JP3649210B2 - Corrosion resistant material - Google Patents

Corrosion resistant material Download PDF

Info

Publication number
JP3649210B2
JP3649210B2 JP2002167238A JP2002167238A JP3649210B2 JP 3649210 B2 JP3649210 B2 JP 3649210B2 JP 2002167238 A JP2002167238 A JP 2002167238A JP 2002167238 A JP2002167238 A JP 2002167238A JP 3649210 B2 JP3649210 B2 JP 3649210B2
Authority
JP
Japan
Prior art keywords
less
plasma
gas
sprayed
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002167238A
Other languages
Japanese (ja)
Other versions
JP2004010981A (en
Inventor
一右 南澤
幸男 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
NTK Ceratec Co Ltd
Original Assignee
Nihon Ceratec Co Ltd
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Ceratec Co Ltd, Taiheiyo Cement Corp filed Critical Nihon Ceratec Co Ltd
Priority to JP2002167238A priority Critical patent/JP3649210B2/en
Publication of JP2004010981A publication Critical patent/JP2004010981A/en
Application granted granted Critical
Publication of JP3649210B2 publication Critical patent/JP3649210B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、少なくとも腐食性プラズマガスに曝される部位が酸化物セラミックスの溶射膜で覆われている半導体製造装置用部品等に好適な耐食性部材に関する。
【0002】
【従来の技術】
半導体デバイス製造工程や、液晶表示装置製造工程には、ドライエッチングのようなSiウエハーやガラス基板に形成された所定の膜を各種腐食性プラズマガスにて処理する工程が存在する。従来、このような各種腐食性プラズマガスにて処理を行う処理装置におけるチャンバーや各種部材には、Al材やステンレス鋼等の金属材が使用されていたが、プラズマガスに対する耐食性が低いため塵埃の発生に加え部材の寿命が短いという大きな問題があった。
【0003】
このような問題を解決するために、これら部材を耐食性の高いセラミックス焼結体で製造することが行われている。しかしながら、セラミックス焼結体はウエハー回りの比較的小さな部材においては製造が比較的容易であり一般的に用いられているものの、チャンバードーム、壁材のように大きな部材は生産技術の難易度が高く歩留りも低く製造コストが高くならざるを得ない。その上、Siウエハーやガラス基板が益々大型化してきており、これにともなってこれらの部材も大型化しており、セラミックス焼結体のこれら大型部材への適用にも限界がある。
【0004】
そこで、Alのような低コストで加工性に優れ大型化が容易な金属材料を基材として用い、その基材の表面に耐食性のあるセラミックスを溶射することによりこれらの問題を解決する方法が採用されている。このようなAl等の金属基材の表面にセラミックスの溶射膜を形成した耐食性部材は、高い絶縁性を要求される場合が多く静電チャックに適用する場合には、溶射膜の絶縁性を高めるため、各種有機物系、無機系の封孔剤が使われている。また、従来のプラズマ溶射では、プラズマガスとして、Ar、N、H等やこれらの混合系ガスを用いるのが一般的である。
【0005】
【発明が解決しようとする課題】
しかしながら、溶射膜を形成する際には、セラミックス粉末を溶融させて基材に吹き付けるが、これが基材上で凝固する際、高融点のセラミックス原料は溶融不足となりやすく、多くの気孔を含み、粒子同士の結合力が弱く、表面の射ち放し面粗さが悪いという問題がある。また、このような気孔中には塵埃が付着しやすく、気孔中の塵埃は洗浄で取れにくいという問題がある。さらに、このように多くの気孔を含み、表面の射ち放し面粗さが悪い結果、従来のセラミックス溶射膜は、腐食性プラズマガスに対する耐性が十分とはいえず、これら腐食性プラズマガスによりエッチングされてパーティクルが発生したり、気孔中に付着した塵埃やガスが発生することにより、十分な歩留りが得られないという問題がある。また、静電チャックのような絶縁性が要求される部材に対して、溶射膜の絶縁性を高めるため、各種有機物系、無機系の封孔剤が使われているが、プラズマガスにより封孔剤が選択的に腐食されるため所望の絶縁性が得られず、リーク電流の増大により吸着力を低下させたり、チップを破損したりするといった大きな問題が生じる。
【0006】
また、上述のように高融点のセラミックス原料は溶融不足となることから、従来の溶射膜は機械的抵抗性が低く、かつ基材との密着性が悪く、加工中や洗浄中に膜にダメージが入ったり剥離したりしてラップ面粗さが悪くなるという問題や、使用中に膜が脱落することにより歩留りが低下するという問題が生じている。
【0007】
また、従来のプラズマ溶射では、プラズマガスとして、Ar、N、H等で溶射を行なっていたため、高絶縁性材料である酸化物セラミックスを溶射した際に、溶射膜が高温で還元されやすく、溶射膜に欠陥が生じたり、発色したりするという問題がある。
【0008】
本発明はかかる事情に鑑みてなされたものであって、射ち放し面粗さが小さく、気孔が少なく、高い絶縁性および高い密着力を有する溶射膜を備え、腐食性プラズマガス環境下でパーティクルが少なく、静電チャックのように高絶縁性を要求される部材に適した耐食性部材を提供することを目的とする。また、これらに加えて、さらに、ラップ面粗さが小さく機械的抵抗性の高い溶射膜を有する耐食性部材を提供することを目的とする。さらに、溶射膜の欠陥や発色が生じ難い耐食部材を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明者らは、上記課題を解決するため鋭意検討した結果、溶射装置のプラズマアーク部に酸化物セラミックス原料を投入して溶射することにより、溶融不足に起因する残留気孔の低減、表面の射ち放し面粗さの改善が可能となり、所望の射ち放し面粗さを有し、所定の大きさの気孔容積が少なく、かつ封孔処理をすることなく絶縁性が良好で、しかも高い密着性を有する溶射膜が得られること、さらには、溶射膜の材料に応じて所望のラップ面粗さを有し、耐摩耗性に代表される機械的抵抗性が良好な溶射膜が得られることを見出した。また、酸素ガス(O)や空気等の酸素元素(O)含有ガスプラズマを用いることにより、溶射の際にセラミックス原料を還元することなく、溶射膜に欠陥が生じたり、発色したりすることを防止可能なことを見出した。また、このように溶射装置のプラズマアーク発生部に酸化物セラミックス原料を投入して酸化物セラミックス溶射膜を形成するためには、カソードトーチと分離した2つのアノードトーチとからなる溶射装置を用いることが好ましいことを見出した。
【0010】
本発明は以上のような知見に基づいて完成されたものであり、以下の(1)〜(4)を提供する。
0011
(1) 腐食性プラズマガス環境下で用いられ、少なくとも腐食性プラズマガスに曝される部位がY の溶射膜で覆われている耐食性部材であって、
前記溶射膜は、カソードトーチと、互いに分離した2つのアノードトーチとを備えた溶射装置を用い、酸素ガス ( ) もしくは空気、またはこれらの混合ガスを供給して形成される酸素元素 ( ) 含有ガスプラズマによるプラズマアークを発生させ、そのプラズマアーク部にY の原料を導入して溶射することによって得られるものであり、
前記溶射膜の射ち放し表面粗さRaが5μm以下であり、0 . 1μm以上100μm以下の気孔径の累積細孔容積が0 . 0080cc/g以下であり、体積抵抗率が1×10 Ω・cm以上、密着力が10MPa以上、硬度Hvが500以上、摩耗量が150mg以下、ラップ面粗さRaが0 . 008μm以下であることを特徴とする耐食性部材。
0012
(2) 腐食性プラズマガス環境下で用いられ、少なくとも腐食性プラズマガスに曝される部位がAl の溶射膜で覆われている耐食性部材であって、
前記溶射膜は、カソードトーチと、互いに分離した2つのアノードトーチとを備えた溶射装置を用い、酸素ガス ( ) もしくは空気、またはこれらの混合ガスを供給して形成される酸素元素 ( ) 含有ガスプラズマによるプラズマアークを発生させ、そのプラズマアーク部にAl の原料を導入して溶射することによって得られるものであり、
前記溶射膜の射ち放し表面粗さRaが5μm以下であり、0 . 1μm以上100μm以下の気孔径の累積細孔容積が0 . 0080cc/g以下であり、体積抵抗率が1×10 Ω・cm以上、密着力が10MPa以上、硬度Hvが1000以上、摩耗量が50mg以下、ラップ面粗さRaが0 . 005μm以下であることを特徴とする耐食性部材。
0013
(3) 上記(1)または(2)において、射ち放し面に発生する発色点の数が1cm 当たり50個以下であることを特徴とする耐食性部材。
0014
(4) 上記(1)または(2)において、射ち放し面のテープ試験による溶射膜の脱落が1mm 当たり50個以下であることを特徴とする耐食性部材。
0015
【発明の実施の形態】
以下、本発明について具体的に説明する。
本発明に係る耐食性部材は、半導体製造装置部材等の腐食性プラズマガス環境下で用いられるものであり、少なくとも腐食性プラズマガスに曝される部位が酸化物セラミックスの溶射膜で覆われており、この溶射膜の射ち放し表面粗さRaが5μm以下であり、0.1μm以上100μm以下の気孔径の累積細孔容積が0.0080cc/g以下であり、体積抵抗率が1×10Ω・cm以上、密着力が10MPa以上である。
0016
溶射面の射ち放し表面粗さRaが5μmを超えるとプラズマガスに腐食された際、脱粒しやすくパーティクルの原因となりチップの歩留りを低下させ好ましくない。また、0.1μm以上100μm以下の気孔径の累積細孔容積が0.0080cc/gの範囲を超えると気孔がお互いに連結しやすくなり、脱粒したりパーティクルの原因となりチップの歩留りを低下させてしまい好ましくない。さらに、体積抵抗率が1×10Ω・cm未満になると絶縁性の低下を招き、静電チャックとした場合リーク電流が増大し、封孔処理が必要になったり、吸着力が低下したり、チップを破損させてしまい好ましくない。さらにまた、密着力が10MPa未満であると機械加工中や洗浄中に膜が剥離したり、使用中に膜が脱落したりするため好ましくない。
0017
溶射膜を構成する酸化物セラミックスとしては、耐食性が高いこと、溶射により形成しやすいこと等の観点からY、Alが好ましい。溶射膜を形成するための基材としては溶射が可能であれば特に制限はないが、Alや鋼板のような低コストで加工性に優れ大型化が容易な金属材料が好ましい。もちろんセラミックスの基材であってもよい。
0018
溶射膜の主成分をYとした場合、その硬度Hvが500以上、摩耗量が150mg以下、ラップ面粗さRaが0.008μm以下とすることが好ましい。
0019
主成分をYとした溶射膜の硬度Hvが500未満であったり、摩耗量が150mgを超えると、プラズマガスによる物理的エッチングでの耐性が低く、脱粒によるパーティクル発生が顕著となり好ましくない。また、ラップ面粗さRaが0.008μmを超えると表面の凸部が脱落しやすくなったり、表面のエッジ部にプラズマが集中し腐食が進行するために好ましくない。
0020
なお、ここで摩耗量は、#240のサンドペーパーを摩耗輪に巻き、評価テストピースへの荷重2kgとして測定した摩耗量であり、密着力は、引張試験機を用い、断面積φ20、引張りスピード1mm/minの条件評価した。
0021
溶射膜の主成分をAlとした場合、その硬度Hvが1000以上、摩耗量が50mg以下、ラップ面粗さRaが0.005μm以下とすることが好ましい。
0022
主成分をAlとした溶射膜の硬度Hvが1000未満であったり、摩耗量が50mgを超えると、プラズマガスによる物理的エッチングでの耐性が低く、脱粒によるパーティクル発生が顕著となり好ましくない。また、ラップ面粗さRaが0.005μmを超えると表面の凸部が脱落しやすくなったり、表面のエッジ部にプラズマが集中し腐食が進行するために好ましくない。
0023
溶射膜の射ち放し面に発生する発色点の数が1cm当たり50個以下であることが好ましい。射ち放し面に発生する発色点の数が1cm当たり50個を越えると、酸素欠損による欠陥が多く、プラズマ耐性の低下に加え、外観不良による歩留りが低下するため好ましくない。
0024
溶射膜の射ち放し面のテープ試験による溶射膜の脱落が1mm当たり50個以下であることが好ましい。射ち放し面のテープ試験による溶射膜の脱落が1mm当たり50個を越えると、使用中の脱粒が多くなり、チップの歩留りを低下させるため好ましくない。
0025
以上のような溶射膜を形成するために、本発明では、溶射装置によりプラズマアークを発生させ、最も高温であるプラズマアーク部、好ましくは特に高温になるプラズマアーク発生部に酸化物セラミックス原料を導入して前記溶射膜を形成する。すなわち、このように最も高温であるプラズマアーク部に酸化物セラミックス原料を導入することにより、セラミックス原料を完全に溶融することが可能となり、上記所望の特性の溶射膜を得ることができる。
0026
このようなことを実現可能な装置として、カソードトーチと、互いに分離した2つのアノードトーチとを備えた溶射装置を挙げることができる。このような分離した2つのアノードトーチを用いることにより、最も高温であるプラズマアーク部に原料を導入することができるため、セラミックス原料を完全に溶融することが可能となり、これにより所望の溶射膜を得ることができる。従来のアノード一体型の溶射装置では、構造上、原料をプラズマアーク部に導入することができず、セラミックス原料を完全に溶融することが困難であった。
0027
酸化物セラミックス原料を溶射する際には、酸素元素(O)含有ガスプラズマを用いることが好ましい。O含有ガスプラズマは、例えば酸素ガス(O)もしくは空気、またはこれらの混合ガスを供給して形成することができる。このようにO含有プラズマを用いることにより、酸化物セラミックスを高温で溶融した際、酸化物セラミックスが還元されて欠陥が生じたり、発色したりすることを防止できる。
0028
次に、カソードトーチと、互いに分離した2つのアノードトーチとを備えた溶射装置の具体的構造について説明する。図1はこのような溶射装置の一例を示す概略断面図である。この溶射装置は、溶射粒子射出口1aを有する装置本体1と、装置本体1の溶射粒子射出口1aと反対側に設けられたカソードトーチ2と、装置本体1の両側面にそれぞれ支持部材4a,4bに支持されて設けられた2つのアノードトーチ3a,3bとを備えている。
0029
カソードトーチ2の先端にはArガス供給配管11およびArガス導入路11aを通ってArガスが供給され、トーチ(電極)の酸化を防止しつつアークを発生させる。カソードトーチ2の下流側にはアクセルノズル5が設けられており、カソードトーチ2で発生したアークが加速されプラズマアーク40が生成される。カソードトーチ2からのアークには空気供給配管12から空気導入路12aを通って空気が供給され、アクセルノズル5から発生するプラズマアーク40はO含有プラズマとなる。
0030
このプラズマアーク40の発生部には、図示しない原料供給ホッパーから原料供給配管13を介して溶射原料粉末である酸化物セラミックス原料粉末が導入され、この原料粉末が完全に溶融して溶射粒子が形成される。プラズマアーク40の先端部に原料粉末を供給しても同様に原料粉末を完全に溶融させることが可能であるが、プラズマアーク40の発生部のほうが高温であるため好ましい。
0031
アノードトーチ3aの先端には、Arガス供給配管21aおよびArガス導入路22aおよび23aを通ってArガスが供給され、トーチ(電極)の酸化を防止しつつアークが生成され、カソードトーチ2から射出されたプラズマジェット40に対して垂直にプラズマアーク41aが延びている。アノードトーチ3bの先端にも、Arガス供給配管21bおよびArガス導入路22bおよび23bを通ってArガスが供給されてトーチ(電極)の酸化を防止しつつアークが生成され、カソードトーチ2から射出されたプラズマアーク40に対して垂直にプラズマアーク41bが延びている。そして、プラズマアーク40,41a,41bの合流点においてプラズマジェット40aとなる。装置本体1の溶射粒子射出口1a近傍において、空気配管24a,24bからそれぞれ空気導入路25a,25bを通ってプラズマジェット40aに空気を供給し、プラズマジェット40aにおける溶融に寄与しない熱をトリミングする。
0032
カソードトーチ2およびアノードトーチ3a,3bには、アーク発生を開始させる高周波スターターとして機能する補助電源32a,32bと、アークを持続させるエネルギー供給源としての直流主電源31a,31bとが接続されている。なお、これら補助電源32a,32bと、直流主電源31a,31bとは、図示しない制御装置により制御される。
0033
カソードトーチ2およびアクセルノズル5の周囲にはこれらを高温から保護する冷却ジャケット14が設けられ、アノードトーチ3a,3bの周囲にも冷却ジャケット26a,26bが設けられている。
0034
このような溶射装置においては、プラズマジェット40aにキャリアされた溶射粒子51が基材53に当たり溶射膜52が形成される。
0035
溶射に用いる酸化物セラミックス原料粉末は、通常の市販粉末でよく、必要に応じて造粒を行ない顆粒化して粉末の流動性を改善したものを用いてもよい。基材53としては必要に応じてブラスト等の表面処理を施したものを用いる。ブラスト処理後の基材は十分洗浄を行ない、表面に付着したブラスト材、削れ屑等をきれいに除去しておくことが好ましい。溶射表面にこれらのゴミが残存していると膜の密着力が低下するので好ましくない。
0036
以上のような装置を用い、溶射の際にセラミックス原料粉末を完全に溶融させることにより、上述したように酸化物セラミックス粒子を完全に溶融させることができ、残留気孔が少なく、所望の表面の射ち放し面粗さを有し、基材との密着性、機械的抵抗性に優れ、欠陥や発色の発生を抑え、封孔処理をすることなしに絶縁性が高い膜を得ることができる。
0037
【実施例】
以下、本発明の実施例について比較例とともに説明する。
表1に示す基材に表1に示す条件でブラスト処理を行い、油分、ブラストのGCなどの溶射面付着物を除去するためエタノール超音波洗浄後、200℃で3時間乾燥した。一方、表1に示す溶射膜の原料粉末の水分を除去するため、原料粉末を200℃で3時間乾燥し、再度水分を吸着させないため、素早く供給原料タンクに入れ閉じた。また、セカンダリガスの水分を除去するため、ガス供給系にコンデンサ、ミストセパレータを設置した。
0038
恒温恒湿のブース内に図1に示す構成を有するプラズマ溶射装置(エアロプラズマ社製APA7100)を設置し、基材を表1に示す所定の温度に加熱した状態とし、表1に示す条件にて溶射を行ない、表1に示す実施例であるNo.1〜9および比較例であるNo.10、11、17の評価用テストピースを得た。なお、表1の原料投入箇所の欄は、図2に示すように、Aが温度の最も高いプラズマアーク発生部、Bがプラズマアークの先端部、Cはプラズマアーク発生部から離れたプラズマジェット部である。また、アノード一体型トーチを備えたプラズマ装置を用い、表1に示す条件にて溶射を行って比較例であるNo.12〜16の評価用テストピースを得た。なお、膜厚は、試料の断面をSEMで観察し測定した。
0039
これら評価用テストピースについて、表2に示す項目について評価を行った。
これら評価項目のうち表面粗さは、JIS B 0601に準拠してタリサーフ(装置名;ランクテーラホブソン社製)で測定した。累積細孔容積は、水銀ポロシメータ(島津社製マイクロメトリックス ポアサイザー9320)を用いて測定した。密着力は、引張試験機(島津製作所製 オートグラフAG−10TE)を用い、断面積φ20、引張りスピード1mm/minの条件で10個のテストピースについて測定を行い、その平均値を求めた。摩耗量は、JIS H 8682に準拠して、スガ摩耗試験機(NUS−ISO−3型)を用い、#240のサンドペーパーを摩耗輪に巻き、評価テストピースへの荷重2kgとして、10個のテストピースについて摩耗量の測定を行い、その平均値を求めた。硬度は、マイクロビッカース硬さ試験機(アカシ社製、MVK−G1)を用い、表面をラップ後、荷重0.98N(100gf)、評価テストピース10個で測定した。射ち放し面発色点数については、300mm×300mmのテストピースについて目視観察により評価した。テープ試験は、カーボンテープ(SHINTO
PAINT製、Shintrontape)を用い、評価用テストピースの表面にカーボンテープを貼った後、再びカーボンテープを剥し、評価用テストピースと接触したカーボンテープ表面をSEMで観察した。体積抵抗率は、デジタル超高抵抗計(アドバンテスト社製、R8340)とサンプルホルダー(アドバンテスト社製、TR42)を用い、印加電圧500Vで測定した。パーティクル量は、エッチング装置(日電アネルバ製、DEA−506)の壁材に表1の溶射膜を形成し、ガス種CF、流量0.05L/min(50sccm)、圧力6.65Pa(50mTorr)、出力0.55W/cm、処理時間2時間で、Siウエハーを処理した後、Siウエハー上の1mm当たりのパーティクル数をカウントした。これらの結果を表2に示す。
0040
表1から明らかなように実施例であるNo.1〜9では、アノード分離タイプの溶射装置を用い、セラミックス原料をプラズマアーク部であるA,Bの位置に導入したので、溶射膜の射ち放し面の表面粗さRaが5μm以下であり、0.1μm以上100μm以下の累積細孔容積が0.0080cc/g以下であり、体積抵抗率が1×10Ω・cm以上であるため、静電チャック等の絶縁性が要求される部材に適し、しかも密着力が強く、パーティクルの発生量が少ないことが確認された。また、溶射膜のラップ面の表面粗さも小さく、発光点の数が少なく、摩耗量が少ないことも確認された。
0041
これに対して、比較例であるアノード一体型溶射装置を用いたNo.12〜16、およびアノード分離タイプの溶射装置を用いたがセラミック原料粉末の導入位置がプラズマアーク部よりも温度が低いプラズマジェット部であるNo.17では、溶射膜の射ち放し面の表面粗さが大きく、0.1μm以上100μm以下の累積細孔容積も大きく、体積抵抗率が小さい結果となり、静電チャック等の絶縁性が要求される部材への適用が困難であり、パーティクルの発生量も多かった。また、溶射膜のラップ面の表面粗さも大きく、発光点の数が多く、密着力が弱く、摩耗量が多いことも確認された。
0042
【表1】

Figure 0003649210
0043
【表2】
Figure 0003649210
0044
【発明の効果】
以上説明したように、本発明によれば、射ち放し面粗さが小さく、気孔が少なく、高い絶縁性および高い密着力を有する溶射膜を備え、腐食性プラズマガス環境下でパーティクルが少なく、静電チャックのように高絶縁性を要求される部材に適した耐食性部材を得ることができる。また、これらに加えて、さらに、ラップ面粗さが小さく機械的抵抗性および密着力の高い溶射膜を有する耐食性部材を得ることができる。さらに、溶射膜の欠陥や発色が生じ難い耐食部材を得ることができる。したがって、本発明の耐食性部材を半導体製造装置用部材に用いた場合に、腐食性プラズマガス中でのパーティクルが低減され、チップの歩留りを飛躍的に向上させることが可能である。
【図面の簡単な説明】
【図1】 本発明の耐食性部材における溶射膜を形成する装置を示す概略断面図。
【図2】 本発明の実施例における図1の装置の原料投入位置を示す図。
【符号の説明】
1;装置本体
2;カソードトーチ
3a,3b;アノードトーチ
40,41a,41b;プラズマアーク
40a;プラズマジェット
51;溶射粒子
52;溶射膜
53;基材[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a corrosion-resistant member suitable for a component for a semiconductor manufacturing apparatus or the like in which at least a portion exposed to a corrosive plasma gas is covered with a sprayed film of oxide ceramics.
[0002]
[Prior art]
In the semiconductor device manufacturing process and the liquid crystal display device manufacturing process, there is a process of treating a predetermined film formed on a Si wafer or a glass substrate with various corrosive plasma gases, such as dry etching. Conventionally, metal materials such as Al materials and stainless steel have been used for chambers and various members in processing apparatuses that perform processing using such various corrosive plasma gases. In addition to the occurrence, there was a big problem that the life of the member was short.
[0003]
In order to solve such a problem, these members are manufactured from a ceramic sintered body having high corrosion resistance. However, ceramic sintered bodies are relatively easy to manufacture with relatively small members around the wafer and are generally used, but large members such as chamber domes and wall materials are difficult to manufacture. The yield is low and the manufacturing cost is high. In addition, Si wafers and glass substrates are getting larger and larger, and these members are also getting larger, and there is a limit to the application of ceramic sintered bodies to these large members.
[0004]
Therefore, a method that solves these problems by spraying ceramics with corrosion resistance on the surface of the base material is adopted as a base material using a metal material that is low in cost and excellent in workability, such as Al. Has been. Such a corrosion-resistant member having a ceramic sprayed film formed on the surface of a metal substrate such as Al is often required to have high insulation properties, and when applied to an electrostatic chuck, the insulation properties of the sprayed film must be reduced. Various organic and inorganic sealants have been used to enhance it. In the conventional plasma spraying, it is common to use Ar, N 2 , H 2 or the like or a mixed gas thereof as the plasma gas.
[0005]
[Problems to be solved by the invention]
However, when forming the sprayed film, the ceramic powder is melted and sprayed onto the base material. When this solidifies on the base material, the high melting point ceramic raw material tends to be insufficiently melted and contains many pores and particles. There is a problem in that the bonding strength between them is weak, and the surface roughness of the surface is poor. In addition, there is a problem that dust easily adheres to such pores, and dust in the pores is difficult to remove by washing. Furthermore, as a result of such a large number of pores and poor surface radiating surface roughness, conventional ceramic sprayed films are not sufficiently resistant to corrosive plasma gases, and are etched by these corrosive plasma gases. There is a problem that sufficient yield cannot be obtained due to generation of particles or generation of dust or gas adhering to the pores. In addition, various organic and inorganic sealing agents are used to improve the thermal insulation of sprayed films for members that require insulating properties such as electrostatic chucks. Since the agent is selectively corroded, desired insulation cannot be obtained, and a large problem arises in that the adsorption power is reduced or the chip is damaged due to an increase in leakage current.
[0006]
In addition, since the high melting point ceramic raw material is insufficiently melted as described above, the conventional sprayed film has low mechanical resistance and poor adhesion to the base material, and damages the film during processing or cleaning. There arises a problem that the roughness of the lap surface is deteriorated due to entering or peeling, and a problem that the yield is lowered by dropping the film during use.
[0007]
Further, in the conventional plasma spraying, since the thermal spraying is performed with Ar, N 2 , H 2 or the like as the plasma gas, the thermal spray film is easily reduced at a high temperature when spraying oxide ceramics which is a highly insulating material. There is a problem that defects occur in the sprayed film or color develops.
[0008]
The present invention has been made in view of such circumstances, and is provided with a sprayed film having a small surface roughness, a small number of pores, high insulation and high adhesion, and particles are generated in a corrosive plasma gas environment. An object of the present invention is to provide a corrosion-resistant member suitable for a member requiring a high insulating property such as an electrostatic chuck. In addition to these, another object of the present invention is to provide a corrosion-resistant member having a thermal spray film having a small lap surface roughness and high mechanical resistance. It is another object of the present invention to provide a corrosion-resistant member that is less likely to cause defects or color development in a sprayed film.
[0009]
[Means for Solving the Problems]
As a result of diligent investigations to solve the above problems, the inventors of the present invention have reduced the residual pores caused by insufficient melting and surface shots by introducing an oxide ceramic material into the plasma arc part of the thermal spraying apparatus and spraying it. The release surface roughness can be improved, the desired release surface roughness is obtained, the pore volume of a predetermined size is small, the insulation is good without sealing treatment, and high adhesion is achieved. It is found that a thermal spray film having a desired lap surface roughness according to the material of the thermal spray film and having a good mechanical resistance typified by wear resistance can be obtained. It was. In addition, by using oxygen element (O) -containing gas plasma such as oxygen gas (O 2 ) or air, the sprayed film may be defective or colored without reducing the ceramic raw material during spraying. Found that it can be prevented. In addition, in order to form the oxide ceramic sprayed film by introducing the oxide ceramic raw material into the plasma arc generating portion of the spraying apparatus in this way, a spraying apparatus comprising a cathode torch and two separated anode torches is used. Has been found to be preferable.
[0010]
The present invention has been completed based on the above findings, and provides the following (1) to (4) .
[ 0011 ]
(1) A corrosion- resistant member that is used in a corrosive plasma gas environment, and at least a portion exposed to the corrosive plasma gas is covered with a sprayed film of Y 2 O 3 ,
The sprayed film uses a thermal spraying device including a cathode torch and two anode torches separated from each other , and supplies oxygen gas ( O 2 ) or air, or a mixed gas thereof to form an oxygen element ( O 2 O 2 ). ) It is obtained by generating a plasma arc by the contained gas plasma , introducing a raw material of Y 2 O 3 into the plasma arc part and spraying it,
Wherein among release surface roughness Ra of the sprayed coating is at 5μm or less, 0. Cumulative pore volume of pore diameter of 1μm or 100μm or less is at 0. 0080cc / g or less, a volume resistivity of 1 × 10 6 Ω · cm or more, the adhesion is more than 10 MPa, hardness Hv 500 or more, the wear amount of 150mg or less, the corrosion resistance member, wherein the wrap surface roughness Ra of 0. 008Myuemu below.
[ 0012 ]
(2) A corrosion- resistant member that is used in a corrosive plasma gas environment and at least a portion exposed to the corrosive plasma gas is covered with a sprayed film of Al 2 O 3 ,
The sprayed film uses a thermal spraying device including a cathode torch and two anode torches separated from each other , and supplies oxygen gas ( O 2 ) or air, or a mixed gas thereof to form an oxygen element ( O 2 O 2 ). ) It is obtained by generating a plasma arc by the contained gas plasma , introducing a raw material of Al 2 O 3 into the plasma arc part and spraying it,
Wherein among release surface roughness Ra of the sprayed coating is at 5μm or less, 0. Cumulative pore volume of pore diameter of 1μm or 100μm or less is at 0. 0080cc / g or less, a volume resistivity of 1 × 10 6 Ω · cm or more, the adhesion is more than 10 MPa, hardness Hv of 1000 or more, the wear amount is 50mg or less, the corrosion resistance member, wherein the wrap surface roughness Ra of 0. 005Myuemu below.
[ 0013 ]
(3) The corrosion-resistant member according to (1) or (2), wherein the number of color spots generated on the exposed surface is 50 or less per 1 cm 2 .
[ 0014 ]
(4) In the above (1) or (2), the corrosion-resistant member is characterized in that the number of sprayed films dropped by a tape test on the exposed surface is 50 or less per 1 mm 2 .
[ 0015 ]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be specifically described.
The corrosion-resistant member according to the present invention is used in a corrosive plasma gas environment such as a semiconductor manufacturing apparatus member, and at least a portion exposed to the corrosive plasma gas is covered with a sprayed film of oxide ceramics. The sprayed surface roughness Ra of this sprayed film is 5 μm or less, the cumulative pore volume of pores of 0.1 μm or more and 100 μm or less is 0.0008 cc / g or less, and the volume resistivity is 1 × 10 6 Ω · cm or more, and the adhesion is 10 MPa or more.
[ 0016 ]
If the sprayed surface roughness Ra of the sprayed surface exceeds 5 μm, it is not preferable because when it is corroded by the plasma gas, it is easy to fall out and causes particles to decrease the yield of the chip. Further, when the cumulative pore volume of pore diameters of 0.1 μm or more and 100 μm or less exceeds 0.0008 cc / g, the pores are easily connected to each other, which causes grain fall and particles, which reduces the yield of the chip. It is not preferable. Further, when the volume resistivity is less than 1 × 10 6 Ω · cm, the insulation is deteriorated. When the electrostatic chuck is used, the leakage current increases, and a sealing process is required, or the adsorption force is reduced. This is not preferable because it damages the chip. Furthermore, if the adhesive force is less than 10 MPa, the film peels off during machining or washing, or the film falls off during use, which is not preferable.
[ 0017 ]
As oxide ceramics constituting the sprayed film, Y 2 O 3 and Al 2 O 3 are preferable from the viewpoints of high corrosion resistance and easy formation by thermal spraying. The substrate for forming the sprayed film is not particularly limited as long as spraying is possible, but a metal material such as Al or steel plate that is low in cost and excellent in workability and easy to increase in size is preferable. Of course, it may be a ceramic substrate.
[ 0018 ]
When the main component of the sprayed film is Y 2 O 3 , the hardness Hv is preferably 500 or more, the wear amount is 150 mg or less, and the lapping surface roughness Ra is preferably 0.008 μm or less.
[ 0019 ]
When the hardness Hv of the sprayed coating containing Y 2 O 3 as the main component is less than 500 or the wear amount exceeds 150 mg, the resistance to physical etching with plasma gas is low, and particle generation due to degranulation is not preferable. . On the other hand, when the lap surface roughness Ra exceeds 0.008 μm, the convex portions on the surface are likely to drop off, and plasma is concentrated on the edge portions on the surface, which is not preferable.
[ 0020 ]
Here, the amount of wear is the amount of wear measured by winding # 240 sandpaper around a wear wheel and measuring 2 kg as the load on the evaluation test piece, and the adhesion is measured using a tensile tester, with a cross-sectional area of φ20 and a tensile speed. Evaluation was performed under the condition of 1 mm / min.
[ 0021 ]
When the main component of the sprayed film is Al 2 O 3 , it is preferable that the hardness Hv is 1000 or more, the wear amount is 50 mg or less, and the lap surface roughness Ra is 0.005 μm or less.
[ 0022 ]
When the hardness Hv of the sprayed coating containing Al 2 O 3 as the main component is less than 1000 or the wear amount exceeds 50 mg, the resistance to physical etching with plasma gas is low, and particle generation due to degranulation is not preferable. . On the other hand, when the lap surface roughness Ra exceeds 0.005 μm, the convex portions on the surface easily fall off, or plasma concentrates on the edge portions of the surface and corrosion is not preferable.
[ 0023 ]
The number of color spots generated on the sprayed surface of the sprayed film is preferably 50 or less per cm 2 . If the number of coloring points generated on the exposed surface exceeds 50 per 1 cm 2 , there are many defects due to oxygen deficiency, which is not preferable because the yield due to poor appearance is reduced in addition to the decrease in plasma resistance.
[ 0024 ]
It is preferable that the sprayed film fall off by the tape test on the sprayed surface of the sprayed film is 50 or less per 1 mm 2 . If the number of sprayed films dropped by the tape test on the exposed surface exceeds 50 per 1 mm 2 , it is not preferable because the number of grains dropped during use increases and the yield of chips decreases.
[ 0025 ]
In order to form the sprayed film as described above, in the present invention, a plasma arc is generated by a spraying apparatus, and the oxide ceramic raw material is introduced into the plasma arc part that is the highest temperature, preferably the plasma arc generating part that is particularly hot. Then, the sprayed film is formed. That is, by introducing the oxide ceramic raw material into the plasma arc portion having the highest temperature in this way, the ceramic raw material can be completely melted, and a sprayed film having the desired characteristics can be obtained.
[ 0026 ]
As an apparatus capable of realizing this, a thermal spraying apparatus including a cathode torch and two anode torches separated from each other can be cited. By using such two separated anode torches, the raw material can be introduced into the plasma arc part, which is the highest temperature, so that the ceramic raw material can be completely melted. Can be obtained. In the conventional anode-integrated thermal spraying apparatus, the raw material cannot be introduced into the plasma arc part because of the structure, and it is difficult to completely melt the ceramic raw material.
[ 0027 ]
When thermal spraying the oxide ceramic raw material, it is preferable to use oxygen element (O) -containing gas plasma. The O-containing gas plasma can be formed by supplying, for example, oxygen gas (O 2 ), air, or a mixed gas thereof. By using the O-containing plasma in this manner, when the oxide ceramic is melted at a high temperature, it is possible to prevent the oxide ceramic from being reduced and causing defects or coloring.
[ 0028 ]
Next, a specific structure of a thermal spraying apparatus including a cathode torch and two anode torches separated from each other will be described. FIG. 1 is a schematic sectional view showing an example of such a thermal spraying apparatus. This thermal spraying apparatus includes an apparatus main body 1 having a thermal spray particle injection port 1a, a cathode torch 2 provided on the opposite side of the thermal spray particle injection port 1a of the apparatus main body 1, and support members 4a, Two anode torches 3a and 3b provided to be supported by 4b are provided.
[ 0029 ]
Ar gas is supplied to the tip of the cathode torch 2 through an Ar gas supply pipe 11 and an Ar gas introduction path 11a to generate an arc while preventing oxidation of the torch (electrode). An accelerator nozzle 5 is provided on the downstream side of the cathode torch 2, and the arc generated in the cathode torch 2 is accelerated to generate a plasma arc 40. Air is supplied to the arc from the cathode torch 2 from the air supply pipe 12 through the air introduction path 12a, and the plasma arc 40 generated from the accelerator nozzle 5 becomes O-containing plasma.
[ 0030 ]
An oxide ceramic raw material powder, which is a thermal spray raw material powder, is introduced from a raw material supply hopper (not shown) through a raw material supply pipe 13 to the generating portion of the plasma arc 40, and the raw material powder is completely melted to form spray particles. Is done. Even if the raw material powder is supplied to the tip portion of the plasma arc 40, it is possible to completely melt the raw material powder in the same manner, but the generating portion of the plasma arc 40 is preferable because it has a higher temperature.
[ 0031 ]
Ar gas is supplied to the tip of the anode torch 3a through the Ar gas supply pipe 21a and the Ar gas introduction paths 22a and 23a, and an arc is generated while preventing the torch (electrode) from being oxidized. A plasma arc 41a extends perpendicularly to the plasma jet 40 thus formed. Ar gas is also supplied to the tip of the anode torch 3b through the Ar gas supply pipe 21b and the Ar gas introduction passages 22b and 23b to generate an arc while preventing the torch (electrode) from being oxidized, and is emitted from the cathode torch 2 A plasma arc 41b extends perpendicular to the plasma arc 40 formed. And it becomes the plasma jet 40a in the confluence | merging point of plasma arc 40,41a, 41b. In the vicinity of the sprayed particle injection port 1a of the apparatus main body 1, air is supplied to the plasma jet 40a from the air pipes 24a and 24b through the air introduction paths 25a and 25b, respectively, and heat that does not contribute to melting in the plasma jet 40a is trimmed.
[ 0032 ]
Connected to the cathode torch 2 and the anode torches 3a and 3b are auxiliary power sources 32a and 32b that function as high-frequency starters for starting arc generation, and DC main power sources 31a and 31b as energy supply sources for sustaining the arc. . The auxiliary power supplies 32a and 32b and the DC main power supplies 31a and 31b are controlled by a control device (not shown).
[ 0033 ]
A cooling jacket 14 is provided around the cathode torch 2 and the accelerator nozzle 5 to protect them from high temperatures, and cooling jackets 26a and 26b are also provided around the anode torches 3a and 3b.
[ 0034 ]
In such a thermal spraying apparatus, the thermal spraying particle 51 carried by the plasma jet 40a hits the base material 53, and the thermal spraying film 52 is formed.
[ 0035 ]
The oxide ceramic raw material powder used for thermal spraying may be a normal commercial powder, or may be granulated and granulated as necessary to improve the fluidity of the powder. As the base material 53, a material subjected to surface treatment such as blasting is used if necessary. It is preferable that the base material after the blast treatment is sufficiently washed to remove blast material, shavings and the like adhering to the surface. If these dusts remain on the sprayed surface, the adhesion of the film decreases, which is not preferable.
[ 0036 ]
By using the apparatus as described above, the ceramic raw material powder is completely melted during spraying, so that the oxide ceramic particles can be completely melted as described above, and there are few residual pores, and the desired surface is shot. A film having a free surface roughness, excellent adhesion to the base material and mechanical resistance, suppressing the occurrence of defects and coloring, and having a high insulating property without performing a sealing treatment can be obtained.
[ 0037 ]
【Example】
Examples of the present invention will be described below together with comparative examples.
The base material shown in Table 1 was blasted under the conditions shown in Table 1, and dried at 200 ° C. for 3 hours after ultrasonic cleaning with ethanol in order to remove deposits on the sprayed surface such as oil and GC of the blast. On the other hand, the raw material powder was dried at 200 ° C. for 3 hours in order to remove the moisture of the raw material powder of the thermal spray film shown in Table 1, and was quickly put in the feed raw material tank and closed in order not to adsorb moisture again. Moreover, in order to remove the water | moisture content of secondary gas, the capacitor | condenser and the mist separator were installed in the gas supply system.
[ 0038 ]
A plasma spraying apparatus (APA7100 manufactured by Aeroplasma Co., Ltd.) having the configuration shown in FIG. 1 is installed in a constant temperature and humidity booth, and the base material is heated to a predetermined temperature shown in Table 1, and the conditions shown in Table 1 are satisfied. No. 1 which is an example shown in Table 1. 1-9 and No. 1 as a comparative example . Test pieces for evaluation of 10 , 11 , and 17 were obtained. As shown in FIG. 2, the column of the raw material input location in Table 1 shows that A is the plasma arc generating portion having the highest temperature, B is the tip portion of the plasma arc, and C is the plasma jet portion separated from the plasma arc generating portion. It is. Further, using a plasma apparatus equipped with an anode integrated torch, thermal spraying was performed under the conditions shown in Table 1 to obtain a comparative example No. 12 to 16 test pieces for evaluation were obtained. The film thickness was measured by observing the cross section of the sample with an SEM.
[ 0039 ]
About these test pieces for evaluation, the items shown in Table 2 were evaluated.
Among these evaluation items, the surface roughness was measured by Talysurf (device name; manufactured by Rank Taylor Hobson) in accordance with JIS B 0601. The cumulative pore volume was measured using a mercury porosimeter (Shimadzu Micrometric Spore Sizer 9320). The adhesion was measured for 10 test pieces using a tensile tester (Autograph AG-10TE, manufactured by Shimadzu Corporation) under the conditions of a cross-sectional area of φ20 and a pulling speed of 1 mm / min, and the average value was obtained. The amount of wear was determined according to JIS H 8682 by using a Suga abrasion tester (NUS-ISO-3 type), winding # 240 sandpaper around a wear wheel, and applying a load of 2 kg to the evaluation test piece. The amount of wear was measured for the test piece, and the average value was obtained. The hardness was measured with a load of 0.98 N (100 gf) and 10 evaluation test pieces after lapping the surface using a micro Vickers hardness tester (manufactured by Akashi Co., Ltd., MVK-G1). The number of surface-development color points was evaluated by visual observation of a 300 mm × 300 mm test piece. The tape test is carbon tape (SHINTO
After applying a carbon tape to the surface of the test piece for evaluation using PAINT (Shintrontape), the carbon tape was peeled again and the surface of the carbon tape in contact with the test piece for evaluation was observed with SEM. The volume resistivity was measured at an applied voltage of 500 V using a digital ultra high resistance meter (manufactured by Advantest, R8340) and a sample holder (manufactured by Advantest, TR42). The amount of particles is as follows. The sprayed film shown in Table 1 is formed on the wall material of an etching apparatus (manufactured by Nidec Anelva, DEA-506), gas type CF 4 , flow rate 0.05 L / min (50 sccm), pressure 6.65 Pa (50 mTorr). After processing the Si wafer at an output of 0.55 W / cm 2 and a processing time of 2 hours, the number of particles per 1 mm 2 on the Si wafer was counted. These results are shown in Table 2.
[ 0040 ]
As is apparent from Table 1, the example No. In Nos. 1 to 9 , since an anode separation type thermal spraying apparatus was used and the ceramic raw material was introduced into positions A and B which are plasma arc portions, the surface roughness Ra of the sprayed surface of the thermal sprayed film was 5 μm or less. Suitable for materials that require insulation, such as electrostatic chucks, because the cumulative pore volume from 1 μm to 100 μm is 0.0080 cc / g or less and the volume resistivity is 1 × 10 6 Ω · cm or more. Moreover, it was confirmed that the adhesion was strong and the amount of particles generated was small. It was also confirmed that the surface roughness of the lap surface of the sprayed film was small, the number of light emitting points was small, and the amount of wear was small.
[ 0041 ]
On the other hand, No. 1 using an anode-integrated thermal spraying apparatus as a comparative example. Nos. 12 to 16 and an anode separation type thermal spraying apparatus were used, but the introduction position of the ceramic raw material powder was No. 1 which is a plasma jet part whose temperature is lower than the plasma arc part. No. 17, the surface roughness of the sprayed surface of the sprayed film is large, the cumulative pore volume of 0.1 μm or more and 100 μm or less is large, the volume resistivity is small, and a member requiring insulation such as an electrostatic chuck Application was difficult, and the amount of particles generated was also large. It was also confirmed that the surface roughness of the lap surface of the sprayed film was large, the number of light emitting points was large, the adhesion was weak, and the amount of wear was large.
[ 0042 ]
[Table 1]
Figure 0003649210
[ 0043 ]
[Table 2]
Figure 0003649210
[ 0044 ]
【The invention's effect】
As described above, according to the present invention, the sprayed surface roughness is small, the pores are small, the sprayed film has high insulation and high adhesion, and there are few particles in a corrosive plasma gas environment, and static A corrosion-resistant member suitable for a member that requires high insulation, such as an electric chuck, can be obtained. In addition to these, it is possible to obtain a corrosion-resistant member having a thermal spray film having a small lap surface roughness and high mechanical resistance and high adhesion. Furthermore, it is possible to obtain a corrosion-resistant member in which defects or color development of the sprayed film hardly occurs. Therefore, when the corrosion-resistant member of the present invention is used for a member for a semiconductor manufacturing apparatus, particles in the corrosive plasma gas are reduced, and the yield of chips can be dramatically improved.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view showing an apparatus for forming a sprayed film on a corrosion-resistant member of the present invention.
FIG. 2 is a view showing a raw material charging position of the apparatus of FIG. 1 in the embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1; Apparatus main body 2; Cathode torch 3a, 3b; Anode torch 40, 41a, 41b; Plasma arc 40a; Plasma jet 51; Thermal spray particle 52;

Claims (4)

腐食性プラズマガス環境下で用いられ、少なくとも腐食性プラズマガスに曝される部位がYThe part used in a corrosive plasma gas environment and exposed to at least the corrosive plasma gas is Y 2 O 3 の溶射膜で覆われている耐食性部材であって、A corrosion-resistant member covered with a sprayed coating of
前記溶射膜は、カソードトーチと、互いに分離した2つのアノードトーチとを備えた溶射装置を用い、酸素ガス  The thermal spray film uses a thermal spraying device having a cathode torch and two anode torches separated from each other, and oxygen gas. (( O 2 )) もしくは空気、またはこれらの混合ガスを供給して形成される酸素元素Or oxygen element formed by supplying air or mixed gas (( O )) 含有ガスプラズマによるプラズマアークを発生させ、そのプラズマアーク部にYA plasma arc is generated by the contained gas plasma, and Y is generated in the plasma arc part. 2 O 3 の原料を導入して溶射することによって得られるものであり、It is obtained by introducing and spraying the raw material of
前記溶射膜の射ち放し表面粗さRaが5μm以下であり、0  The sprayed surface roughness Ra of the sprayed film is 5 μm or less, and 0 .. 1μm以上100μm以下の気孔径の累積細孔容積が0Cumulative pore volume with a pore diameter of 1 μm or more and 100 μm or less is 0 .. 0080cc/g以下であり、体積抵抗率が1×100080cc / g or less, and volume resistivity is 1 × 10 6 Ω・cm以上、密着力が10MPa以上、硬度Hvが500以上、摩耗量が150mg以下、ラップ面粗さRaが0Ω · cm or more, adhesion strength of 10 MPa or more, hardness Hv of 500 or more, wear amount of 150 mg or less, lapping surface roughness Ra of 0 .. 008μm以下であることを特徴とする耐食性部材。A corrosion-resistant member characterized by being 008 μm or less.
腐食性プラズマガス環境下で用いられ、少なくとも腐食性プラズマガスに曝される部位がAlIt is used in a corrosive plasma gas environment, and at least the part exposed to the corrosive plasma gas is Al. 2 O 3 の溶射膜で覆われている耐食性部材であって、A corrosion-resistant member covered with a sprayed coating of
前記溶射膜は、カソードトーチと、互いに分離した2つのアノードトーチとを備えた溶射装置を用い、酸素ガス  The thermal spray film uses a thermal spraying device having a cathode torch and two anode torches separated from each other, and oxygen gas. (( O 2 )) もしくは空気、またはこれらの混合ガスを供給して形成される酸素元素Or oxygen element formed by supplying air or mixed gas (( O )) 含有ガスプラズマによるプラズマアークを発生させ、そのプラズマアーク部にAlA plasma arc is generated by the contained gas plasma, and Al is formed in the plasma arc part. 2 O 3 の原料を導入して溶射することによって得られるものであり、It is obtained by introducing and spraying the raw material of
前記溶射膜の射ち放し表面粗さRaが5μm以下であり、0  The sprayed surface roughness Ra of the sprayed film is 5 μm or less, and 0 .. 1μm以上100μm以下の気孔径の累積細孔容積が0Cumulative pore volume with a pore diameter of 1 μm or more and 100 μm or less is 0 .. 0080cc/g以下であり、体積抵抗率が1×100080cc / g or less, and volume resistivity is 1 × 10 6 Ω・cm以上、密着力が10MPa以上、硬度Hvが1000以上、摩耗量が50mg以下、ラップ面粗さRaが0Ω · cm or more, adhesion strength of 10 MPa or more, hardness Hv of 1000 or more, wear amount of 50 mg or less, lapping surface roughness Ra of 0 .. 005μm以下であることを特徴とする耐食性部材。A corrosion-resistant member characterized by being 005 μm or less.
射ち放し面に発生する発色点の数が1cm当たり50個以下であることを特徴とする請求項1または請求項2に記載の耐食性部材。The corrosion-resistant member according to claim 1 or 2, wherein the number of color spots generated on the exposed surface is 50 or less per 1 cm 2 . 射ち放し面のテープ試験による溶射膜の脱落が1mm当たり50個以下であることを特徴とする請求項1または請求項2に記載の耐食性部材。The corrosion-resistant member according to claim 1 or 2, wherein the sprayed film is removed by 50 or less per 1 mm 2 by a tape test on the exposed surface.
JP2002167238A 2002-06-07 2002-06-07 Corrosion resistant material Expired - Fee Related JP3649210B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002167238A JP3649210B2 (en) 2002-06-07 2002-06-07 Corrosion resistant material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002167238A JP3649210B2 (en) 2002-06-07 2002-06-07 Corrosion resistant material

Publications (2)

Publication Number Publication Date
JP2004010981A JP2004010981A (en) 2004-01-15
JP3649210B2 true JP3649210B2 (en) 2005-05-18

Family

ID=30434552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002167238A Expired - Fee Related JP3649210B2 (en) 2002-06-07 2002-06-07 Corrosion resistant material

Country Status (1)

Country Link
JP (1) JP3649210B2 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4051351B2 (en) * 2004-03-12 2008-02-20 トーカロ株式会社 Y2O3 spray-coated member excellent in thermal radiation and damage resistance and method for producing the same
WO2006043429A1 (en) * 2004-10-18 2006-04-27 Nihon Ceratec Co., Ltd. Corrosion-resistant member and method for manufacture thereof
JP5137304B2 (en) * 2004-10-18 2013-02-06 株式会社日本セラテック Corrosion resistant member and manufacturing method thereof
JP4680681B2 (en) * 2005-04-26 2011-05-11 株式会社日本セラテック Corrosion resistant member and manufacturing method thereof
EP1780298A4 (en) 2005-07-29 2009-01-07 Tocalo Co Ltd Y2o3 thermal sprayed film coated member and process for producing the same
JP4555865B2 (en) 2005-08-22 2010-10-06 トーカロ株式会社 Thermal spray coating coated member excellent in damage resistance, etc. and method for producing the same
JP4571561B2 (en) * 2005-09-08 2010-10-27 トーカロ株式会社 Thermal spray coating coated member having excellent plasma erosion resistance and method for producing the same
JP5089874B2 (en) * 2005-09-12 2012-12-05 トーカロ株式会社 Plasma processing apparatus member and manufacturing method thereof
GB2430671A (en) 2005-09-30 2007-04-04 Fujimi Inc Thermal spray powder including yttria
JP4981291B2 (en) * 2005-09-30 2012-07-18 株式会社フジミインコーポレーテッド Thermal spray powder and method of forming thermal spray coating
JP4981294B2 (en) * 2005-09-30 2012-07-18 株式会社フジミインコーポレーテッド Thermal spray coating
JP4981292B2 (en) * 2005-09-30 2012-07-18 株式会社フジミインコーポレーテッド Thermal spray powder and method of forming thermal spray coating
JP4372748B2 (en) * 2005-12-16 2009-11-25 トーカロ株式会社 Components for semiconductor manufacturing equipment
JP5031259B2 (en) * 2006-04-27 2012-09-19 京セラ株式会社 Corrosion resistant member, method for manufacturing the same, and semiconductor / liquid crystal manufacturing apparatus using the same
JP4546448B2 (en) * 2006-12-22 2010-09-15 トーカロ株式会社 Thermal spray coating coated member having excellent plasma erosion resistance and method for producing the same
JP4546447B2 (en) * 2006-12-22 2010-09-15 トーカロ株式会社 Thermal spray coating coated member having excellent plasma erosion resistance and method for producing the same
JP4603018B2 (en) * 2007-07-06 2010-12-22 トーカロ株式会社 Yttrium oxide spray coated member with excellent thermal radiation and damage resistance and method for producing the same
JP5466831B2 (en) 2008-04-28 2014-04-09 株式会社フェローテックセラミックス Yttria sintered body and member for plasma process equipment
JP2010126776A (en) * 2008-11-28 2010-06-10 Nihon Ceratec Co Ltd Corrosion resistant member and method for producing the same
JP5739173B2 (en) * 2011-01-20 2015-06-24 株式会社日本セラテック Manufacturing method of ceramic sprayed member
JP2013095973A (en) * 2011-11-02 2013-05-20 Tocalo Co Ltd Member for semiconductor manufacturing device
JP2013101787A (en) * 2011-11-07 2013-05-23 Pset Co Ltd Plasma generator
DE112013005937B4 (en) * 2012-12-12 2022-06-09 Abb Schweiz Ag Wear resistant layer and method of making a wear resistant layer
US9583369B2 (en) * 2013-07-20 2017-02-28 Applied Materials, Inc. Ion assisted deposition for rare-earth oxide based coatings on lids and nozzles
US9725799B2 (en) 2013-12-06 2017-08-08 Applied Materials, Inc. Ion beam sputtering with ion assisted deposition for coatings on chamber components

Also Published As

Publication number Publication date
JP2004010981A (en) 2004-01-15

Similar Documents

Publication Publication Date Title
JP3649210B2 (en) Corrosion resistant material
KR102245044B1 (en) Dense oxide coated component of a plasma processing chamber and method of manufacture thereof
US9394615B2 (en) Plasma resistant ceramic coated conductive article
US8016948B2 (en) Method of removing contaminants from a coating surface comprising an oxide or fluoride of a group IIIB metal
WO2015151857A1 (en) Plasma-resistant component, method for manufacturing plasma-resistant component, and film deposition device used to manufacture plasma-resistant component
TWI616558B (en) Method for producing parts for plasma treatment device
US20170233860A1 (en) Manufacturing method for component in plasma processing apparatus
KR100859955B1 (en) Internal memeber of plasma processing container and method for preparing the same
JP2007105721A (en) Method and apparatus for the application of twin wire arc spray coating
TW200949013A (en) Ceramic sprayed member, making method, abrasive medium for use therewith
KR101828862B1 (en) Plasma processing apparatus and shower head
JP5390166B2 (en) Corrosion resistant material
JP5566891B2 (en) Semiconductor manufacturing equipment parts and semiconductor manufacturing equipment
JPWO2002048421A1 (en) Method for regenerating plasma processing container, inner member of plasma processing container, method of manufacturing inner member of plasma processing container, and plasma processing apparatus
JP5137304B2 (en) Corrosion resistant member and manufacturing method thereof
JP5551353B2 (en) Corrosion resistant material
JP5412290B2 (en) Corrosion resistant material
JP4680681B2 (en) Corrosion resistant member and manufacturing method thereof
JPH10204604A (en) Member for thin coating forming device and its production
JP5390167B2 (en) Corrosion resistant material
JP2004002101A (en) Plasma resistant member and its manufacturing process
KR102504152B1 (en) Masking structure and method for regenerating plasma etching electrode using the same
US20080032115A1 (en) Corrosion-Resistant Member and Method for Manufacture Thereof
JP2010126776A (en) Corrosion resistant member and method for producing the same
JP2004002157A (en) Quartz glass part and manufacture method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040416

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20040506

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20040524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050207

R150 Certificate of patent or registration of utility model

Ref document number: 3649210

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080225

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120225

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130225

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130225

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees