JPS61159566A - Coating method of metallic or ceramic base material - Google Patents

Coating method of metallic or ceramic base material

Info

Publication number
JPS61159566A
JPS61159566A JP60001223A JP122385A JPS61159566A JP S61159566 A JPS61159566 A JP S61159566A JP 60001223 A JP60001223 A JP 60001223A JP 122385 A JP122385 A JP 122385A JP S61159566 A JPS61159566 A JP S61159566A
Authority
JP
Japan
Prior art keywords
base material
coating layer
resistance
metallic
sprayed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60001223A
Other languages
Japanese (ja)
Inventor
Toshihiro Kitagawa
北川 利博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP60001223A priority Critical patent/JPS61159566A/en
Publication of JPS61159566A publication Critical patent/JPS61159566A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

PURPOSE:To form a coated layer having the impact strength resistance, the wear resistance and the corrosion resistance on the surface of a metallic or ceramic base material by applying a hot-hydrostatic compression method on a sprayed coated layer which is formed on the surface of the metallic or ceramic base metal to make it dense and vanishing a pore. CONSTITUTION:The surface of a metallic base material such as e.g. mild steel, stainless steel or a ceramic base material consisting of a sintered body such as Al2O3, SiC is blast-treated by an alumina grid. A sprayed coated film is formed by thermally-plasma spraying the powder such as Ni on the surface of the blast-treated base material in the nonoxidizing atmosphere such as Ar. Thereafter a hot-hydrostatic compression method (HIP treatment) is applied on the above-mentioned sprayed coated layer to make it dense. As a result, a pore interposed in the inside part of the coated layer is removed and it is made dense and the mechanical strength characteristic such as the wear resistance, the corrosion resistance, the impact resistance and the peel resistance is given on the surface.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は金属又はセラミック基材のコーティング方法に
関する。ざらに詳しくは、金属又はセラミック基材の表
面に耐摩耗性乃至耐食性に富む緻密な被覆層を溶射法に
より形成させる方法に係わるものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of coating metal or ceramic substrates. More specifically, the present invention relates to a method of forming a dense coating layer with high wear resistance and corrosion resistance on the surface of a metal or ceramic substrate by thermal spraying.

[従来の技術] 機械装置は、通常いくつかの部品から構成されており、
それぞれ適用される部位、環境等に耐え得る性質を持つ
材料から製作される。例えば、耐!lj撃強度の要求さ
れる部位に用いられる部品には高張力鋼のような高強度
材料、腐蝕の激しい環境で用いられる部品にはM−Cr
AIY(Mはメタル)のような耐食性材料、摩耗性の激
しい部位に用いられる部品にはサーメットのような耐摩
耗性材料が使用され、これら部品材料は概して価格的に
高価なものが多い。そこで、部品全体を高価な材料で構
成するのではなく、表面のみに高強度材料、耐食性材料
あるいは耐摩耗性材料からなる被m層をコーティングす
る方法が提案され、その1つとして、粉末状の被覆材料
を基材表面に溶射して強固な被m層を形成させる方法が
知られている。
[Prior Art] Mechanical devices are usually composed of several parts.
They are manufactured from materials that have properties that can withstand the areas and environments to which they are applied. For example, resistance! High-strength materials such as high-strength steel are used for parts that require high impact strength, and M-Cr is used for parts that are used in highly corrosive environments.
Corrosion-resistant materials such as AIY (M is metal) and wear-resistant materials such as cermet are used for parts that are subject to severe wear, and these parts materials are generally expensive. Therefore, instead of constructing the entire part with expensive materials, a method has been proposed in which only the surface is coated with a layer of high-strength material, corrosion-resistant material, or wear-resistant material. A method is known in which a coating material is thermally sprayed onto the surface of a base material to form a strong coating layer.

[発明が解決しようとする問題点] しかし、溶射法による被覆層の形成は、溶融状あるいは
それに近い状態の粒子又は粉末状の金属又はセラミック
からなる被覆材料を金属又はセラミックからなる部品基
材の表面に吹付けて積層させるものである故、被MH中
に多数の気孔が内在し、緻密な被覆層が形成されない。
[Problems to be Solved by the Invention] However, forming a coating layer by a thermal spraying method involves applying a coating material made of particles or powdered metal or ceramic in a molten or nearly molten state to a part base material made of metal or ceramic. Since the MH is sprayed onto the surface and laminated, many pores are present in the MH, and a dense coating layer cannot be formed.

即ち、気孔が内在すると被覆層の浮上りや剥離を招き、
被覆表面の耐食性を著しく低下させる。このような問題
を解消するために、溶射に供する粉末状の被覆材料の粒
度範囲を狭くするなどの試みがなされているが、しかし
、溶射のみによって得られた被覆層は、耐熱TtJ撃強
度にも乏しく、又溶融した被rfI材料粒子が金属又は
セラミックからなる基材表面で冷却固化する際の熱収縮
による内部熱応力を生じ、その応力が蓄積して基材の破
損や被覆層の剥離を起したりづ“る。このような現象は
、基材の表面積、層厚みが大きくなる程現われ易く、こ
れらは溶射法による被覆層形成における大きな欠点とさ
れている。
In other words, if pores are present, the coating layer will float or peel off.
Significantly reduces the corrosion resistance of the coated surface. In order to solve this problem, attempts have been made to narrow the particle size range of the powder coating material used for thermal spraying, but the coating layer obtained only by thermal spraying has a high heat resistance TtJ impact strength. Furthermore, internal thermal stress is generated due to thermal contraction when the molten rfI material particles cool and solidify on the surface of a metal or ceramic base material, and this stress accumulates, causing damage to the base material and peeling of the coating layer. Such phenomena are more likely to occur as the surface area of the base material and the layer thickness become larger, and these phenomena are considered to be a major drawback in forming a coating layer by thermal spraying.

[問題を解決するための手段] 金属又はセラミックからなる部品基材の表面に耐衝撃張
度、耐摩耗性、あるいは耐腐蝕性に富む被覆層を溶射法
により形成させるに当たって、被覆層内に気孔を内在さ
せないことが重要であること前記のとおりであり、本発
明者等は、そのための手段につき種々検問を加えた結果
、被覆材料粒子を溶射後、更に溶射表面を緻密化する熱
間静水圧圧縮処理を行うことによって、気孔が消失し、
緻密で耐衝撃強度、耐摩耗性、耐腐蝕性の被覆層が形成
されるという知見を得て本発明に到達した。
[Means for solving the problem] When forming a coating layer with high impact resistance, abrasion resistance, or corrosion resistance on the surface of a component base material made of metal or ceramic by thermal spraying, pores are created in the coating layer. As mentioned above, it is important that the coating material particles are not incorporated, and as a result of various investigations into the means for this purpose, the present inventors have found that after thermal spraying the coating material particles, hot isostatic pressure is applied to further densify the sprayed surface. By performing compression treatment, pores disappear,
The present invention was achieved based on the knowledge that a dense coating layer having impact resistance, abrasion resistance, and corrosion resistance is formed.

即ち、本発明は、金属又はセラミック基材の表面に粉末
状の被覆月利を溶射し、形成された溶射被覆層に熱間静
水圧圧縮法を適用して緻密化することを特徴とする金属
又はセラミック基材のコーティング方法を要旨とするも
のである。
That is, the present invention provides a metal or ceramic substrate characterized in that a powder coating is thermally sprayed onto the surface of a metal or ceramic base material, and the formed thermally sprayed coating layer is densified by applying a hot isostatic pressing method. Alternatively, the subject matter is a method of coating a ceramic substrate.

以下、本発明を更に説明すると、本発明によるコーティ
ング方法の適用される基材としては、材質が例えば軟鋼
、ステンレス鋼、各種合金等の金属基材、AJlzOa
、Zr 02.Si C,AiN等の焼結体よりなるセ
ラミック基材が挙げられる。
To further explain the present invention, the base materials to which the coating method of the present invention is applied include, for example, metal base materials such as mild steel, stainless steel, and various alloys, AJlzOa
, Zr 02. Examples include ceramic base materials made of sintered bodies such as Si C and AiN.

このうち、前記金属基材の場合は、溶射により表面に被
覆層を形成させるに先だって、該基材表面を金属ブラス
ト又はサンドブラストにより粗面化しておくことが好ま
しい。
Among these, in the case of the metal base material, the surface of the base material is preferably roughened by metal blasting or sandblasting before forming a coating layer on the surface by thermal spraying.

金属又はセラミック基材の表面に溶射される被覆材料と
しては、粒子状に細粉した金属例えばNi 、An、W
(7)J:うh金属、AizOa、Ti O、、zrO
z、Y2O3等の1種又は2種以上の混合物からなる粒
子状のセラミック材料が挙げられ、これらは、通常25
0メツシユ以下に粒度調節したものが使用される。
The coating material to be thermally sprayed onto the surface of a metal or ceramic substrate may be a finely powdered metal such as Ni, An, W, etc.
(7) J: metal, AizOa, TiO, zrO
Examples include particulate ceramic materials consisting of one type or a mixture of two or more of Y2O3 and the like, and these are usually 25
The particle size is adjusted to 0 mesh or less.

溶射による被NRの形成は公知の方法によって行うこと
ができるがなかでもセラミック溶射に必要な10.00
0℃以上の高温度が容易に得られることからプラズマ溶
射法が最も好ましい。又、前記溶射は例えば300 T
 orr以下の減圧下に行うことが好ましい。減圧下に
行うことによって、溶射のための予熱に際して、被覆さ
れる基材が酸化されることがな(、又高密度の被覆層が
形成され、次の処理である静水圧圧縮処理で、カプセル
を使用しないでも被N層の緻密化を可能にするという利
点がある。溶射により、基材の表面に溶射被覆層を形成
させるに当って、基材材質と被覆組成分との間の熱膨張
係数が異なるため、密着強度の低下、あるいは熱衝撃強
度の低下が懸念される場合は、表面の溶射被覆層と基材
との間に、これら材質の中間の熱膨張係数をもつ組成か
らなる粉末材料、あるいは、表面の溶射被覆層の成分と
基材成分の混合物からなる粉末材料を基材表面に溶射し
て、緩衝層として機能する下地被覆層(アンダーコート
)を形成させその上に、所望の表地被I!層(トップコ
ート)を形成させることもできる。
Formation of the NR by thermal spraying can be carried out by known methods, but in particular, the NR of 10.0
Plasma spraying is most preferred because it can easily achieve a high temperature of 0° C. or higher. Further, the thermal spraying is performed at 300 T, for example.
It is preferable to carry out under reduced pressure of orr or less. By performing the process under reduced pressure, the substrate to be coated will not be oxidized during preheating for thermal spraying (and a dense coating layer will be formed, and the capsules will not be oxidized during the subsequent isostatic pressing process). It has the advantage of making it possible to densify the N layer without using it.When forming a thermal spray coating layer on the surface of a base material by thermal spraying, thermal expansion between the base material and the coating composition is avoided. If there is a concern about a decrease in adhesion strength or thermal shock strength due to different coefficients, use a powder made of a composition with a thermal expansion coefficient intermediate between these materials between the thermal spray coating layer on the surface and the base material. A powder material consisting of a material or a mixture of the components of the surface thermal spray coating layer and the base material components is thermally sprayed onto the surface of the substrate to form a base coating layer (undercoat) that functions as a buffer layer. It is also possible to form a top coat I! layer (top coat).

大気中で溶射法により、基材表面に被覆層を形成させる
場合、通常、被覆層内部には、5〜60μの微細な気孔
が3〜15%介在することは避けられず、これが被覆層
脆弱の原因となっている。
When a coating layer is formed on the surface of a substrate by thermal spraying in the atmosphere, it is unavoidable that 3 to 15% of fine pores of 5 to 60 microns are present inside the coating layer, which makes the coating layer brittle. It is the cause of

そこで本発明方法は、溶射により形成された被覆層内に
介在する気孔を、静水圧圧縮法(以下、HIPという)
を適用して除去し、強固な緻密化した被覆層に変えるも
のである。HIP処理はその方法の1つとして、溶射被
N層の形成されている基材をカプセルに入れて真空封入
するか、または、ガラス質の被膜で蔽う方法が挙げられ
る。また他の方法として、表面に溶剤液rttmの形成
されている基材の該被N層に存在する気孔を封止するた
め、表面をプラズマフレームを当てて行う方法が挙げら
れる。
Therefore, the method of the present invention uses a hydrostatic compression method (hereinafter referred to as HIP) to remove the pores present in the coating layer formed by thermal spraying.
is applied and removed to transform it into a strong, densified coating layer. One of the methods for HIP treatment is to put the base material on which the thermally sprayed N layer is formed into a capsule and vacuum seal it, or to cover it with a glassy coating. Another method is to apply a plasma flame to the surface of the substrate in order to seal the pores present in the N layer of the base material on which the solvent solution rttm is formed.

[作用〕 溶射法により基材表面に形成された溶射被覆層の内部に
介在する気孔がl−11P処理により除去されるので、
該被覆層がより一層緻密化されて機械的強度が強化され
、同時に基材に対する@着が強固なものとなる。
[Operation] Since the pores present inside the thermal spray coating layer formed on the surface of the base material by the thermal spraying method are removed by the l-11P treatment,
The coating layer is further densified and its mechanical strength is strengthened, and at the same time, the adhesion to the base material becomes strong.

[実施例] 次に本発明を実施例によって説明するが、本発明はその
要旨を越えない限り、以下の実施例に限定されることは
ない。
[Examples] Next, the present invention will be explained by examples, but the present invention is not limited to the following examples unless it exceeds the gist thereof.

実施例1 一辺が30m/mの正方形の被溶射面1を持つ厚みが1
0m/mの板片2と、その中央に設けた長さ150m/
m、径12m/mの円柱状把手3からなる第1図に示す
ような試験片を作成した。材質は軟鋼である。この試験
片の溶射面1を清浄化し、アルミナグリッドでブラスト
処理して面粗さ約70amとした。次に作動ガスAr、
作動電流600A、作動電圧29V、溶射距−90m/
mにし、280メツシユ以下のニッケル粉末を被溶射面
1にプラズマ溶射し、第2図に示すように厚さ0.5m
/mの溶射被覆Ff4を形成させた。この溶射被N層4
について次のような手法により、気孔率および密着強度
を測定した。
Example 1 A square sprayed surface 1 with one side of 30 m/m and a thickness of 1
0m/m plate piece 2 and a length of 150m/m provided in the center.
A test piece as shown in FIG. 1 was prepared, which consisted of a cylindrical handle 3 with a diameter of 12 m/m. The material is mild steel. The sprayed surface 1 of this test piece was cleaned and blasted with an alumina grid to give a surface roughness of about 70 am. Next, working gas Ar,
Working current 600A, working voltage 29V, spraying distance -90m/
280 mesh or less was plasma sprayed onto the sprayed surface 1 to a thickness of 0.5 m as shown in Figure 2.
/m of thermal spray coating Ff4 was formed. This thermal sprayed N layer 4
The porosity and adhesion strength were measured using the following method.

気孔率:アルキメデス法により被膜の比重を求め気孔率
を算出した。
Porosity: The specific gravity of the film was determined by the Archimedes method and the porosity was calculated.

密着強度:板片2を固定し、円柱状把手3を引き抜き、
そのときの応力を測定することにより引張り破断強度を
求める。
Adhesion strength: fix the plate piece 2, pull out the cylindrical handle 3,
The tensile strength at break is determined by measuring the stress at that time.

上記測定の結果、気孔率は9.3%、密着強度は1kg
f/IIIIl″であった。次に第1図に示す別に用意
した試験片であって、同材質同寸法のものの被溶射面1
に前記と同一条件で溶剤被覆層4を形成させたものをパ
イレックスガラス管内に封入し、  ゛HIP処理を行
った。このときのHIP処理条件は、1r!1.110
0℃、 1000k<1/crA、 2時間である。こ
れについて、前記と同様の方法により、気孔率および密
着強度を測定したところ、気孔率は0%、@着強度は2
5 kgf /n+ni’であった。この結果から明ら
かなように、HIP処理により、溶剤被覆層における気
孔が消失して緻密化し、表面の溶剤被覆層が基材に強力
に密着したことが分る。
As a result of the above measurements, the porosity is 9.3% and the adhesion strength is 1kg.
f/IIII''.Next, the sprayed surface 1 of a separately prepared test piece shown in Fig. 1, made of the same material and having the same dimensions.
A solvent coating layer 4 was formed under the same conditions as above, and the tube was sealed in a Pyrex glass tube and subjected to HIP treatment. The HIP processing conditions at this time are 1r! 1.110
0°C, 1000k<1/crA, 2 hours. When the porosity and adhesion strength were measured using the same method as above, the porosity was 0%, and the adhesion strength was 2.
It was 5 kgf/n+ni'. As is clear from the results, the HIP treatment caused the pores in the solvent coating layer to disappear and become denser, and the solvent coating layer on the surface was strongly adhered to the base material.

実施例2 材質が18−8ステンレス鋼からなり、第1図に示すよ
うな形状で実施例1と同寸法の試験片を作成した。この
試験片の被溶射面1を実施例1と同様の方法で清浄化し
、アルミナグリッドでブラスト処理して面粗さを約70
μmとした。次に作動ガス:Ar、作動電流450A、
作11Jffi圧30v。
Example 2 A test piece was made of 18-8 stainless steel, had the shape shown in FIG. 1, and had the same dimensions as Example 1. The sprayed surface 1 of this test piece was cleaned in the same manner as in Example 1, and blasted with an alumina grid to reduce the surface roughness to about 70.
It was set as μm. Next, working gas: Ar, working current 450A,
Work 11 Jffi pressure 30v.

溶射距1111に90m/mにし、97.5%AizO
a−2,5%Ti0z粉末(200+325.++yシ
ュ)を被溶射面1にプラズマ溶射し、第2図に示すよう
な厚さ1m/mの溶射被覆層4を形成させた。この溶射
被覆114について、実施例1と同様の手法により、気
孔率および密着強度を測定したところ、それぞれ8.0
%、 1.3 kgf /m♂であった。
Spray distance 1111 to 90m/m, 97.5% AizO
A-2.5% Ti0z powder (200+325.++y powder) was plasma sprayed onto the sprayed surface 1 to form a sprayed coating layer 4 having a thickness of 1 m/m as shown in FIG. Regarding this thermal spray coating 114, the porosity and adhesion strength were measured using the same method as in Example 1, and the results were 8.0 for each.
%, 1.3 kgf/m♂.

次に、第1図に示す別に用意した試験片であって、同材
質、同寸法のものの被溶射面1に同一条件で溶射被覆層
4を形成させ、該溶射被覆114を約2100℃のプラ
ズマフレームを当てて、表面のみ再溶融し、封孔したの
ち温度1350℃、圧力2000kg/−の条件でHI
P処理を行った。
Next, a thermally sprayed coating layer 4 was formed under the same conditions on the thermally sprayed surface 1 of a separately prepared test piece shown in FIG. After applying a flame and remelting only the surface, sealing the hole, HI under the conditions of temperature 1350℃ and pressure 2000kg/-
P treatment was performed.

これについて前記と同様に方法により、気孔率および密
着力を測定したところ、気孔率は0.5%。
The porosity and adhesion of this product were measured in the same manner as above, and the porosity was 0.5%.

密着強度は14 k(If /mri”であった。この
場合も、実施例1と同様にHIP処理により、溶射被覆
層における気孔が消失して緻密化し、表面の溶射被覆層
が基材に強力に密着したことが分る。
The adhesion strength was 14 k (If/mri"). In this case as well, as in Example 1, the pores in the sprayed coating layer disappeared and became dense due to the HIP treatment, and the sprayed coating layer on the surface was strongly bonded to the base material. It can be seen that it is closely attached to

次に、上記溶射のみにより、溶射被覆層4を形成させた
試験片と、溶剤により溶射被覆層を形成させたあと)−
11P処理を行った試験片とについて、耐摩耗性を評価
した。耐摩耗性の評価は、人感式迅速摩耗試験機を使用
し、直径30m/m、厚さ3m/mの標準回転板により
、摩擦距離100m。
Next, a test piece on which a thermal spray coating layer 4 was formed only by the above thermal spraying, and a test piece after forming a thermal spray coating layer 4 with a solvent)-
The abrasion resistance of the test piece subjected to the 11P treatment was evaluated. Wear resistance was evaluated using a human-sensitive rapid abrasion tester using a standard rotary plate with a diameter of 30 m/m and a thickness of 3 m/m over a friction distance of 100 m.

摩擦面の最終荷重6.4kgの条件下で摩擦速度の変化
に対する比摩耗量を求めることによって行った。その結
果を第3図にグラフで示す。なお、この図はalt準回
転回転板粒WA、粒度46、結合度J、組llAmの■
砥石で、溶射被覆層4を研磨した表面の乾燥すべり摩耗
試験結果である。この図から明らかなように、溶射後H
IP処理を行う本発明方法により形成させた溶剤液Wt
層がHIP処理を行わず、溶射のみで形成させた溶射被
覆層にくらべて2佑以上の耐摩耗性を有することが分る
This was done by determining the specific wear amount with respect to the change in friction speed under the condition of a final load of 6.4 kg on the friction surface. The results are shown graphically in FIG. This figure shows the alt quasi-rotating plate grain WA, grain size 46, degree of bonding J, and group llAm.
These are the results of a dry sliding wear test on the surface of the sprayed coating layer 4 polished with a grindstone. As is clear from this figure, H after thermal spraying
Solvent solution Wt formed by the method of the present invention that performs IP treatment
It can be seen that the layer has a wear resistance of 2 degrees or more compared to a thermally sprayed coating layer formed only by thermal spraying without HIP treatment.

実施例3 材質がAizOa焼結体からなり、第11i!!lに示
すような形状で実施例1と同寸法の試験片を作成した。
Example 3 The material is made of AizOa sintered body, and the 11i! ! A test piece having the shape shown in 1 and the same dimensions as in Example 1 was prepared.

この試験片の被溶射面1に、作動ガスAr1作動電流6
00A、作動電圧32V、溶射距離90m/mにし、9
0%Zr0z−10%YzOsからなる混合物と、A9
.zO3との配合物(配合比1:1)で粒径を250メ
ツシユ以下に調整したものをプラズマ溶射し、厚みが0
.5m/mの下地溶射被覆!l!(アンダーコート)を
形成させた。
Working gas Ar1 working current 6
00A, operating voltage 32V, spraying distance 90m/m, 9
A mixture consisting of 0% Zr0z-10% YzOs and A9
.. A mixture with zO3 (mixing ratio 1:1) with particle size adjusted to 250 mesh or less is plasma sprayed to a thickness of 0.
.. 5m/m base thermal spray coating! l! (undercoat) was formed.

さらにその上に、90%Zr0z−10%Y2O3から
なる混合物で粒径を250メツシユ以下に調整したもの
を前記と同一条件でプラズマ溶射し、厚みが1.0m/
mの表地層tA′IJI覆層(トップコート)を形成さ
せた。このものについて、実施例1と同様の方法により
、気孔率を測定したところ下地溶射被覆層が9.0%1
表地溶射被覆層が15.0%であり、密着強度は0 、
5 kgf /1lllll”rアった。次に、第1図
に示す別に用意した試験片であって、同材質、同寸法の
ものの被溶射面1に同一条件で下地溶銅被覆層と表地溶
躬被i層を形成させ、高シリカガラス管内に封入し、)
−IIP処理を行った。このときのHIP処理条件は、
1111350℃、1500に!J/crA、2時間で
ある。これについて、溶射被NJ!l+全体の気孔率と
密着強度を測定した。その結果、気孔率は1.5%に減
少し、密着強度は12 、0kof /glIl”と向
上した。なお、Zr0z系被覆@料を溶射した場合、形
成される溶射被覆層は気孔が多い程、基材に対して高い
断熱効果を示すが、その反面、機械的強度は低い。
Furthermore, a mixture consisting of 90% Zr0z-10% Y2O3 whose particle size was adjusted to 250 mesh or less was plasma sprayed on top of it under the same conditions as above, and a thickness of 1.0 m/min was applied.
A surface layer tA'IJI covering layer (top coat) of m was formed. The porosity of this product was measured using the same method as in Example 1, and the base thermal spray coating layer was 9.0%1.
The surface thermal spray coating layer is 15.0%, the adhesion strength is 0,
Next, the base molten copper coating layer and the surface molten copper coating layer were applied under the same conditions to the sprayed surface 1 of a separately prepared test piece shown in Figure 1, made of the same material and of the same size. A layer is formed and sealed in a high silica glass tube.)
-IIP treatment was performed. The HIP processing conditions at this time are:
1111350℃, 1500! J/crA, 2 hours. Regarding this, thermal sprayed NJ! The porosity and adhesion strength of the entire l+ were measured. As a result, the porosity was reduced to 1.5%, and the adhesion strength was improved to 12. , exhibits a high heat insulating effect on the base material, but on the other hand, has low mechanical strength.

従って、より高い機械的強度を必要とする部分の使用に
は制限があった。しかし、本発明方法によるコーティン
グ法を用いることによって、密着強e−0−5kOf 
/ 111112”−12kof /l11m”の範囲
で、断熱効果を発揮する溶射被覆層を形成させることが
できる。例えば、HIP条件が、1350℃、1500
k(Jloll、2時間で、密着強Ml 10 kgf
 /mtf)溶剤液iisを得るがこの場合、断熱効果
は例えば1000℃の高温域下で約20%低下する。し
かし、本発明方法により厚い被覆層を形成させることが
可能であり、20%厚みを増加させることによって、同
等の断熱効果を発揮できる。これは、例えばエンジン周
辺部分等の振動の激しい部分に用いられる断熱被膜部品
として有用である。
Therefore, there are restrictions on the use of parts requiring higher mechanical strength. However, by using the coating method according to the method of the present invention, the adhesion strength is e-0-5kOf
/111112"-12kof/l11m", it is possible to form a thermal spray coating layer that exhibits a heat insulating effect. For example, HIP conditions are 1350℃, 1500℃
k (Jloll, 2 hours, strong adhesion Ml 10 kgf
/mtf) A solvent liquid iis is obtained, but in this case, the heat insulation effect decreases by about 20% in a high temperature range of 1000°C, for example. However, it is possible to form a thick coating layer by the method of the present invention, and by increasing the thickness by 20%, the same heat insulation effect can be achieved. This is useful, for example, as a heat-insulating coating component used in parts of the engine that experience strong vibrations, such as the surroundings of the engine.

[発明の効果] 本発明によれば、表面に、溶剤により溶射被覆層を形成
させた機械構造部品となる金属又はセラミック基材に、
さらに、静水圧圧縮法を適用するので、該被覆層の内部
に介在する気孔が除去されて緻密化され、耐摩耗性、耐
食性、耐衝撃性、耐剥離性等の機械的強度特性が表面に
付与される。
[Effects of the Invention] According to the present invention, a metal or ceramic base material, which becomes a mechanical structural part, has a thermally sprayed coating layer formed on its surface using a solvent.
Furthermore, since the hydrostatic compression method is applied, the pores inside the coating layer are removed and densified, giving the surface mechanical strength properties such as abrasion resistance, corrosion resistance, impact resistance, and peeling resistance. Granted.

従って機V&構造用部品の基材全体に、高価な機械的特
性を持った材料を用いないので、甚だ経済的に機械構造
部品を得ることが出来るものであり、その工学的利用価
値は大である。
Therefore, since materials with expensive mechanical properties are not used for the entire base material of machine V & structural parts, it is possible to obtain mechanical structural parts extremely economically, and its engineering utility value is great. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例で用いた基材試験片の斜視図、第2図
はこの試験片に溶射被覆層を形成させた状態を示す斜視
図、第3図は実施例2によって得られた溶射被i層につ
いて調査したB!擦速度と比摩耗量との関係を示すグラ
フである。
Fig. 1 is a perspective view of the base material test piece used in the example, Fig. 2 is a perspective view showing a state in which a thermal spray coating layer is formed on this test piece, and Fig. 3 is a perspective view of the base material test piece used in Example 2. I investigated the thermal spray coating I-layer B! It is a graph showing the relationship between friction speed and specific wear amount.

Claims (1)

【特許請求の範囲】 1 金属又はセラミック基材の表面に被覆材料を溶射し
、形成された溶射被覆層に熱間静水圧圧縮法を適用して
緻密化することを特徴とする金属又はセラミック基材の
コーティング方法。 2 被覆材が金属又はセラミックよりなる特許請求の範
囲第1項又は第2項記載の金属またはセラミック基材の
コーティング方法。
[Scope of Claims] 1. A metal or ceramic substrate characterized in that a coating material is thermally sprayed onto the surface of the metal or ceramic substrate, and the formed thermally sprayed coating layer is densified by applying a hot isostatic compression method. How to coat the material. 2. The method for coating a metal or ceramic substrate according to claim 1 or 2, wherein the coating material is made of metal or ceramic.
JP60001223A 1985-01-08 1985-01-08 Coating method of metallic or ceramic base material Pending JPS61159566A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60001223A JPS61159566A (en) 1985-01-08 1985-01-08 Coating method of metallic or ceramic base material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60001223A JPS61159566A (en) 1985-01-08 1985-01-08 Coating method of metallic or ceramic base material

Publications (1)

Publication Number Publication Date
JPS61159566A true JPS61159566A (en) 1986-07-19

Family

ID=11495468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60001223A Pending JPS61159566A (en) 1985-01-08 1985-01-08 Coating method of metallic or ceramic base material

Country Status (1)

Country Link
JP (1) JPS61159566A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01127659A (en) * 1987-11-10 1989-05-19 Kobe Steel Ltd Method for making sprayed deposit dense
JPH01139749A (en) * 1987-11-27 1989-06-01 Tocalo Co Ltd Surface treatment for blade member
JPH01198460A (en) * 1988-02-03 1989-08-10 Tocalo Co Ltd Manufacture of conductor roll
JPH02301549A (en) * 1989-05-16 1990-12-13 Mitsubishi Materials Corp Method for modifying plasma-spayed ceramic film
US4996119A (en) * 1984-08-27 1991-02-26 Kabushiki Kaisha Kenwood Speaker cone plate and method of forming
JPH0379751A (en) * 1989-08-23 1991-04-04 Nippon Tungsten Co Ltd Pensification method for sprayed deposit of sintered hard alloy
US7763204B2 (en) 2007-10-15 2010-07-27 Rolls-Royce Plc Manufacturing process and apparatus
CN110643919A (en) * 2019-10-22 2020-01-03 兰州理工大学 Method for preparing steel-based coating with shell-like structure on aluminum substrate

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4996119A (en) * 1984-08-27 1991-02-26 Kabushiki Kaisha Kenwood Speaker cone plate and method of forming
JPH01127659A (en) * 1987-11-10 1989-05-19 Kobe Steel Ltd Method for making sprayed deposit dense
JPH01139749A (en) * 1987-11-27 1989-06-01 Tocalo Co Ltd Surface treatment for blade member
JPH01198460A (en) * 1988-02-03 1989-08-10 Tocalo Co Ltd Manufacture of conductor roll
JPH02301549A (en) * 1989-05-16 1990-12-13 Mitsubishi Materials Corp Method for modifying plasma-spayed ceramic film
JPH0379751A (en) * 1989-08-23 1991-04-04 Nippon Tungsten Co Ltd Pensification method for sprayed deposit of sintered hard alloy
JPH0536502B2 (en) * 1989-08-23 1993-05-31 Nippon Tungsten
US7763204B2 (en) 2007-10-15 2010-07-27 Rolls-Royce Plc Manufacturing process and apparatus
CN110643919A (en) * 2019-10-22 2020-01-03 兰州理工大学 Method for preparing steel-based coating with shell-like structure on aluminum substrate

Similar Documents

Publication Publication Date Title
US4911987A (en) Metal/ceramic or ceramic/ceramic bonded structure
US4330575A (en) Coating material
CN104928672B (en) The preparation method of electrovacuum ceramics pipe surface cold spraying aluminum bronze composite coating
JPH0141431B2 (en)
JPH0967662A (en) Ceramic-coated member
EP0396240B1 (en) Ceramic meterial and method for producing the same
US4159353A (en) Platinum coating dense refractories
JPS61159566A (en) Coating method of metallic or ceramic base material
US4562090A (en) Method for improving the density, strength and bonding of coatings
GB2130244A (en) Forming coatings by hot isostatic compaction
CN109554656B (en) Preparation method and system of compact ceramic coating in normal-temperature atmosphere
JPH0515781B2 (en)
JPS5918184A (en) Ceramic metallization
Calata et al. Constrained sintering of glass, glass–ceramic and ceramic coatings on metal substrates
Liu et al. Thermal properties and microstructure of a plasma sprayed wollastonite coating
JP3081764B2 (en) Carbon member having composite coating and method of manufacturing the same
CN108707897B (en) Ceramic coating of exhaust pipe and preparation method thereof
US5486382A (en) Method for preparing a cermet-coated article
JPS6187859A (en) Formation of sprayed film
KR101254618B1 (en) Ceramic coating method for corrosion resistant member
JPH05263212A (en) Heat-resistant coating
JPH0452208B2 (en)
CN105483596B (en) A kind of preparation method of inorganic coating
JPH01152233A (en) Method for using and producing nickel-containing alloy
JP3394844B2 (en) Heat resistant material