
大する傾向にあり、これに伴い溶射被膜の密着強度を正
しく評価することが重要な課題となっている。
In particular, in recent years, advances in thermal spraying technology have improved the adhesion strength, which is a drawback of thermal spray coatings, and it has become possible to form thermal spray coatings with excellent properties, so the applications of thermal spraying have tended to further expand. Correctly evaluating the adhesion strength of thermal spray coatings has therefore become an important issue.

溶射被膜に限らず各種の被膜の密着強度は、主として母
材表面と被膜との接合界面に垂直な力に対する強度を調
べる引張り密着強度試験と、同じく接合界面に沿う力に
対する強度を調べる剪断密着強度試験とによって評価さ
れる。
The adhesion strength of various types of coatings, not just thermal spray coatings, can be determined mainly by tensile adhesion strength tests, which measure the strength against forces perpendicular to the bonding interface between the base material surface and the coating, and by shear adhesion strength tests, which also measure the strength against forces along the bonding interface. It will be evaluated by the test.

第4図はJIS H8666に規定されている引張り密
着強度試験法であり、夫々−面が同形 等大の平川面と
なっている試験片11と治具12とを用意し、試験片1
1における平坦面に溶射波11j13を形成した後、治
具12における平坦面を相互に位置ずれすることなく接
着剤14を用いて溶射被膜13に貼り合せ、試験片11
.治具12を夫々ユニバーサルジヨイント15、16を
用いて引張試験機のチャック17.18に連結し、溶射
被膜13に垂直方向の力を作用させ、母材に対する溶射
被膜の密着強度を測定する方法である。
Figure 4 shows the tensile adhesion strength test method specified in JIS H8666, in which a test piece 11 and a jig 12 are prepared, each of which has a flat surface of the same shape and size, and a test piece 1 is prepared.
After forming the thermal spray waves 11j13 on the flat surface of the test piece 11, the flat surfaces of the jig 12 are bonded to the thermal spray coating 13 using the adhesive 14 without shifting the positions of the test piece 11.
.. A method of connecting the jig 12 to chucks 17 and 18 of a tensile testing machine using universal joints 15 and 16, respectively, and applying a vertical force to the sprayed coating 13 to measure the adhesion strength of the sprayed coating to the base material. It is.

第5図は「高温学会誌Vo1.3.153〜160頁1
989 Jに開示された他の溶射被膜の密着試験法であ
り、試験片21の平坦面に溶射被膜23を形成し、この
溶射被膜23に治具22の平坦面を接着剤24を用いて
貼り合せ、治具22と直接接着されない周囲の溶射被膜
23との間に溝23aを形成して分離した後、試験片2
1と治具22とを同様に、ジヨイント25.26を介し
て図示しない引張試験機のチャックに連結し、密着強度
を測定する方法である。
Figure 5 is “Journal of High Temperature Society Vol. 1.3. pp. 153-160 1
989 J, in which a thermal spray coating 23 is formed on the flat surface of a test piece 21, and the flat surface of a jig 22 is attached to this thermal spray coating 23 using an adhesive 24. After forming a groove 23a between the jig 22 and the surrounding thermal spray coating 23 that is not directly bonded and separating the test piece 2,
1 and the jig 22 are similarly connected to a chuck of a tensile tester (not shown) via joints 25 and 26, and the adhesion strength is measured.

[発明が解決しようとする課題] ところで上述した如き従来の方法は溶射被膜1323に
垂直方向の引張り力を付与するため、溶射被膜13.2
3の表面に接着剤14.24を用いて治具12゜22を
固定している。しかし被膜の密着強度が接着剤強度より
も小さいときは問題を生じないが、密着強度が接着剤強
度よりも大きい場合は測定出来ず、また接着剤を使用出
来ない高温雰囲気下、或いは接着剤が溶解するような液
体中での測定も出来ないという問題があった。
[Problems to be Solved by the Invention] By the way, in the conventional method as described above, in order to apply a tensile force in the vertical direction to the thermal sprayed coating 1323, the thermal sprayed coating 13.2
A jig 12° 22 is fixed to the surface of 3 using an adhesive 14, 24. However, if the adhesion strength of the film is lower than the adhesive strength, no problem will occur, but if the adhesion strength is greater than the adhesive strength, measurement will not be possible, or in a high temperature atmosphere where adhesive cannot be used, or if the adhesive is There was also a problem in that it was impossible to measure in liquids that would dissolve it.

例えばエポキシ樹脂形の接着剤は150’C〜300″
Cで接着力を失い、またエポキシ樹脂系の接着剤はニト
ロペンゾール等の有機溶媒で溶解するためこのような溶
液中では使用出来ない。また溶射被膜の膜厚は高々数馬
程度であるから、溶接等の熱的、又は力学的な影響を与
える手段も使用することが出来ない。
For example, epoxy resin type adhesive is 150'C~300''
C loses its adhesive strength, and epoxy resin adhesives cannot be used in such solutions because they are dissolved in organic solvents such as nitropenzole. Furthermore, since the thickness of the thermally sprayed coating is approximately a few inches at most, means such as welding that exert a thermal or mechanical influence cannot be used.

本発明はかかる事情に鑑みなされたものであって、その
目的とするところは接着剤強度を越える密着強度を有す
る溶射被膜、或いは接着剤の使用が難しい環境下での密
着強度測定が可能な溶射被膜の密着強度試験方法を提供
するにある。
The present invention was made in view of the above circumstances, and its purpose is to provide a thermal sprayed coating that has an adhesion strength exceeding that of an adhesive, or a thermal sprayed coating that allows adhesion strength measurement in environments where it is difficult to use adhesives. The present invention provides a method for testing the adhesion strength of a film.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る溶射被膜の密着強度試験方法は、試験片の
平坦面に形成した溶射被膜面に治具の平坦面を固定し、
試験片と治具との相対移動によって前記溶射被膜に、こ
れと直交する向きの引張り力、又は剪断力を付与する溶
射被膜の密着強度試験方法において、前記試験片の平坦
面に形成した溶射被膜及びこれに接合すべき治具の平坦
面をスパッタリングしてその表面を清浄化した後、試験
片の溶射被膜面と治具の平坦面とを圧接固定せしめ、前
記試験片と治具とに引張り力又は剪断力を付与せしめる
ことを特徴とする。
The adhesion strength test method for thermal sprayed coatings according to the present invention involves fixing the flat surface of a jig to the thermal sprayed coating surface formed on the flat surface of a test piece,
A thermal sprayed coating formed on a flat surface of the test piece in a method for testing the adhesion strength of a thermal sprayed coating in which a tensile force or a shearing force in a direction perpendicular to the thermal sprayed coating is applied to the thermal sprayed coating by relative movement between the test piece and a jig. After cleaning the surface by sputtering the flat surface of the jig to be joined to this, the sprayed coating surface of the test piece and the flat surface of the jig are fixed by pressure, and the test piece and the jig are pulled together. It is characterized by applying force or shearing force.

(作用〕 本発明にあってはこれによって、接着剤を使用する必要
がなく接着剤の特性に影響されることなく測定が可能と
なる。
(Function) According to the present invention, it is not necessary to use an adhesive and measurement can be performed without being influenced by the characteristics of the adhesive.

〔実施例〕〔Example〕

以下本発明を図面に基づき具体的に説明する。 The present invention will be specifically explained below based on the drawings.

第1図は本発明に係る溶射被膜の密着強度試験方法の主
要工程を示す模式図、第2図は同じくそのフローチャー
トである。
FIG. 1 is a schematic diagram showing the main steps of the method for testing the adhesion strength of thermally sprayed coatings according to the present invention, and FIG. 2 is a flowchart thereof.

先ず同形1等大の平坦面を有する試験片1及び治具2を
用意し、第1図(a)に示す如く試験片lの平坦面に溶
射ノズル5を対向させ、溶射被膜3を形成する(ステッ
プSt)。試験片lと治具2とはその平坦面を同形2等
大にするのが応力集中を回避し、測定精度を高め、測定
作業を容易にするうえで望ましいが、特にこれにのみ限
るものではなく、例えば試験片1の平坦面面積が治具2
のそれよりも広い場合には第5図に示した如く治具2の
平坦面と対間しない周囲の溶射被膜3との間に溝を形成
してこれをカットすればよい。
First, a test piece 1 and a jig 2 having flat surfaces of the same shape and size are prepared, and a thermal spray nozzle 5 is opposed to the flat surface of the test piece 1 as shown in FIG. 1(a) to form a thermal spray coating 3. (Step St). It is desirable that the flat surfaces of the test piece 1 and the jig 2 be made to have the same shape and two equal sizes in order to avoid stress concentration, improve measurement accuracy, and facilitate measurement work, but this is not the only option. For example, if the flat surface area of test piece 1 is
If the width is wider than that, a groove may be formed between the flat surface of the jig 2 and the surrounding thermally sprayed coating 3 not in contact with each other, as shown in FIG. 5, and the groove may be cut.

次に溶射被膜3を機械研摩により平坦化しくステップS
2)、また平坦化した溶射被膜3の表面及び治具2の平
坦面に電気化学的に研摩を施した後(ステップS3)、
試験片1と治具2とを図示しないチャンバの中にセット
し、この状態で第1図(b)に示す如く相互に接合させ
るべき試験片1の溶射被膜3の表面及び治具2の平坦面
にイオンビーム、或いは中性高速粒子線を照射し、その
スパッタ作用によって両者の表面及びその近傍の不純物
、例えば酸化物の数原子層分(厚さ0.1μm)を削り
落とす(ステップS4)。
Next, step S is to flatten the sprayed coating 3 by mechanical polishing.
2), and after electrochemically polishing the surface of the flattened sprayed coating 3 and the flat surface of the jig 2 (step S3),
The test piece 1 and the jig 2 are set in a chamber (not shown), and in this state, as shown in FIG. The surfaces are irradiated with an ion beam or a neutral high-velocity particle beam, and impurities on and near both surfaces, such as several atomic layers (thickness 0.1 μm) of oxide, are scraped off by the sputtering action (step S4).

なお、前記チャンバ内は、後述する接合において試験片
lの溶射被膜3と治具2との平坦面同士の接合に支障を
きたすような生成物が生じない雰−気であればよい。例
えば、Ar等の不活性ガスを混入させた雰囲気であって
もよいし、また真空雰囲気としてもよい。Ar等の不活
性ガスを混入させた雰囲気としてもAr等の不活性ガス
は、接合面に不純物として残ることはなく、接合に支障
はきたさない。また真空雰囲気としても無論好ましくな
い生成物を生じることはなく、接合に支障はない。
The inside of the chamber may be in an atmosphere as long as it does not generate any products that may interfere with the bonding of the flat surfaces of the thermally sprayed coating 3 of the test piece 1 and the jig 2 during bonding, which will be described later. For example, an atmosphere mixed with an inert gas such as Ar may be used, or a vacuum atmosphere may be used. Even in an atmosphere containing an inert gas such as Ar, the inert gas such as Ar does not remain as an impurity on the bonding surface and does not interfere with bonding. Moreover, even in a vacuum atmosphere, no undesirable products are produced, and there is no problem in bonding.

なお、真空雰囲気の場合は、10− ”Pa程度の高真
空にするのが好ましい。
In the case of a vacuum atmosphere, it is preferable to use a high vacuum of about 10-''Pa.

次に第1図(C)に示す如く試験片lの溶射被膜3と治
具2との平坦面同士を突き合せ、100MPa程度の圧
力で所定時間加圧して両者を原子間引力にて接合せしめ
る(ステップS5)、その後はそのままチャンバ内で、
又は大気中に出して引張試験機によって試験片1と治貧
2とを相対移動させるべく引張り力を作用させ、また試
験片1の溶射被膜3の面と平行な向きの剪断力を作用さ
せ、溶射被膜が剥離する直前の最大密着強度を測定する
(ステップS6)。
Next, as shown in FIG. 1(C), the flat surfaces of the thermal spray coating 3 of the test piece 1 and the jig 2 are brought into contact with each other, and a pressure of about 100 MPa is applied for a predetermined period of time to bond them together by atomic attraction. (Step S5), then in the chamber as it is,
Or put it out in the atmosphere and apply a tensile force to move the test piece 1 and the anti-oxidant 2 relative to each other using a tensile tester, and also apply a shearing force in a direction parallel to the surface of the thermal spray coating 3 of the test piece 1, The maximum adhesion strength immediately before the sprayed coating peels off is measured (step S6).

なお、治具2の材質は特に限定するものではないが、溶
射被膜3の材料と同質の材料、例えば溶射材がセラミッ
クスの場合は同じセラミックス又は焼結材を用いると、
溶射被膜3との密着性が高くなり、試験中温度上昇によ
る膨張率の差によって溶射被膜3と治具2との平坦面と
の間に作用する熱応力の影響を回避出来て測定精度を一
層高め得る効果がある。
Note that the material of the jig 2 is not particularly limited, but if the same material as the material of the thermal spray coating 3 is used, for example, if the thermal spray material is ceramic, the same ceramic or sintered material may be used.
The adhesion with the sprayed coating 3 is increased, and the influence of thermal stress that acts between the sprayed coating 3 and the flat surface of the jig 2 due to the difference in expansion coefficient due to temperature rise during the test can be avoided, further improving measurement accuracy. There are effects that can be enhanced.

〔試験例] 次に本発明方法と本発明方法に属さない方法とについて
の比較試験につき具体的に説明する。
[Test Example] Next, a comparative test between the method of the present invention and a method that does not belong to the method of the present invention will be specifically explained.

先ず本発明例1は、−殻構造用圧延!iii!(JIS
 5S41)製であって直径25mmの平坦面を持つ試
験片と、縦30nm、横30Ilfllの矩形平坦面を
有する同じ< JIS 5SJI製の治具を用意し、試
験片の平坦面を機械研摩を施した後、脱脂し、サンドブ
ラストによる前処理を施し、N1−A/!系の下地溶射
を行って厚さ0.1〜0.2 ff1mの溶射被膜を形
成した後、更にその上にプラズマ溶射法によって八!2
0.を厚さ500μm堆積した。
First, Example 1 of the present invention is - Rolling for shell structure! iii! (JIS
5S41) with a flat surface of 25 mm in diameter, and a jig made of the same < After that, it was degreased and pre-treated by sandblasting, and N1-A/! After performing base thermal spraying of the system to form a thermal spray coating with a thickness of 0.1 to 0.2 ff1m, a plasma spraying method is further applied on top of the thermal spray coating. 2
0. was deposited to a thickness of 500 μm.

このプラズマ溶射の条件は溶射材である^i!20゜粉
末の供給速度: 90g/分、粉末用キャリアガス(A
r)流量:371/分、プラズマ電圧ニア0V、を流:
500Aである。
The conditions for this plasma spraying are the thermal spraying material ^i! 20° powder supply rate: 90g/min, powder carrier gas (A
r) Flow rate: 371/min, plasma voltage near 0V, flow:
It is 500A.

次に試験片に形成した溶射被膜表面を機械研摩し、この
試験片の溶射被膜表面及び治具の平坦面に電気化学的研
摩を施した後、これらをチャンバ内に配置し、10− 
’Paに減圧し、ビームエネルギ1゜5にνで中性Ar
粒子線を用いて溶射被膜表面及び治具の平坦面を同時に
約20分間スパッタリングし、表面の清浄化を行う。こ
れによって溶射被膜の表面及び治具の平坦面の原子は活
性化、即ち反応性に冨んだ状態となるから、直ちに常温
下で試験片の溶射被膜表面と治具の平坦面とを突き合せ
、約20 kgf / m ”相応の荷重を約20分間
加えることにより相互に原子間引力により接合させる。
Next, the surface of the sprayed coating formed on the test piece is mechanically polished, and the surface of the sprayed coating of this test piece and the flat surface of the jig are electrochemically polished, and then these are placed in a chamber.
'Pa, neutral Ar with beam energy 1°5 and ν.
The sprayed coating surface and the flat surface of the jig are simultaneously sputtered for about 20 minutes using a particle beam to clean the surface. As a result, the atoms on the surface of the sprayed coating and the flat surface of the jig become activated, that is, become highly reactive, so immediately compare the surface of the sprayed coating on the test piece with the flat surface of the jig at room temperature. , about 20 kgf/m'' for about 20 minutes to bond them together by atomic attraction.

また本発明例2は治具の材料としてMg(1を0.1%
添加したA l2zoaセラミツクスを使用し、他の条
件を本発明例1と同しとした場合である。
In addition, in Example 2 of the present invention, Mg (1 is 0.1%
This is a case where the added Al2zoa ceramics were used and the other conditions were the same as in Example 1 of the present invention.

更に従来例は試験片、治具の材料として5S41を使用
し、また溶射被膜と治具の平坦面とを固定するための接
着剤としてエポキシ系アラルダイト^Tlを用いた。
Further, in the conventional example, 5S41 was used as the material for the test piece and the jig, and epoxy Araldite^Tl was used as the adhesive for fixing the sprayed coating and the flat surface of the jig.

このような本発明例1.2、従来例を引張試験機にかけ
温度を300に〜800にの範囲で変化させて引張荷重
を印加し、溶射被膜が剥離したときの最大引張荷重を溶
射被膜面積で除した値を密着強度とした。結果は第3図
に示すとおりである。
Examples 1 and 2 of the present invention and the conventional example were applied to a tensile tester at a temperature ranging from 300 to 800, and a tensile load was applied, and the maximum tensile load when the sprayed coating peeled off was calculated as the area of the sprayed coating. The value divided by is taken as the adhesion strength. The results are shown in Figure 3.

第3図は横軸に温度(k)を、また縦軸に密着強!(M
Pa)をとって示しである。グラフ中○印は従来例、口
印は本発明例1、◇印は本発明例2の結果を夫々示して
いる。
In Figure 3, the horizontal axis shows temperature (k), and the vertical axis shows close contact! (M
Pa) is shown. In the graph, the ○ mark indicates the result of the conventional example, the open mark indicates the result of the present invention example 1, and the ◇ mark indicates the result of the present invention example 2.

このグラフから明らかな如く、従来例では500に程度
で接着剤が溶け、測定不能の状態となったが、本発明例
1では700に程度まで、また本発明例2では800に
程度迄測定が可能であることが解る。なお本発明例1で
は、溶射被膜の剥離と略同時に溶射被膜と治具との間に
も分離が生じた。
As is clear from this graph, in the conventional example, the adhesive melted at about 500, making it impossible to measure, but in Inventive Example 1, it was possible to measure up to about 700, and in Inventive Example 2, it could be measured up to about 800. I understand that it is possible. In Example 1 of the present invention, separation occurred between the thermal sprayed coating and the jig almost simultaneously with the peeling of the thermal sprayed coating.

[効果] 以上の如く本発明方法にあっては試験片の平坦面に形成
した溶射被膜表面と治具の平坦面とをスパッタ作用によ
り清浄化した後、試験片と治具とを真空下で原子間引力
によって接合せしめ、引張り力、剪断応力を加える試験
を行うから高温雰囲気下、或いは液体中等においても正
確な密着強度の測定が可能となるなど本発明は優れた効
果を奏するものである。
[Effect] As described above, in the method of the present invention, after cleaning the surface of the sprayed coating formed on the flat surface of the test piece and the flat surface of the jig by sputtering, the test piece and the jig are placed under vacuum. The present invention has excellent effects, such as making it possible to accurately measure adhesion strength even in a high-temperature atmosphere or in a liquid, since the test is performed by bonding by atomic attraction and applying tensile force and shear stress.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の主要過程を示す模式図、第2図は
同じく本発明方法の主要過程を示すフローチャート、第
3図は本発明方法と従来方法との試験結果を示すグラフ
、第4.5図は従来方法を示す模式図である。 1・・・試験片  2・・・治具  3・・・溶射被膜
筒 図 00 400 500  600 700 800 温度(Ko) 第 図 第 図 第 図
FIG. 1 is a schematic diagram showing the main steps of the method of the present invention, FIG. 2 is a flowchart showing the main steps of the method of the present invention, FIG. 3 is a graph showing the test results of the method of the present invention and the conventional method, and FIG. Figure 5 is a schematic diagram showing the conventional method. 1...Test piece 2...Jig 3...Thermal spray coating cylinder diagram 00 400 500 600 700 800 Temperature (Ko) Figure Figure Figure

Claims (1)

【特許請求の範囲】 1、試験片の平坦面に形成した溶射被膜面に治具の平坦
面を固定し、試験片と治具との相対移動によって前記溶
射被膜に、これと直交する向きの引張り力、又は剪断力
を付与する溶射被膜の密着強度試験方法において、 前記試験片の平坦面に形成した溶射被膜及 びこれに接合すべき治具の平坦面をスパッタリングして
その表面を清浄化した後、試験片の溶射被膜面と治具の
平坦面とを圧接固定せしめ、前記試験片と治具とに引張
り力又は剪断力を付与せしめることを特徴とする溶射被
膜の密着強度試験方法。
[Claims] 1. The flat surface of a jig is fixed to the sprayed coating surface formed on the flat surface of the test piece, and the relative movement between the test piece and the jig causes the sprayed coating to be coated in a direction perpendicular to this. In the adhesion strength test method for thermal sprayed coatings that applies tensile force or shearing force, the thermal sprayed coating formed on the flat surface of the test piece and the flat surface of the jig to be joined to it are sputtered to clean the surface. Thereafter, the sprayed coating surface of the test piece and the flat surface of a jig are fixed under pressure, and a tensile force or shear force is applied to the test piece and the jig.
JP597790A 1990-01-13 1990-01-13 Method for testing adhesion strength of flame sprayed film Pending JPH03210455A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP597790A JPH03210455A (en) 1990-01-13 1990-01-13 Method for testing adhesion strength of flame sprayed film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP597790A JPH03210455A (en) 1990-01-13 1990-01-13 Method for testing adhesion strength of flame sprayed film

Publications (1)

Publication Number Publication Date
JPH03210455A true JPH03210455A (en) 1991-09-13

Family

ID=11625901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP597790A Pending JPH03210455A (en) 1990-01-13 1990-01-13 Method for testing adhesion strength of flame sprayed film

Country Status (1)

Country Link
JP (1) JPH03210455A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19718308C2 (en) * 1997-04-30 2001-05-23 Juergen Kosper Method for testing the bond strength of metal-ceramic systems
JP2007163147A (en) * 2005-12-09 2007-06-28 Toppan Printing Co Ltd Method of measuring adhesion between resist film and substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19718308C2 (en) * 1997-04-30 2001-05-23 Juergen Kosper Method for testing the bond strength of metal-ceramic systems
JP2007163147A (en) * 2005-12-09 2007-06-28 Toppan Printing Co Ltd Method of measuring adhesion between resist film and substrate

Similar Documents

Publication Publication Date Title
JP5197935B2 (en) Method for the application of twin wire arc spray coating
JP3649210B2 (en) Corrosion resistant material
JPS59173505A (en) Method of repairing or constituting seal assembly and seal for turbine engine
KR20100008345A (en) Sputter target assembly having a low-temperature high-strength bond
Gerlach et al. Low-temperature anodic bonding of silicon to silicon wafers by means of intermediate glass layers
Clearfield et al. Surface preparation of Ti-6Al-4V for high-temperature adhesive bonding
US3145466A (en) Diffusion bonding of metal members
JPH03210455A (en) Method for testing adhesion strength of flame sprayed film
Brewis et al. Cryoblasting as a pretreatment to enhance adhesion to aluminium alloys: an initial study
US4917843A (en) Process for joining molded silicon nitride parts
US4402447A (en) Joining lead wires to thin platinum alloy films
JPS61159566A (en) Coating method of metallic or ceramic base material
JPH11118705A (en) Method and apparatus for testing adhesion strength of coating of thermal spraying
JPS5918184A (en) Ceramic metallization
TW201303058A (en) Elastomer bonded item and method for debonding
JPH01183477A (en) Method for bonding metal to ceramic
Turner et al. Bonding of bulk piezoelectric material to silicon using a gold-tin eutectic bond
Turner et al. Molecular structure of interfaces formed with plasma-polymerized silica-like primer films: Part III. Mechanical strength and environmental durability of the primer/aluminum and primer/titanium interfaces
Müller et al. Fracture mechanics tests for measuring the adhesion of magnetron-sputtered TiN coatings
Ahmed et al. Adhesion characteristics on anodized titanium and its durability under aggressive environments
JPH0379749A (en) Formation of corrosion resisting coating layer
Paramonov et al. In Based TCB Bonding for MEMS Application
Rosen et al. Mechanical properties of soft-interlayer solid-state welds
RU2486995C2 (en) Method of making composite cathode
Ishikuro et al. Ultrasonic welding of thin alumina and aluminum using inserts