JPS6152996A - Method of joining stainless steel to ti base or zr base metal - Google Patents

Method of joining stainless steel to ti base or zr base metal

Info

Publication number
JPS6152996A
JPS6152996A JP17470484A JP17470484A JPS6152996A JP S6152996 A JPS6152996 A JP S6152996A JP 17470484 A JP17470484 A JP 17470484A JP 17470484 A JP17470484 A JP 17470484A JP S6152996 A JPS6152996 A JP S6152996A
Authority
JP
Japan
Prior art keywords
type
insert material
stainless steel
joint
transformation point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17470484A
Other languages
Japanese (ja)
Inventor
Hiroshi Sato
佐藤 広士
Fumio Kamikubo
上窪 文生
Takatoo Mizoguchi
溝口 孝遠
Kazuo Yoshikawa
一男 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP17470484A priority Critical patent/JPS6152996A/en
Publication of JPS6152996A publication Critical patent/JPS6152996A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/22Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded
    • B23K20/227Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded with ferrous layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PURPOSE:To improve corrosion resistance and bending ductility at interface of joining by making alloy elements in stainless steel to solid solution in an insert material interposing specified insert material. CONSTITUTION:When making diffusion joining by hot hydrostatic pressure pressing method making Ti and Zr as the first member 1 and stainless steel as the second member 2, beta type Ti-base alloy or beta type Zr-base alloy is used as an insert material 3. This is interposed between the first member 1 and the second member 2, and hot hydrostatic pressure pressing method is performed by heating to a temperature below beta transformation point of the first member.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、熱間静水圧加圧法(以下HIP法と言う)に
よって純Tiや純Zr等(β型でない合金を含む)をス
テンレス鋼と接合する方法に関し、特に接合部における
耐腐食性の低下を防止し、更に耐疲労強度の低下をも防
止することのできる固相接合法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is a method of processing pure Ti, pure Zr, etc. (including non-β-type alloys) into stainless steel by hot isostatic pressing (hereinafter referred to as HIP method). The present invention relates to a joining method, and particularly relates to a solid phase joining method that can prevent a decrease in corrosion resistance at a joint portion and also prevent a decrease in fatigue strength.

〔従来の技術〕[Conventional technology]

TiやZr(特に言及しない場合は、純Ti。 Ti and Zr (pure Ti unless otherwise specified.

純Zr或はβ型でないTi基若しくはZr基合金を意味
する、以下同じ)は耐硝酸腐食性の良好な金属として汎
用されている。又ステンレス鋼も同じ様な特性を有する
金属として貴重である。しかし硝酸に対する化学的挙動
がこれら3金属において全く同一であるという訳ではな
いからTi(又はZr)とステンレス鋼は使用環境を考
慮して使い分けを行なう必要があるとされている。この
様な使い分けは単一プラント内においても行なわれるこ
とがあシ、一方の環境条件下ではTiやZrが適し、他
方の環境条件ではステンレス鋼が適しているというとき
には、各々の部位において夫々適轟な金属材料を用いて
いる。従ってこれらの境界部では異材接合が必要となる
が、適用分野によってはシール性についての信頼度が低
い7ランジ継手を使うことにちゅうちょしなければなら
ない      5こともある。この様なときは金属接
合継手を考えるのが一般的であろうが、TiやZrは周
知の如くステンレス鋼との溶接乃至融接が不可能である
為、どうしても金属接合継手を得ようとすれば描面は前
述のHIP法に頼らざるを得なくなる。とコロテT i
+Z rをHIP法によってステンレス鋼と拡散接合す
ることについては、技術的には可能であることが確認さ
れているが、接合部の物性に悪影響の生じることも分か
つている。即ち上記金属の拡散接合界面には、一方の成
分であるTfやZrと、他方の成分であるFe+Cr+
Niが集まってそれらの間に金属間化合物(例えばTi
FeやZrFe、等)が形成され、それによって界面に
おける耐硝酸腐食性や延性(曲げ性)が低下し実用には
不向きでおることが分かつている。
Pure Zr or a non-β-type Ti-based or Zr-based alloy (the same shall apply hereinafter) is widely used as a metal with good nitric acid corrosion resistance. Stainless steel is also a valuable metal with similar properties. However, the chemical behavior towards nitric acid is not completely the same among these three metals, so it is necessary to use Ti (or Zr) and stainless steel properly in consideration of the usage environment. This sort of use is often done even within a single plant; if Ti or Zr is suitable under one environmental condition and stainless steel is suitable under another, then the Uses strong metal materials. Therefore, it is necessary to join dissimilar materials at these interfaces, but depending on the field of application, you may have to hesitate to use a 7-lunge joint, which has low reliability in terms of sealing performance. In such cases, it is common to consider metal-bonded joints, but as is well known, Ti and Zr cannot be welded or fusion-welded with stainless steel, so it is inevitable to try to obtain metal-bonded joints. In this case, the surface to be drawn must rely on the HIP method described above. and Korote Ti
Although it has been confirmed that it is technically possible to diffusion bond +Zr with stainless steel by the HIP method, it is also known that the physical properties of the bonded portion are adversely affected. That is, at the diffusion bonding interface of the metals, one component, Tf or Zr, and the other component, Fe+Cr+
Ni gathers and intermetallic compounds (e.g. Ti
Fe, ZrFe, etc.) are formed, which reduces the nitric acid corrosion resistance and ductility (bendability) at the interface, making it unsuitable for practical use.

又この様な接合部に熱媒体が非連続的に接触する場合を
考えてみると、ヤング率や熱膨張係数の相違する異種金
属の接合部に繰返し熱応力が負荷されることにな)、熱
疲労強度が乏しくなるという問題がある。
Also, if we consider the case where a heat medium comes into contact with such a joint discontinuously, thermal stress will be repeatedly applied to the joint of dissimilar metals with different Young's moduli and coefficients of thermal expansion). There is a problem that thermal fatigue strength becomes poor.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

結局Ti+Zrにステンレス鋼をHIP法で接合する場
合においては、前述の様な金属間化合物の形成に伴なう
耐硝酸腐食性の低下或は延性の低下が問題となるし、又
その用途によっては熱応力による熱疲労強度の低下が問
題となる。従ってHIP法によるTi(又はZr)とス
テンレス鋼の接合を実用的に可能なものとしていく為に
は、接合界面における特に耐硝酸腐食性の低下を防ぐこ
とが重要な課題となる。又熱疲労強度の向上を達成する
ことができる様な構造的改善を図ることが次に重要な課
題となる。
After all, when joining stainless steel to Ti+Zr using the HIP method, there is a problem of a decrease in nitric acid corrosion resistance or a decrease in ductility due to the formation of intermetallic compounds as described above, and depending on the application. The problem is a decrease in thermal fatigue strength due to thermal stress. Therefore, in order to make the joining of Ti (or Zr) and stainless steel by the HIP method practically possible, it is important to prevent the deterioration of the nitric acid corrosion resistance, especially at the joining interface. The next important issue is to make structural improvements that can improve thermal fatigue strength.

〔問題点を解決する為の手段〕[Means for solving problems]

耐硝酸腐食性の改善に有効な本発明の要点は、Ti+Z
rを第1部材、ステンレス鋼を第2部材として両者をH
IP法によって拡散接合するに描た力、β型Ti基合金
又はβ型Zr基合金をインサート材としてこれを第1部
材と第2部材の間に介在せしめ、M1部材のβ変態点未
満の温度に加熱してHIP法を行なう点に存在する。尚
HIP法を採用する場合は、装置内における冷却速度が
必然的に遅いものとなシ、接合部の金屑組織が徐冷過程
において若干不都合な変化を生じる傾向にある。そこで
装置から取出した接合品を、インサート材のβ変態点以
上であって第1部材のβ変態点未満の温度に加熱し、更
に急冷するという熱処理を付加する点にも本発明の要旨
が存在する。
The key point of the present invention that is effective in improving nitric acid corrosion resistance is that Ti+Z
R is the first member, stainless steel is the second member, and both are H.
The force described for diffusion bonding by the IP method, a β-type Ti-based alloy or a β-type Zr-based alloy as an insert material, is interposed between the first member and the second member, and the temperature is below the β-transformation point of the M1 member. The point is that the HIP method is performed by heating to . Note that when the HIP method is employed, the cooling rate within the apparatus is necessarily slow, and the gold dust structure at the joint tends to undergo some unfavorable changes during the slow cooling process. Therefore, the gist of the present invention also lies in the fact that the bonded product taken out from the device is heated to a temperature higher than the β-transformation point of the insert material and lower than the β-transformation point of the first member, and then further rapidly cooled. do.

次に繰返し熱応力による熱疲労強度の改善については、
第2部材とインサート材の接合部を、前者が雌鳳で後者
を雄型(この雄型は少なくとも根元側の立上)角度を1
0〜60度としたもの)とする雌雄嵌合構造とすること
によってその目的を達成しておシ、この点にも本発明の
要旨が存在する。
Next, regarding the improvement of thermal fatigue strength due to cyclic thermal stress,
The joint between the second member and the insert material is made so that the former is a female type and the latter is a male type (this male type is at least upright on the root side) with an angle of 1
The object is achieved by providing a male and female fitting structure in which the angle is 0 to 60 degrees, and this point also lies in the gist of the present invention.

〔作用〕[Effect]

耐硝酸腐食性が要求される分野における配管用TiやZ
rとしては、一般に純Tiや純Zrが使用される。純T
i及び純Zrの金属組織はα相(稠密六方晶)である為
、F e 2 Cr t N を等の異元素を上記α−
TIやα−Zr中に固溶させることは困難である。そこ
で接合界面にTi(又はZr)を一方の成分とする金属
間化合物が析出しこれが前述の様に耐硝酸腐食性を低下
させ、又延性に悪影響を与えることが分かった。
Ti and Z for piping in fields where nitric acid corrosion resistance is required.
As r, pure Ti or pure Zr is generally used. Pure T
Since the metal structure of i and pure Zr is α phase (close-packed hexagonal crystal), the above α-
It is difficult to form a solid solution in TI or α-Zr. Therefore, it has been found that an intermetallic compound containing Ti (or Zr) as one component precipitates at the joint interface, which reduces the nitric acid corrosion resistance as described above and also has an adverse effect on ductility.

この様な考察を踏まえた結果、α−Tiやα−Zr(純
Tiや純Zrに限定されず、Ti基合金やZr基合金で
あってもα相を形成するものは全てここに含まれる)に
ステンレス鋼を直接的に密合させることが前記不都合を
発生する根源であると認識するに至った。そこで両者の
間に、耐硝酸腐食性が良好であって、しかも金属間化合
物の析出を招かない様な金属をインサート材として介在
せしめるべきであるとの指針を得、その腺に沿って研究
した結果、β相(体心立方晶)のTi基合金やZr基合
金であれば、FC,Cr、Ni等の異種元素をα相に比
較してはるかに多く固溶することができるという点に着
眼した。即ちβ型Ti合金やβ型Zr合金をインサート
材として前記第1部材と第2部材の間に介在させてHI
P処理を行なうと、インサート材と第1部材はいずれも
Ti。
Based on these considerations, we found that α-Ti and α-Zr (not limited to pure Ti and pure Zr, but all that form an α phase even if they are Ti-based alloys or Zr-based alloys are included here) ) has come to be recognized that directly bringing stainless steel into close contact with the steel is the root cause of the above-mentioned problems. Therefore, we obtained a guideline that a metal that has good nitric acid corrosion resistance and does not cause the precipitation of intermetallic compounds should be interposed between the two as an insert material, and we conducted research based on this guideline. As a result, in the case of β-phase (body-centered cubic) Ti-based alloys and Zr-based alloys, it is possible to incorporate far more dissimilar elements such as FC, Cr, and Ni into solid solution than in the α-phase. I focused on it. That is, a β-type Ti alloy or a β-type Zr alloy is interposed between the first member and the second member as an insert material, and HI
When P treatment is performed, both the insert material and the first member are made of Ti.

又はZrをマトリックスとしている為親和性において申
し分なく、極めて良好な一体性を有する金属間結合が得
られるし、インサート材と第2部材の接合については第
2部材中のF e s Cr t N を等がインサー
ト材のβ相中に固溶されていくので、金属間化合物の析
出は大幅に回避することができる。その為第1部材とイ
ンサート材の接合界面は勿論のこと、インサート材と第
2部材の接合界面においても耐硝酸腐食性及び延性等に
ついて不都合の生じることは少なくなった。
Or, because Zr is used as a matrix, it is possible to obtain intermetallic bonding with perfect affinity and extremely good integrity, and for joining the insert material and the second member, Fe s Cr t N in the second member is etc. are dissolved in the β phase of the insert material, so precipitation of intermetallic compounds can be largely avoided. Therefore, problems with nitric acid corrosion resistance, ductility, etc. are less likely to occur not only at the bonding interface between the first member and the insert material, but also at the bonding interface between the insert material and the second member.

次にHIP処理に伴なう問題として、装置上の制約から
次の様な問題のあることが分かった。即ちHIP装置を
使用すると、加圧加熱による金属接合が完了した後の冷
却過程は、HIP炉内で行われる為に徐冷とならざるを
得ない。しかしβ型Ti基合金やβ型Zr基合金は徐冷
過程を辿った場合、常温下において(α+β)の二相組
織となることが知られておシ、インサート材中のα相部
分における金属間化合物の形成析出が多少とも見られる
。その為HIP法による金属接合が完了した後で、接合
部をインサート材のβ変態点以上の温度に再加熱し、次
いで急冷するというβ相安定化の為の後熱処理を施せば
、インサート材と第2部材の間に析出していた金属間化
合物も、β相化したインサート材中に固溶されていき接
合部における耐硝酸腐食性や延性が著しく改善される。
Next, it has been found that there are the following problems associated with HIP processing due to limitations on the equipment. That is, when a HIP device is used, the cooling process after completion of metal bonding by pressure heating is carried out in a HIP furnace, and therefore must be gradually cooled. However, it is known that when β-type Ti-based alloys and β-type Zr-based alloys undergo a slow cooling process, they form a two-phase structure (α+β) at room temperature. Some precipitation of intermediate compounds can be seen. Therefore, after metal joining by the HIP method is completed, if a post-heat treatment is performed to stabilize the β phase by reheating the joint to a temperature above the β transformation point of the insert material and then rapidly cooling it, the insert material and The intermetallic compounds that had been precipitated between the second members are also dissolved into the β-phase insert material, and the nitric acid corrosion resistance and ductility of the joint are significantly improved.

尚本発明におけるHIP処理時の加熱温度は尚熱拡散接
合の可能な温度でなければならず、一般的には700℃
以上であることが望まれるが、該加熱温度、並びにβ相
安定化の為の後熱処理における加熱温度の上限は、第1
部材のβ変態点以下とすべきである。これは母材である
TiやZrが冷却されたときにα相となって延性低下を
招くという事態を避ける為である。
The heating temperature during HIP processing in the present invention must be a temperature that allows thermal diffusion bonding, and is generally 700°C.
However, the upper limit of the heating temperature and the heating temperature in the post-heat treatment for stabilizing the β phase are as follows:
It should be below the β transformation point of the member. This is to avoid a situation where the base material Ti or Zr turns into an α phase when cooled, resulting in a decrease in ductility.

尚インサート材となるβ型Ti基合金及びβ型Zr基合
金とは次の様な谷金・を意味するものである。まずβ型
Ti基合金とは、M o HV r N b +Ta、
W及びMnからなる群より選択される少なくとも1mを
次の範囲(いずれも重量裂)で含有するTi基合金であ
シ、 5チ≦MO≦30% 5多≦V 550% 10チ≦Nb≦40条 15裂≦Ta≦30% 5%≦W ≦15チ 5条≦Mn≦20チ もし上記の中から2穏以上の合金元素を配合するのであ
れば、そのときの配合量総和の下限値は、配合される合
金元素のうち下限値がもっとも高い合金元素について与
えられている下限量を総和の下限値であると考え(但し
個々の合金元素については個々の下限値を下回わっても
よい)、他方配合量総和の上限値は、配合される合金元
素のうち上限値がもつとも高い合金元素について与えら
れている上限量を上限値と考える(但し個々の合金元素
については個々の上限値を上回わってはならない)。こ
の様な2以上の合金元素併用例としては 1(1≦M o+N b≦40チ (但しMoは30チ以下) 15%≦M o + N b + T a≦40%(但
しMo及びTaは夫々3o襲以下)が挙げられる。
Note that the β-type Ti-based alloy and β-type Zr-based alloy used as insert materials refer to the following metallization. First, β-type Ti-based alloy is M o HV r N b +Ta,
A Ti-based alloy containing at least 1 m selected from the group consisting of W and Mn in the following ranges (all weight ratios): 5 CH≦MO≦30% 5≦V 550% 10 CH≦Nb≦ 40 lines 15 cracks ≦ Ta ≦ 30% 5% ≦ W ≦ 15 pieces 5 pieces ≦ Mn ≦ 20 pieces If two or more alloying elements from the above are to be blended, the lower limit of the total blended amount at that time considers the lower limit amount given for the alloying element with the highest lower limit value among the alloying elements blended as the total lower limit value (however, for individual alloy elements, even if the amount falls below the individual lower limit value, On the other hand, the upper limit of the total amount of blended alloying elements is considered to be the upper limit given for the alloying element with the highest upper limit (however, for individual alloying elements, the upper limit of each ). Examples of such combinations of two or more alloying elements are 1 (1≦Mo+Nb≦40chi (however, Mo is 30chi or less), 15%≦Mo+Nb+Ta≦40% (however, Mo and Ta are 3 o attack or less).

次にβ型Zr基合金とは、Nb又はTaを次の範囲で含
有するZr基合金であり、 8チ≦Nb≦60チ 5チ≦Ta≦50チ もしNbとTaを併用するのであれば、前述のβTi基
合金の場合と同様の考え方に従って8チ≦Nb+Ta≦
60饅 (但しTaは50q6以下) とする。
Next, a β-type Zr-based alloy is a Zr-based alloy containing Nb or Ta in the following ranges: 8 ≦ Nb ≦ 60 5 Chi ≦ Ta ≦ 50 , 8chi≦Nb+Ta≦ according to the same concept as in the case of the βTi-based alloy described above.
60 rice cakes (however, Ta is less than 50q6).

β型Ti基合金及びβ型Zr基合金において上記の様な
合金元素を指定した理由は、それらがTi及びZrの各
β相安定化型元素であってしかも固溶体型(金属間化合
物非形成型)であるからである。もつともTiに配合さ
れるMnは共析型(金属間化合物形成型)であシ見掛上
は上記の条件に合致しないが、共析反応の進行が極めて
遅いから実用的には問題がなく配合可能元素に含めた。
The reason for specifying the above-mentioned alloying elements in the β-type Ti-based alloy and β-type Zr-based alloy is that they are β-phase stabilizing elements of Ti and Zr, and are solid solution type (non-intermetallic compound forming type). ). Mn mixed with Ti is of the eutectoid type (intermetallic compound forming type) and does not seem to meet the above conditions, but since the eutectoid reaction progresses extremely slowly, there is no practical problem in mixing it. Included in possible elements.

       5そしてこれらの合金元素の個々並びに
総量について上述の様な好適範囲を規定したのは夫々次
の理由による。即ちMotV、Nb、Ta、Wの各元素
は、インサート材としたときの融点が異常に高くならな
い限度、換言すれば拡散接合のだめの下限温度が異常に
高くならず、よって第1部材のβ変態点以下の温度でH
IP処理が可能となる様な限度を考慮して夫々の上限を
定めたものであシ、Mnについては当該HIP処理にお
いてβ相中に金属間化合物が現われない限度を考慮して
上限を定めた。一方下限については、前記各元素に共通
の理由、即ち(1)HIP処理温度において十分な量の
β相を発現しうろこと、(2)HIP処理後常温に戻し
たときもβ相を十分に残し得ること、(3)HIP後の
熱処理(即ちβ相、安定化の為の急冷処理)によってβ
相の豊富な組織を形成し得ること、の各理由に基づいて
定められたものである。
5. The above-mentioned preferred ranges for the individual and total amounts of these alloying elements are defined for the following reasons. In other words, the elements MotV, Nb, Ta, and W should be used to the extent that the melting point does not become abnormally high when used as an insert material, in other words, the lower limit temperature of the diffusion bonding chamber does not become abnormally high, and therefore the β transformation of the first member is maintained. H at temperatures below the point
The upper limits for each were determined in consideration of the limits that would allow IP treatment, and the upper limits for Mn were determined in consideration of the limits that would prevent intermetallic compounds from appearing in the β phase during the HIP treatment. . On the other hand, the lower limit is set for the following reasons common to each element: (1) a sufficient amount of β phase is expressed at the HIP treatment temperature; (3) By heat treatment after HIP (i.e., β phase, rapid cooling treatment for stabilization), β
This is determined based on the following reasons: that a phase-rich structure can be formed.

本発明のインサート部材はTi及びZrに上記の様なβ
相安定化元素を含んだものであるが、上記条件を満足す
る場合は、共析型β安定化・α安定化・中性型等の他の
合金元素を含むことができこのうち共析型β安定化元素
としてはTiに対するものとしてF e p Cr *
 N s HCo HCu rAg、St、H,Pd等
が例示され、Zrに対するものとしてFe、CrtNi
tMo、V、W。
The insert member of the present invention has the above β in Ti and Zr.
Although it contains phase stabilizing elements, if the above conditions are satisfied, it can contain other alloying elements such as eutectoid β-stabilized, α-stabilized, neutral type, etc. Among these, eutectoid type As a β stabilizing element for Ti, F e p Cr *
Examples include N s HCo HCu rAg, St, H, Pd, etc., and those for Zr include Fe, CrtNi
tMo, V, W.

H*CoyMntCu*Ti+Ag等が例示され、文中
注型元素としては、Tiに対するものとしてZr 、S
n等が例示されるがこれらは融点に対して重大な悪影響
を与えない範囲で配合される。又α安定化元素としては
、Tiに対するものとしてAI 、C,0,N等が例示
され、又Zrに対するものとしてはAI+5ntBet
Pb、N、0+Hf等が例示されるが、これらはβ相安
定化元素によるβ相安定化機能を損なわない程度まで(
目安としてはβ相安定化元素総記合量の25%程度まで
:不純元素としての配合を含む)の配合が許される。そ
して特に代表的な複合配合例を示すと、T i−15M
o−5Z r−(3A 1 ) 、 T i −11V
  11Zr−2AI−2Sn、Ti−8Ti−8V4
 Cr−4Z r−3A I 、 T 1−8M。
Examples include H*CoyMntCu*Ti+Ag, etc., and the casting elements in the text include Zr and S as opposed to Ti.
Examples include n and the like, but these are blended within a range that does not have a significant adverse effect on the melting point. Examples of α stabilizing elements include AI, C, 0, N, etc. for Ti, and AI+5ntBet for Zr.
Examples include Pb, N, 0+Hf, etc., but these may be used to the extent that they do not impair the β-phase stabilizing function of the β-phase stabilizing element (
As a guideline, it is permissible to mix up to about 25% of the total amount of β-phase stabilizing elements (including blending as impurity elements). And to show a particularly typical example of composite formulation, T i-15M
o-5Z r-(3A 1 ), T i -11V
11Zr-2AI-2Sn, Ti-8Ti-8V4
Cr-4Z r-3A I, T 1-8M.

sv  2Fe  3AI、Ti 13V  11Cr
−3AI、Ti−11,5Mo−62r  4.55n
等が挙げられる。
sv 2Fe 3AI, Ti 13V 11Cr
-3AI, Ti-11,5Mo-62r 4.55n
etc.

一方第1部材は、本発明の主旨及び構成からして、β型
Ti基合金及びβ型Zr基合金は当然ながら適用除外と
なるが、逆に言えばそれ以外のものは、純Tiや純Zr
に限らず全てのTi基合金及びZr基合金が本発明の第
1部材となる。この様な合金はα型合金及び(α+β)
型合金であシ、代表的なものとしては、純Ti、Ti−
0,2Pd。
On the other hand, from the gist and structure of the present invention, β-type Ti-based alloys and β-type Zr-based alloys are naturally excluded from application to the first member, but conversely, pure Ti and pure Zr
The first member of the present invention includes not only Ti-based alloys but also all Ti-based alloys and Zr-based alloys. Such alloys are α-type alloys and (α+β)
Typical examples are pure Ti, Ti-
0.2Pd.

T 1−5Ta 、 T i−0,3Mo−0,8N 
i 、Ti −6A1−4V、Ti−5Al  2.5
Sn、Ti−8ATi−8A1−I、TI  6A1 
2Sn−4Z r−6Mo 、 T 1−3A 1−2
.5V 、 T i −5AI−2Cr−IFe 、純
Zr、ジルカロイ−2、ジルカロイ−4[:Zn−1,
53n  (Fe+Cr+Ni)系) 、 Z r−2
,5Nb等が挙げられる。
T 1-5Ta, T i-0,3Mo-0,8N
i, Ti-6A1-4V, Ti-5Al 2.5
Sn, Ti-8ATi-8A1-I, TI 6A1
2Sn-4Z r-6Mo, T 1-3A 1-2
.. 5V, Ti-5AI-2Cr-IFe, pure Zr, Zircaloy-2, Zircaloy-4[:Zn-1,
53n (Fe+Cr+Ni) system), Z r-2
, 5Nb, etc.

次に繰返し熱応力による熱疲労強度の問題であるが、前
述の様なインサート材を介在させたとしても、単純な平
面同士の突合わせによってHIP処理したものでは、信
頼性の高い熱疲労強度は得られない。その為例えば接合
対象が管体である場合を例にとると、配管内を熱媒体が
非連続的に通る様な分野では実用配管継手としての信頼
性も低いものとならざるを得なかった。
Next, there is the issue of thermal fatigue strength due to repeated thermal stress.Even if an insert material like the one mentioned above is used, HIP treatment by simply butting together planes will not provide highly reliable thermal fatigue strength. I can't get it. For this reason, for example, when the object to be joined is a pipe body, the reliability as a practical pipe joint has to be low in fields where a heat medium passes discontinuously within the pipe.

この様な問題を生じる背景について検討したところ、第
1部材と第2部材ではヤング率及び熱膨張係数が異なる
為であることが分かった。この事情はインサート材を挿
入する場合であっても実質的に変わるものではないから
、突合わせ面の構造的改良が必要であるとの指針を得た
After examining the background of such problems, it was found that the first member and the second member have different Young's modulus and coefficient of thermal expansion. Since this situation does not substantially change even when an insert material is inserted, it was determined that structural improvements to the abutting surfaces were necessary.

そこでまず基礎実験を行なうこととし、工業用純Ti(
JIS規格2種)、工業用純Z r (ASTM702
)及びS U S 304ステンレス鋼について夫/r
50mmφX50m+nA?の丸棒試験片を用意した。
Therefore, we decided to conduct a basic experiment first, using industrially pure Ti (
JIS standard type 2), industrial pure Zr (ASTM702
) and S.U.S. 304 stainless steel
50mmφX50m+nA? A round bar test piece was prepared.

そしてTi/5US304 、Zr/5US304の組
合わせで丸棒の平担端面同士を突合わせ、鋼管(sTP
G38)iカプセル内に封入し、カプセル内を真空(1
0−3Torr)にした後、850       ヤ’
CX100O気圧×1時間のHIP処理を行なって丸棒
同士を拡散接合した。カプセルを除去して機械加工を施
し外径42mmφ、内径32mmφ(肉厚5mmt、)
、長さ80MA!の管状接合材を得た。
Then, the flat end surfaces of the round bars were butted together using a combination of Ti/5US304 and Zr/5US304, and steel pipes (sTP
G38) Enclose in an i-capsule and vacuum the inside of the capsule (1
0-3 Torr), then 850 Y'
HIP treatment was performed at CX100O atmosphere for 1 hour to diffusion bond the round bars. The capsule was removed and machined to an outer diameter of 42mmφ and an inner diameter of 32mmφ (wall thickness 5mmt).
, length 80MA! A tubular joint material was obtained.

この時の接合面形状は第5図の如くであシ、管の接合端
面は管軸に対して90度であった。この様な試験片を幾
つか作)、その内1本を軸方向引張試験にかけたところ
、T i/SUS 304では28kg/ 7 + Z
 r / S U S 304では26kg/mfであ
シ、密着部の接合強度自体は十分であることを確認した
。次に試験片を軸方向に半割し、管の内外面から染色浸
透検査を行なったところでは、接合界面にクラックのな
いことも確認され、更にX線透過検査では接合界面に内
部欠陥を見出すことはできなかった。これらのことを確
認した後で第1図(模式図)に示す様な流動槽式熱疲労
試験機を用いて熱疲労試験を行なった。即ちヒータ5に
よってイオン交換水4を沸誇状態で保持する加熱槽6と
、冷媒循環系7.ポンプ8.熱交換器9を備えてイオン
交換水11を室温状態で保持する冷却槽10を並設し、
試験片12を昇降(矢印Y方向)及び水平移動(矢印X
方向)自在に保持する試験片保持移動器具13をそれら
の上方に設ける。そして試験片12を、沸騰イオン交換
水4(10秒)#移動放冷(5秒)#室温イオン交換水
11(10秒)を1サイクルとする熱履歴を繰返し与え
た。
The shape of the joint surface at this time was as shown in FIG. 5, and the joint end surface of the tube was at 90 degrees with respect to the tube axis. When several such test specimens were made and one of them was subjected to an axial tensile test, it was 28 kg/7 + Z for Ti/SUS 304.
For r/SUS 304, the pressure was 26 kg/mf, and it was confirmed that the bonding strength of the adhesion part itself was sufficient. Next, the test piece was cut in half in the axial direction and a dye penetrant inspection was performed on the inner and outer surfaces of the tube, and it was confirmed that there were no cracks at the joint interface, and an X-ray transmission inspection revealed internal defects at the joint interface. I couldn't do that. After confirming these points, a thermal fatigue test was conducted using a fluidized bath type thermal fatigue tester as shown in FIG. 1 (schematic diagram). That is, a heating tank 6 that maintains ion-exchanged water 4 in a boiling state by a heater 5, and a refrigerant circulation system 7. Pump 8. A cooling tank 10 equipped with a heat exchanger 9 and maintaining ion-exchanged water 11 at room temperature is installed in parallel,
The test piece 12 is moved up and down (arrow Y direction) and horizontally (arrow
Direction) A specimen holding and moving device 13 for freely holding the specimen is provided above them. Then, the test piece 12 was repeatedly subjected to a thermal history consisting of one cycle of boiling ion-exchanged water 4 (10 seconds), moving cooling (5 seconds), and room temperature ion-exchanged water 11 (10 seconds).

100サイクル毎に中断し、試験片の接合界面(管の内
・外側面)を目視観察及び染色浸透検査に付して割れの
発生を調査した。そして割れが観察された時点迄の総サ
イクル数を熱疲労寿命とした。
The test was interrupted every 100 cycles, and the bonding interface (inner and outer surfaces of the tube) of the test piece was visually observed and subjected to a dye penetration test to investigate the occurrence of cracks. The total number of cycles up to the time when cracking was observed was defined as the thermal fatigue life.

これによると、第5図の如き接合面形状では、Ti/5
US304の場合600サイクルで、又Zr/5US3
04の場合400サイクルで管外表面側にクラックの発
生が認められ、熱疲労寿命の短いことが確認された。
According to this, with the joint surface shape as shown in Fig. 5, Ti/5
600 cycles for US304, and Zr/5US3
In the case of No. 04, cracks were observed on the outer surface of the tube after 400 cycles, confirming that the thermal fatigue life was short.

これらの基礎実験を通じて、第1部材と第2部材の素材
的な相違(ヤング率及び熱膨張係数の相違)が、クラッ
ク発生の原因になっているという背景を確認した。そし
て前述の如くインサート材を挿入する場合を考えると、
第1部材とインサート材はマトリックス金属がいずれも
Ti又はZrであって素材的な共通性の為物性面に実質
的な差異がなく、接合面については単なる工直面接合宿
造にしても良いと思われるが、インサート材と第2部材
の間にはやはシマトリツクス金属の差異に基づく物性面
の差がある為、接合面構造についてなんらかの工夫をこ
らす必要があると思われた。
Through these basic experiments, it was confirmed that the difference in material between the first member and the second member (difference in Young's modulus and coefficient of thermal expansion) was the cause of crack occurrence. And considering the case of inserting the insert material as mentioned above,
The matrix metal of both the first member and the insert material is Ti or Zr, and because they are common in material, there is no substantial difference in physical properties, and the joint surface may be simply a work surface joint. However, since there is already a difference in physical properties between the insert material and the second member due to the difference in the simatrix metals, it was thought that it was necessary to devise some kind of ingenuity regarding the joint surface structure.

そこで熱疲労強度を高める為の金属接合構造について検
討した。即ち第2図に示す如くインサート材3と第2部
材2の間にθ、の接触角を有するテーバ接合面を形成し
01を一70°〜70°の間で変化させて熱疲労寿命が
どの様に変るかを検討した。尚01がマイナスの角度で
あるのは、破線で示す如くインサート材3が第2部材2
を覆う方向のテーバ接合になっていることを示す。そし
て結論的に言えばθ、を10’〜60°の範囲に設定し
たときは熱疲労寿命が大幅に改善されることを見出した
。特にθ、=10’〜4・5°の範囲ではテーバ面接合
とした管外面側におけるクシツクの発生を認めるに至ら
ず、垂直面接合とした管内面側においてクラックの発生
が認められたに過ぎない。尚管外面側をテーパ面接合と
することによシ、管内面側が垂直面接合であっても管内
面側のクラックを抑制し得ておシ、管外面側をテーバ面
接合とするたけでも従来例に比べて格段の改善効果が得
られたことになるが、実用配管継手として更に安全性の
高いものを得るため、第1図に示す如く、インサート材
3と第2部材2の接合部を管の内・外共にテーパ面接合
とし、01を上記で求めた好適角度に設定した上、管内
面側の角度θ2のみを−70゜〜70°の間で変化させ
なから熱疲労寿命を測定した。その結果θ2についても
10°〜60°特に30゜〜45°の範囲内とすること
によシフラック発生の危険は更に激減した。
Therefore, we investigated metal bonding structures to increase thermal fatigue strength. That is, as shown in Fig. 2, a Taber joint surface having a contact angle of θ is formed between the insert material 3 and the second member 2, and 01 is varied between -70° and 70° to determine the thermal fatigue life. I considered whether it would change. The reason why 01 is a negative angle is because the insert material 3 is connected to the second member 2 as shown by the broken line.
This shows that the taper junction is in the direction of covering the area. In conclusion, we have found that when θ is set in the range of 10' to 60°, the thermal fatigue life is significantly improved. In particular, in the range of θ = 10' to 4.5°, no cracks were observed on the outer surface of the pipe where the tapered surface was joined, and only cracks were observed on the inner surface of the pipe where the vertical surface was joined. do not have. By making the outer surface of the tube a tapered surface joint, cracks on the inner surface of the tube can be suppressed even if the inner surface of the tube is a vertical surface joint. Although a significant improvement effect was obtained compared to the example, in order to obtain an even safer practical piping joint, the joint between the insert material 3 and the second member 2 was changed as shown in Fig. 1. Thermal fatigue life was measured by making tapered surface joints on both the inside and outside of the pipe, setting 01 to the appropriate angle determined above, and keeping only the angle θ2 on the inner surface of the pipe unchanged between -70° and 70°. did. As a result, by setting θ2 within the range of 10° to 60°, especially 30° to 45°, the risk of siflux occurrence was further reduced significantly.

上記考察の結果として、インサート材3と第2部材2の
接合部について、内外面と共に後者が前者を覆う様な雌
雄嵌合構造とすると共に、10°≦01.θ2≦60゜ の条件を満足させれば実用継手として全く不都合のない
金属接合が得られるとの結論を得た。同上     金
肥の条件を満足する様な雌雄嵌合接合状態はインサート
材と第2部材間に設定するものであるが、その為にはイ
ンサート材2として第3図に例示する様な色々の形態を
与えることが望まれる。尚第3図には接合すべき第1部
材1及び第2部材2を夫々対向させている。第3図(5
)は台形状、(B)は三角形状、(C)は台形の上底辺
を波状としたものであシ、これらは第1部材との接合側
(図の左側)を垂直面としているが、E) 、 (E)
では該接合側についても雌雄嵌合構造としておシ、(D
)では第1部材1を雄型、(E)では第1部材1を雌型
とする場合である。尚インサート材3の軸方向長さにつ
いては、M2部材2の構成元素が第1部材1まで拡散し
ていくのを防止する長さで十分であり、HIP条件(一
般に700〜850’C,500〜1500気圧、0.
5〜2時間)によっても異なるが、0.5mm以上とす
ることが推奨される。
As a result of the above consideration, the joint between the insert material 3 and the second member 2 is designed to have a male-female fitting structure in which the latter covers the former as well as the inner and outer surfaces, and the angle of 10°≦01. It was concluded that if the condition θ2≦60° is satisfied, a metal joint can be obtained that has no disadvantages at all as a practical joint. Same as above. The male-female mating state that satisfies the condition of gold is to be established between the insert material and the second member, but for this purpose, various forms of the insert material 2 as illustrated in Fig. 3 are required. It is desirable to give In FIG. 3, the first member 1 and the second member 2 to be joined are shown facing each other. Figure 3 (5
) is trapezoidal, (B) is triangular, and (C) is a trapezoid with a wavy upper base, and the joint side with the first member (left side in the figure) is a vertical surface. E) , (E)
Then, for the joining side as well, let's assume a male and female mating structure (D
) is a case where the first member 1 is a male type, and (E) is a case where the first member 1 is a female type. Regarding the axial length of the insert material 3, it is sufficient to have a length that prevents the constituent elements of the M2 member 2 from diffusing to the first member 1. ~1500 atm, 0.
5 to 2 hours), but it is recommended that it be 0.5 mm or more.

又本発明の適用される分野は管材に限定されず板材や棒
材にも適用可能である。
Furthermore, the field of application of the present invention is not limited to pipe materials, but can also be applied to plates and bars.

〔実施例〕〔Example〕

実施例1 前述の基礎実験に倣って次の様な実験を行なった。 Example 1 Following the basic experiment described above, the following experiment was conducted.

工業用純Ti+MZr及び5US304鋼について20
mmφx70mm’の丸棒試験片を用意し、Ti/5U
S304 、Zr/5US304の組合わせで試験片の
端面同士を突合わせて鋼管製カプセル内に封入した。カ
プセル内を真空にした後、800℃X100O気圧×1
時間の条件でHIP処理を行なった。面線Ti/5US
304の組合わせについては、インサート材人して直接
突合わせたものと、第1表に示す各種合金を用いて作っ
た円盤状インサート材(20mmφX1mmE)を純T
iと5US304の間に挿入したものを製造した。又純
Zr/5US304の組合わせについては、同じくイン
サート材なしで直接突合わせたものと、第1表に示す各
穏合金を用いて作った円盤状インサート材(同上寸法)
を同じ様に挿入したものを製造した。HIP処理後カプ
セルを除去し、密着接合強度(単軸引張)、接合界面の
曲げ延性(JIS  Z2248.曲げR=28mn+
)を調べると共に、沸f1148%硝酸中における腐食
テストを行ない、接合界面の侵食深さを顕做@観察によ
シ測定した。結果を第1表に併記する。
20 for industrial pure Ti+MZr and 5US304 steel
Prepare a round bar test piece of mmφx70mm', and
The end surfaces of the test pieces were butted against each other using a combination of S304 and Zr/5US304, and the test pieces were sealed in a steel pipe capsule. After evacuating the inside of the capsule, 800℃ x 100O atmosphere x 1
HIP processing was performed under the condition of time. Surface line Ti/5US
For the combination of 304, insert materials were directly butted together, and disk-shaped insert materials (20 mmφ x 1 mmE) made using various alloys shown in Table 1 were made using pure T
The one inserted between i and 5US304 was manufactured. Regarding the combination of pure Zr/5US304, there is one that is directly butted without an insert material, and one that is made of a disc-shaped insert material made using each moderate alloy shown in Table 1 (same dimensions as above).
were inserted in the same way. After the HIP treatment, the capsule was removed and the adhesion bond strength (uniaxial tensile) and bending ductility of the bond interface (JIS Z2248. bending R = 28 mn +
), a corrosion test was conducted in boiling f1148% nitric acid, and the depth of corrosion at the joint interface was measured by observation. The results are also listed in Table 1.

第1表において11kLl、51はインサート材を介在
させなかったもので5破断曲げ角度及び液界面浸食深さ
が特に悪い成績を与えておシ、又密着接合強度も十分な
ものとは言えない。その他の実験はインサート材を介装
させたものであるが、備考欄に実施例と書いたものはβ
凰Ti基合金又はβ型Zr基合金をインサート材とした
ものであり、各項目とも良好な成績を示した。尚比較例
と書いたものは上記条件を満足しないインサート材を用
いたものであシ、β相安定化元素の少ないものでは破折
曲げ1強度や耐食性が悪く、一方β相安定化元素が多す
ぎるものでは接合不能に陥入るものもあった。
In Table 1, 11kLl, 51, which did not include an insert material, gave particularly poor results in terms of bending angle at break and depth of liquid interface erosion, and also did not have sufficient adhesion strength. Other experiments involved using insert materials, but those with “Example” written in the notes column are β
The insert material was a 凰Ti-based alloy or a β-type Zr-based alloy, and showed good results in each item. In addition, those described as comparative examples are those using insert materials that do not satisfy the above conditions.Those with a small amount of β-phase stabilizing elements have poor fracture bending strength and corrosion resistance, while those with a large amount of β-phase stabilizing elements have poor bending strength and corrosion resistance. In some cases, too much material made it impossible to join.

実施例2 f(IP処理後の徐冷によるインサート材β→(α+β
)変態を、その後の再加熱及び急冷によるβ相安定化熱
処理によって改善する方法について実験した。
Example 2 f (insert material β→(α+β) by slow cooling after IP treatment
) Experiments were conducted on a method to improve the transformation by subsequent β-phase stabilization heat treatment by reheating and rapid cooling.

800℃でHIP処理した試験片について、HIF処理
ままのもの(比較例)と、HIP処理処理力プセルを電
気炉に入れて再加熱〔インサート材のβ変態点近傍(実
施例)及びそれよシ低い温度(比較例)に加熱〕し直ち
に水焼入れした後カプセルから試験片を取出したものに
ついて実施例1と同様の評価を行なった。結果を第2表
に示す。
Regarding test pieces that were HIP-treated at 800°C, the HIF-treated one (comparative example) and the HIP-treated test piece were placed in an electric furnace and reheated [near the β-transformation point of the insert material (example) and beyond that]. After heating to a low temperature (comparative example) and immediately water quenching, test pieces were removed from the capsules and evaluated in the same manner as in Example 1. The results are shown in Table 2.

第2表に示す如く、HI P処理後、インサート材のβ
変態点まで再加熱し次いで急冷してβ相の安定化を行な
ったものは、HIP処理ままのものや加熱温度の低いも
のに比べて接合界面の耐食性及び曲げ延性を更に改善す
ることができた。
As shown in Table 2, after HIP treatment, the β
The material that was reheated to the transformation point and then rapidly cooled to stabilize the β phase was able to further improve the corrosion resistance and bending ductility of the joint interface compared to the material that had been subjected to HIP treatment or the material that had been heated at a lower temperature. .

実施例3 前記基礎実験の手順に従って管状の接合試験片を作製し
た。接合面の形状は第2図に示す通シである。これを同
じく基礎実験の手順に従って熱疲労試験に付した。結果
を第3表に示す。尚第3表において*印は管の外表面側
でクラックが発生したことを示し、**印は管の内表面
側でクラックが発生(外表面側では未発生)したことを
示す。
Example 3 A tubular bonded test piece was prepared according to the procedure of the basic experiment described above. The shape of the joint surface is the same as shown in FIG. This was also subjected to a thermal fatigue test according to the basic experiment procedure. The results are shown in Table 3. In Table 3, * indicates that cracks occurred on the outer surface of the tube, and ** indicates that cracks occurred on the inner surface of the tube (no cracks occurred on the outer surface).

又第3表中の01がマイナス値を示すものは接合面が第
2図の破線状態にあることを示す。
In addition, a negative value of 01 in Table 3 indicates that the bonded surface is in the state shown by the broken line in FIG.

尚本実験で用いたインサート材は、純Ti/SUS 3
04系ではTi−15V、純Z r / 5US304
系ではZr−15Nbであシ、軸方向長さはlrnmと
した。尚HIP処理後の熱処理については、前者はSO
O℃X 30 mm+W、θ、、後者は780℃X 3
0 m−+W、Q 、とした。
The insert material used in this experiment was pure Ti/SUS 3
Ti-15V for 04 series, pure Zr/5US304
The system was made of Zr-15Nb, and the axial length was lrnm. Regarding heat treatment after HIP treatment, the former is SO
0°C x 30 mm + W, θ, the latter is 780°C x 3
0 m-+W, Q.

第3表に見られる如く、第2部材2がインサート材3を
覆う様な雌雄嵌合としたもの、特にo2が10°〜60
°では熱疲労寿命が大きく改善されておシ、特に10°
〜45″′に設定したものでは2700〜2800サイ
クル時点で管外表面側にクラックが発生しておらず、雌
雄嵌合部での熱疲労寿命は更に良好であろうとの期待が
もたれた。
As shown in Table 3, the second member 2 covers the insert material 3 with male and female fittings, especially those with o2 of 10° to 60°.
The thermal fatigue life is greatly improved at 10°, especially at 10°.
In the case where the temperature was set to ~45'', no cracks occurred on the outer surface of the tube after 2700 to 2800 cycles, and it was expected that the thermal fatigue life of the male and female fitting portions would be even better.

実施例4 上記の結果を受け、管の内外両面における熱疲労寿命を
改善する目的で第1図に示す様な接合面を有する金属継
手を作成し、熱疲労試験を行なった。結果を示す第1表
中の*印9本*印、θ2=マイナス値の各意味は実施例
3の場合と同じである。
Example 4 In response to the above results, a metal joint having a joint surface as shown in FIG. 1 was prepared and a thermal fatigue test was conducted for the purpose of improving the thermal fatigue life of both the inner and outer surfaces of the pipe. In Table 1 showing the results, the meanings of nine * marks and θ2=minus value are the same as in Example 3.

第   4   表 第1表に見られる如くθ2を10°〜60°とすること
によシ熱疲労寿命が著しく改善され、特に20゜〜45
°では10000回でもクラックの発生が認められなか
った。
Table 4 As seen in Table 1, thermal fatigue life is significantly improved by setting θ2 to 10° to 60°, especially when θ2 is 20° to 45°.
℃, no cracks were observed even after 10,000 cycles.

〔発明の効果〕〔Effect of the invention〕

インサート材を介在させることによってステンレス鋼中
の合金元素をインサート材中に固溶化させることができ
たので、接合界面における耐食性及び曲げ延性が改善さ
れた。又β相安定化の為の熱処理を付加することによシ
前記の効果は一層安定したものとなった。
By interposing the insert material, the alloying elements in the stainless steel could be made into a solid solution in the insert material, so the corrosion resistance and bending ductility at the joint interface were improved. Furthermore, by adding heat treatment for stabilizing the β phase, the above effect became even more stable.

又インサート材とステンレス鋼の接合面構造を、前者を
凸状とする雌雄嵌合とすることによシ、熱疲労強度を顕
著に改善することができた。
Furthermore, by making the joint surface structure between the insert material and the stainless steel into a female-male fitting structure with the former having a convex shape, it was possible to significantly improve the thermal fatigue strength.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明におけるインサート材を用いて雌雄嵌合
構造としたときの断面図、第2図は管の外表面側のみを
テーパ接合としたときの断面図、第3図はインサート材
の代表例を示す断面図、第1図は熱疲労試験装置の説明
図、第5図は垂直面接合の断面図でちる。
Figure 1 is a cross-sectional view of a male-female fitting structure using the insert material of the present invention, Figure 2 is a cross-sectional view of a tapered joint only on the outer surface of the tube, and Figure 3 is a cross-sectional view of the insert material of the present invention. 1 is an explanatory diagram of a thermal fatigue test apparatus, and FIG. 5 is a sectional view of a vertical surface joint.

Claims (4)

【特許請求の範囲】[Claims] (1)Ti基又はZr基の金属(但しβ型Ti基合金及
びβ型Zr基合金は除く)を第1部材とし、ステンレス
鋼を第2部材として両者を熱間静水圧加圧法によつて拡
散接合させるに当たり、β型Ti基合金又はβ型Zr基
合金をインサート材とし、このインサート材を第1部材
と第2部材の間に介在せしめ、第1部材のβ変態点未満
の温度に加熱して拡散接合を行なうことを特徴とするT
i基又はZr基の金属にステンレス鋼を接合する方法。
(1) A Ti-based or Zr-based metal (excluding β-type Ti-based alloys and β-type Zr-based alloys) is used as the first member, stainless steel is used as the second member, and both are bonded by hot isostatic pressing. For diffusion bonding, a β-type Ti-based alloy or a β-type Zr-based alloy is used as an insert material, this insert material is interposed between the first member and the second member, and heated to a temperature below the β-transformation point of the first member. T characterized by performing diffusion bonding by
A method for joining stainless steel to i-based or Zr-based metals.
(2)Ti基又はZr基の金属(但しβ型Ti基合金及
びβ型Zr基合金は除く)を第1部材とし、ステンレス
鋼を第2部材として両者を熱間静水圧加圧法によつて拡
散接合させるに当たり、β型Ti基合金又はβ型Zr基
合金をインサート材とし、このインサート材を第1部材
と第2部材の間に介在せしめ、第1部材のβ変態点未満
の温度に加熱拡散接合を行なつた後、インサート材のβ
変態点以上であつて第1部材のβ変態点未満の温度に加
熱し、更に急冷することを特徴とするTi基又はZr基
の金属にステンレス鋼を接合する方法。
(2) A Ti-based or Zr-based metal (excluding β-type Ti-based alloys and β-type Zr-based alloys) is used as the first member, stainless steel is used as the second member, and both are heated using hot isostatic pressing. For diffusion bonding, a β-type Ti-based alloy or a β-type Zr-based alloy is used as an insert material, this insert material is interposed between the first member and the second member, and heated to a temperature below the β-transformation point of the first member. After diffusion bonding, the β of the insert material
A method for joining stainless steel to a Ti-based or Zr-based metal, the method comprising heating to a temperature above the transformation point and below the β-transformation point of the first member, and then rapidly cooling.
(3)Ti基又はZr基の金属(但しβ型Ti基合金及
びβ型Zr基合金は除く)を第1部材とし、ステンレス
鋼を第2部材として両者を熱間静水圧加圧法によつて拡
散接合させるに当たり、β型Ti基合金又はβ型Zr基
合金をインサート材とし、このインサート材を第1部材
と第2部材の間に介在せしめると共に、第2部材とイン
サート材の接合部は、前者を雌型、後者を少なくとも根
元側の立上り角度が10〜60度の雄型とする雌雄嵌合
構造とし、第1部材のβ変態点未満の温度に加熱して拡
散接合を行なうことを特徴とするTi基又はZr基の金
属にステンレス鋼を接合する方法。
(3) A Ti-based or Zr-based metal (excluding β-type Ti-based alloys and β-type Zr-based alloys) is used as the first member, stainless steel is used as the second member, and both are bonded by hot isostatic pressing. In performing diffusion bonding, a β-type Ti-based alloy or a β-type Zr-based alloy is used as an insert material, and this insert material is interposed between the first member and the second member, and the joint between the second member and the insert material is The former is a female type and the latter is a male type with a rising angle of 10 to 60 degrees at least on the root side, and has a female-male fitting structure, and is characterized by performing diffusion bonding by heating to a temperature below the β transformation point of the first member. A method for joining stainless steel to a Ti-based or Zr-based metal.
(4)Ti基又はZr基の金属(但しβ型Ti基合金及
びβ型Zr基合金は除く)を第1部材とし、ステンレス
鋼を第2部材として両者を熱間静水圧加圧法によつて拡
散接合させるに当たり、β型Ti基合金又はβ型Zr基
合金をインサート材とし、このインサート材を第1部材
と第2部材の間に介在せしめると共に、第2部材とイン
サート材の接合部は、前者を雌型、後者を少なくとも根
元側の立上り角度が10〜60度の雄型とする雌雄嵌合
構造とし、第1部材のβ変態点未満の温度に加熱して拡
散接合を行なつた後、インサート材のβ変態点以上であ
つて第1部材のβ変態点未満の温度に加熱し、更に急冷
することを特徴とするTi基又はZr基の金属にステン
レス鋼を接合する方法。
(4) Ti-based or Zr-based metal (excluding β-type Ti-based alloys and β-type Zr-based alloys) is used as the first member, stainless steel is used as the second member, and both are heated using hot isostatic pressing. In performing diffusion bonding, a β-type Ti-based alloy or a β-type Zr-based alloy is used as an insert material, and this insert material is interposed between the first member and the second member, and the joint between the second member and the insert material is The former is a female type and the latter is a male type with a rising angle of 10 to 60 degrees at least on the root side, which is a female-male mating structure, and after diffusion bonding is performed by heating to a temperature below the β transformation point of the first member. A method for joining stainless steel to a Ti-based or Zr-based metal, which comprises heating to a temperature above the β-transformation point of the insert material and below the β-transformation point of the first member, and then rapidly cooling.
JP17470484A 1984-08-21 1984-08-21 Method of joining stainless steel to ti base or zr base metal Pending JPS6152996A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17470484A JPS6152996A (en) 1984-08-21 1984-08-21 Method of joining stainless steel to ti base or zr base metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17470484A JPS6152996A (en) 1984-08-21 1984-08-21 Method of joining stainless steel to ti base or zr base metal

Publications (1)

Publication Number Publication Date
JPS6152996A true JPS6152996A (en) 1986-03-15

Family

ID=15983200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17470484A Pending JPS6152996A (en) 1984-08-21 1984-08-21 Method of joining stainless steel to ti base or zr base metal

Country Status (1)

Country Link
JP (1) JPS6152996A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005014052A (en) * 2003-06-26 2005-01-20 Japan Atom Energy Res Inst Nonfused joining method of different kind of material
JP2012503551A (en) * 2008-09-24 2012-02-09 スネクマ Assembly of titanium and steel members by diffusion welding
CN102500910A (en) * 2011-11-04 2012-06-20 中国航空工业集团公司北京航空材料研究院 Cladless seal welding method for hot isostatic pressing welding
JP2016120512A (en) * 2014-12-25 2016-07-07 アイシン精機株式会社 Welding method and manufacturing method of weld member
CN113814550A (en) * 2021-10-26 2021-12-21 中国核动力研究设计院 Method for diffusion bonding of zirconium and zirconium alloy and stainless steel

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005014052A (en) * 2003-06-26 2005-01-20 Japan Atom Energy Res Inst Nonfused joining method of different kind of material
JP4534008B2 (en) * 2003-06-26 2010-09-01 独立行政法人 日本原子力研究開発機構 Non-melting joining method for dissimilar materials
JP2012503551A (en) * 2008-09-24 2012-02-09 スネクマ Assembly of titanium and steel members by diffusion welding
CN102500910A (en) * 2011-11-04 2012-06-20 中国航空工业集团公司北京航空材料研究院 Cladless seal welding method for hot isostatic pressing welding
JP2016120512A (en) * 2014-12-25 2016-07-07 アイシン精機株式会社 Welding method and manufacturing method of weld member
CN113814550A (en) * 2021-10-26 2021-12-21 中国核动力研究设计院 Method for diffusion bonding of zirconium and zirconium alloy and stainless steel

Similar Documents

Publication Publication Date Title
TWI357444B (en) Zirconium-cladded steel plates, and elements of ch
EP1765544B1 (en) Mehod for producing a clad stainless steel substrate
JPS5927676B2 (en) Method for manufacturing titanium or titanium alloy clad steel sheet by rolling crimping
EP0028763B1 (en) Method for pressure bonding metal members by utilizing eutectic reaction
JPS6152996A (en) Method of joining stainless steel to ti base or zr base metal
TW200927346A (en) A diffusion bonding method for blocks of based bulk metallic glass
JPH05185250A (en) Joining material for different kinds of metal
JP3240211B2 (en) Copper-aluminum dissimilar metal joint material
JPS62124083A (en) Diffused junction method
JP2022095363A (en) Cladding material and production method
JP3798219B2 (en) Joined body and joining method of iron-based alloy members
JPH0324318B2 (en)
JP4360229B2 (en) Pharmaceutical manufacturing plant components
JPH0324317B2 (en)
JPH05385A (en) Manufacture of double metallic pipe with high corrosion resistance
JPS6213258A (en) Joining structure of cooling panel
KR20170117825A (en) Selection method of interlayer for high bond strength clad material and preparing method of the high bond strength Ti-Fe clad material and Ti-Fe clad material thereby
JPS6250073A (en) Joined graphite-metal structural body
RU2267550C2 (en) Method for manufacture of laminated material
JP4534008B2 (en) Non-melting joining method for dissimilar materials
JPS60213378A (en) Production of titanium or titanium alloy clad steel plate
JPS6363583A (en) Diffusion joining joint and joining method for ni-base super alloy
JPS63215388A (en) Method for joining two-phase stainless steel members
JPH03210978A (en) Titanium or titanium alloy/stainless steel pipe joint and its manufacture
CN117259885A (en) Method for brazing zirconium alloy and high-entropy alloy by adopting laser cladding Nb