JPH0220002A - Manufacture of rare earth element plastic magnet - Google Patents

Manufacture of rare earth element plastic magnet

Info

Publication number
JPH0220002A
JPH0220002A JP63170458A JP17045888A JPH0220002A JP H0220002 A JPH0220002 A JP H0220002A JP 63170458 A JP63170458 A JP 63170458A JP 17045888 A JP17045888 A JP 17045888A JP H0220002 A JPH0220002 A JP H0220002A
Authority
JP
Japan
Prior art keywords
magnetic field
rare earth
sintering
adjusted
compression molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63170458A
Other languages
Japanese (ja)
Other versions
JP2892013B2 (en
Inventor
Naoyuki Hirose
広瀬 直之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP63170458A priority Critical patent/JP2892013B2/en
Publication of JPH0220002A publication Critical patent/JPH0220002A/en
Application granted granted Critical
Publication of JP2892013B2 publication Critical patent/JP2892013B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To improve magnetic characteristic of a plastic magnet by molding alloy powder in a magnetic field, sintering, then repulverizing, adjusting to become a specific grain size distribution, sintering the adjusted piece, and impregnating the sintered piece with thermosetting resin. CONSTITUTION:Magnet alloy ingot represented by a formula R(Co1-x-y-zFexCuyMz)u (where R is rare earth element, M is one or more of Zr, Ti, Mn, Mo, Al, x is 0.1<=x<=0.3, y is 0.03<=y<=0.1, z is 0.005<=z<=0.04, u is 7.0<=u<=8.0) is finely pulverized, compression molded, sintered, and then repulverized to be so adjusted that mean grain size become 70-100wt.% of 10-50mum and 0-30wt.% of 3-9mum. The adjusted powder is oriented in a magnetic field, compression molded, the dust is resintered at 1100-1250 deg.C in an argon atmosphere, resolubilized, and then age-hardened at 400-900 deg.C. The obtained porous sintered piece is impregnated with thermosetting resin, and thermally cured at 100-150 deg.C.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高磁気特性をもつプラスチック磁石、特にはポ
ーラスな焼結体に熱硬化性樹脂を含浸させた希土類プラ
スチック磁石の製造方法に関するものである。
[Detailed Description of the Invention] (Field of Industrial Application) The present invention relates to a method for producing a plastic magnet with high magnetic properties, particularly a rare earth plastic magnet in which a porous sintered body is impregnated with a thermosetting resin. be.

(従来の技術と問題点) 従来より知られている焼結磁石は、脆くて加工し難い欠
点を有している為、複雑な形状の物を得ようとすると、
コストも極めて高いものになってしまう、プラスチック
磁石は、この様な問題点を解決する為に、開発されたも
のであり、磁性材料としては、初期の頃のフェライト系
酸化物に代って、最近は、強力、小型、軽量化の要請か
ら希土・コバルト系の金属磁性材料が使用される様にな
ってきた。
(Conventional technology and problems) Conventionally known sintered magnets have the disadvantage of being brittle and difficult to process, so when trying to obtain objects with complex shapes,
Plastic magnets, which are extremely expensive, were developed to solve these problems, and as magnetic materials, they replaced the early ferrite oxides. Recently, rare earth/cobalt-based metal magnetic materials have come into use due to the demand for strong, compact, and lightweight materials.

しかし、プラスチック磁石は、樹脂を必要とする為、そ
の占める体積分だけ残留磁束密度が減少し、エネルギー
積については、それ以上に減少してしまう欠点を持って
いる。そこで最近では、如何に樹脂の含有率を抑え、か
つ、機械的強度を持たせるかが研究課題で、Sm2CO
1,系合金で粒径の異なった粉体を組合せ、密度= 7
.0  g/crtf、Br=8、3kG、 iHc 
= 7.3kOe、(BH)、= 17MGOeのプラ
スチック磁石の製造まで可能になってきている。しかし
、これでも、焼結磁石に比べると、50%強程度のエネ
ルギー積しか得られていない。
However, since plastic magnets require resin, the residual magnetic flux density decreases by the volume occupied by the resin, and the energy product has the disadvantage that it decreases even more. Recently, research has focused on how to suppress the resin content and provide mechanical strength, and Sm2CO
1. Combining powders with different particle sizes in a system alloy, density = 7
.. 0 g/crtf, Br=8, 3kG, iHc
It has become possible to manufacture plastic magnets of = 7.3 kOe, (BH), = 17 MGOe. However, even with this, the energy product is only about 50% higher than that of sintered magnets.

(問題点を解決するための手段) 本発明者等は、プラスチック磁石の磁気特性を更に向上
させる為、鋭意研究を進め、従来にない、磁気特性の高
いプラスチック磁石を得ることに成功し、本発明に到達
した。
(Means for Solving the Problems) In order to further improve the magnetic properties of plastic magnets, the present inventors have conducted extensive research, succeeded in obtaining a plastic magnet with unprecedented high magnetic properties, and have published this book. The invention has been achieved.

その要旨とするところは、 式T(Co1−x−y−JexCuyMx)u(式中R
は希土類元素、MはZr、TilMn、Mo、 A I
、の1種または2種以上、Xは0.1≦x≦0.3、y
は0.03≦y≦0.1.zは0.005≦2≦0.0
4、Uは7.0≦u≦8.0である。) で示される合金粉末を磁場中で成形し、焼結処理した後
、再粉砕して、平均粒度を10〜50μmが70〜10
0重量%、3〜9μmが30〜0重量%になるように調
整し、この調整物を磁場中で配向させ、圧縮成形し、こ
の成形体を1100〜1250℃で焼結後、400〜9
00℃で時効処理し、ついでこの焼結体に熱硬化性樹脂
を含浸させた後、これを硬化させることを特徴とする希
土類プラスチック磁石の製造方法にあ°る。
The gist of this is that the formula T(Co1-x-y-JexCuyMx)u (in the formula R
is a rare earth element, M is Zr, TilMn, Mo, A I
, one or more of the following, X is 0.1≦x≦0.3, y
is 0.03≦y≦0.1. z is 0.005≦2≦0.0
4. U is 7.0≦u≦8.0. ) The alloy powder shown by is compacted in a magnetic field, subjected to sintering treatment, and then re-pulverized to reduce the average particle size from 10 to 50 μm to 70 to 10 μm.
0% by weight and 3~9μm to 30~0% by weight, this adjusted product is oriented in a magnetic field, compression molded, and after sintering this molded body at 1100~1250℃, 400~9μm
The present invention provides a method for producing a rare earth plastic magnet, which is characterized by subjecting the sintered body to an aging treatment at 00°C, impregnating the sintered body with a thermosetting resin, and then curing the same.

本発明の最大の特徴は、 従来の製造工程が、 l)工程:磁石合金インゴットを2〜5μmに微粉砕し
磁場中で配向させ、圧縮成形し、1100〜1250℃
で焼結、溶体化し、400〜900℃で時効処理し、 2)工程二次いでこれを再粉砕し、2〜20μmに粒度
調整後再び磁場中で圧縮成形し、 3)工程:熱硬化性樹脂をバインダーとして含浸し、1
00〜150℃でキュアー処理し、切削、切断、研摩等
の後加工後着磁する方法。
The biggest feature of the present invention is that the conventional manufacturing process is: l) Step: A magnetic alloy ingot is finely pulverized to 2 to 5 μm, oriented in a magnetic field, compression molded, and heated to 1100 to 1250°C.
Sintered, solutionized, and aged at 400 to 900°C, 2) Step 2: Next, this is re-pulverized, the particle size is adjusted to 2 to 20 μm, and compression molded again in a magnetic field, 3) Step: Thermosetting resin impregnated as a binder, 1
A method of curing at 00 to 150°C and magnetizing after post-processing such as cutting, cutting, and polishing.

によって行われているのに対し、 先ず、上記従来法の1)工程の時効処理を省略し、次に
、2)工程で再粉砕後平均粒度を10〜50gmが70
〜100重量%、3〜9μmが30〜0重量%になる様
に粒度調整を行い、磁場中で配向、圧縮成形を行う。次
いで、1100〜1250℃で再焼結、溶体化し、40
0〜900℃で時効処理する工程」を採り入れたことに
ある。この様な工程の新編成によって、高磁気特性を有
し、3)工程における後加工を殆ど必要としない希土類
プラスチック磁石を得ることが出来た。
In contrast, first, the aging treatment in step 1) of the above conventional method is omitted, and then, in step 2), the average particle size after re-pulverization is reduced from 10 to 50 gm to 70 gm.
The particle size is adjusted to 100% by weight and 30 to 0% by weight from 3 to 9 μm, and then oriented and compression molded in a magnetic field. Next, re-sintering and solution treatment at 1100-1250°C,
This is due to the adoption of an aging treatment process at 0 to 900°C. Through this new arrangement of processes, it was possible to obtain a rare earth plastic magnet that has high magnetic properties and requires almost no post-processing in the 3) process.

次に、本発明を工程順に詳説する。Next, the present invention will be explained in detail in order of steps.

先ず、原料である磁石合金組成は、 式T(Co1−x−y−JexCuyMju(式中Rは
希土類元素、MはZr、 Ti、 Mn、 Mo、A1
.の1種または2種以上、Xは0.1≦x≦0.3、y
は0.03≦y≦0.1.zは0.005≦2≦0.0
4、Uは7.0≦u≦8.0である。)で表される公知
の希土類永久磁石であって、Sm(COyzFezoC
us、 aZrt、 a) y、 sa、(SmsoC
eio) (CO?2. aFele、 4Cua、 
aZr 2)7.22等が例示され、本発明の製造方法
が最も効率良く適用され、高い磁気特性が得られる。
First, the composition of the magnet alloy that is the raw material is expressed by the formula T (Co1-x-y-JexCuyMju (where R is a rare earth element, M is Zr, Ti, Mn, Mo, A1
.. One or more of the following, X is 0.1≦x≦0.3, y
is 0.03≦y≦0.1. z is 0.005≦2≦0.0
4. U is 7.0≦u≦8.0. ) is a known rare earth permanent magnet represented by Sm(COyzFezoC
us, aZrt, a) y, sa, (SmsoC
eio) (CO?2.aFele, 4Cua,
Examples include aZr 2) 7.22, etc., to which the manufacturing method of the present invention can be applied most efficiently and high magnetic properties can be obtained.

1)工程は、この磁石合金インゴットを2〜5μmに微
粉砕し、磁場中で配向させ、その垂直方向に圧縮成形し
、この圧粉体をアルゴン雰囲気中で1100〜1250
℃の温度で焼結、溶体化する0本工程処理により、飽和
磁化の高い焼結体が得られ、2)工程でこれを微粉砕し
なくても、粗粉中の磁極が均一に一方向に配向している
為、磁場中再成形の際、粗粉を用いても高い配向性が得
られる。
1) The process is to finely crush this magnetic alloy ingot to 2 to 5 μm, orient it in a magnetic field, and compression mold it in the perpendicular direction.
2) A sintered body with high saturation magnetization can be obtained by the zero step process of sintering and solutionizing at a temperature of Because of its orientation, high orientation can be obtained even when coarse powder is used during remolding in a magnetic field.

また、本工程で時効処理を省略したことによって、保磁
力が抑えられ、配向磁場が弱くても、高い配向性が得ら
れる様になる。更に、粗粉を用いた粒度調整により圧粉
体の高密度化がし易くなる。
Moreover, by omitting the aging treatment in this step, the coercive force is suppressed, and even if the orientation magnetic field is weak, high orientation can be obtained. Furthermore, particle size adjustment using coarse powder makes it easier to increase the density of the green compact.

次に、2)工程では、この焼結体を再び粗粉砕し、平均
粒度な10〜50μmが70〜100重量%及び3〜9
μmが30〜0重量%の割合に粒度調整し、この調整物
を磁場中で配向させ、圧縮成形し、この圧粉体をアルゴ
ン雰囲気中で1100〜1250℃で再焼結、再溶体化
処理し、次いで、400〜900℃で時効処理する0本
工程は、前述した様に本発明の特徴とする所であり、前
工程で充分高配向化された焼結体を再び粉砕、粒度調整
、磁場中配向、圧縮成形、焼結、溶体化処理し、次いで
、ここで初めて400〜900℃で時効処理すると、先
に高配向化された粗粉末は、粒度調整と熱収縮によって
更に密度が高められ、また、粉砕及び磁場中成形の際の
機械的歪をもほぼ完全に除去出来、従来にない高い磁気
特性が得られる。更に、粒度の粗い粉体な用いる為、ポ
ーラスな焼結体が得られる。
Next, in step 2), this sintered body is coarsely pulverized again, and the average particle size of 10 to 50 μm is 70 to 100% by weight and 3 to 9% by weight.
The particle size is adjusted to a ratio of μm of 30 to 0% by weight, the adjusted product is oriented in a magnetic field, compression molded, and the green compact is resintered and resolubilized at 1100 to 1250°C in an argon atmosphere. Then, as mentioned above, the zero step of aging treatment at 400 to 900°C is a feature of the present invention. Orientation in a magnetic field, compression molding, sintering, solution treatment, and then aging treatment at 400 to 900°C for the first time, the highly oriented coarse powder becomes denser due to particle size adjustment and heat shrinkage. In addition, mechanical strain during crushing and molding in a magnetic field can be almost completely eliminated, resulting in unprecedentedly high magnetic properties. Furthermore, since coarse-grained powder is used, a porous sintered body can be obtained.

3)工程では、前2)工程で得られたポーラスな焼結体
に熱硬化性樹脂を含浸させ、100〜150℃で熱硬化
させる。ここで用いる熱硬化性樹脂は、エポキシ樹脂、
ポリエステル樹脂、シリコーン樹脂等が例示されるが、
これらに限定されるものではない。
In the step 3), the porous sintered body obtained in the previous step 2) is impregnated with a thermosetting resin and thermosetted at 100 to 150°C. The thermosetting resin used here is epoxy resin,
Examples include polyester resin, silicone resin, etc.
It is not limited to these.

(発明の効果) 本発明の製造方法によって、従来方法では達成出来なか
った高い磁気特性を持つ希土類プラスチック磁石が得ら
れる。比較例と対比した第1表に明らかなように、特に
エネルギー積において顕著な向上が見られた。また、圧
粉体密度を充分高めることが出来た為、焼結による熱収
縮量が減少し、切削、切断、研摩等の後加工も殆どしな
くて済むようになった。
(Effects of the Invention) By the manufacturing method of the present invention, a rare earth plastic magnet having high magnetic properties that could not be achieved by conventional methods can be obtained. As is clear from Table 1 in comparison with the comparative example, a remarkable improvement was observed, especially in the energy product. Furthermore, since the green compact density could be sufficiently increased, the amount of thermal shrinkage due to sintering was reduced, and post-processing such as cutting, cutting, and polishing became almost unnecessary.

次に、実施例を挙げて、具体的に説明するが、本発明は
これらに限定されるものではない。
Next, the present invention will be specifically explained with reference to Examples, but the present invention is not limited thereto.

(実施例1) Sm (COtzFezoCus、 aZri、 s)
 t、 so  の組成のインゴットを3μm以下の粉
末にし、磁場中で配向し、その垂直方向に圧縮成形し、
その圧粉体をAr雰囲気中で!220℃XIHr、次い
で1200℃x O,5Hr焼結焼結化する0次に、こ
れを平均粒度50μm以下までに再び粗砕する。この粗
粉を磁場中配向し、圧縮成形し、この成形体を1220
℃X1)Irの再焼結、1200℃×30分の溶体化、
次に800℃X 20Hrの時効処理を行った。得られ
たポーラスな焼結体にエポキシ樹脂を含浸させ、150
℃X IHrのキュア処理をした後、磁気特性を測定し
た。結果を第1表に示す。
(Example 1) Sm (COtzFezoCus, aZri, s)
The ingot with the composition of
The green compact is placed in an Ar atmosphere! The material is sintered at 220° C. for 5 hours, then at 1200° C. for 5 hours, and then crushed again to an average particle size of 50 μm or less. This coarse powder is oriented in a magnetic field, compression molded, and the molded body is made into a 1220 mm
°C
Next, aging treatment was performed at 800°C for 20 hours. The obtained porous sintered body was impregnated with epoxy resin, and
After curing at ℃×IHr, the magnetic properties were measured. The results are shown in Table 1.

(実施例2) Sm (COtzFezoCus、 5Zrz、 s)
 l sa組成のインゴットを3μm以下に粉砕し、磁
場中配向し、その垂直方向に圧縮成形し、その圧粉体を
アルゴン雰囲気下】220℃XIHr 、 1200℃
X 0.5Hr焼結焼結化する、次に、これを平均粒度
50μm以下までに再び粗砕する。この粉体な平均粒度
3〜9μm20重量%、10〜50μm 80重量%と
なる様に粒度調整し、更に、ステアリン酸0.1重量%
を加え混合する。
(Example 2) Sm (COtzFezoCus, 5Zrz, s)
An ingot having a l sa composition is crushed to 3 μm or less, oriented in a magnetic field, compression molded in the perpendicular direction, and the compacted powder is heated under an argon atmosphere at 220℃XIHr, 1200℃
Sintering is performed for X 0.5 hours, and then this is crushed again to an average particle size of 50 μm or less. The particle size was adjusted so that the average particle size of this powder was 20% by weight of 3 to 9 μm, 80% by weight of 10 to 50 μm, and 0.1% by weight of stearic acid.
Add and mix.

以下、実施例1と同様、成形、熱処理、エポキシ樹脂含
浸、キュア処理を行った後、磁気特性を測定した。その
結果を第1表に示す。
Thereafter, in the same manner as in Example 1, after molding, heat treatment, epoxy resin impregnation, and curing treatment, the magnetic properties were measured. The results are shown in Table 1.

この永久磁石は炭素鋼バイトで加工が容易で、耐衝撃性
も優れていた。また、再焼結の際の収縮量も少なく、加
工工数が、操めて少なくて済んだ、更に、焼結体の間隙
に樹脂を含浸させることによって耐衝撃性が一層良くな
った。
This permanent magnet was made of carbon steel and was easy to work with, and had excellent impact resistance. In addition, the amount of shrinkage during re-sintering was small, reducing the number of processing steps.Furthermore, by impregnating the gaps of the sintered body with resin, the impact resistance was further improved.

(実施例3) (SmsoCeso) (Cots、 aFe+*、 
4CIJS、 aZri) t、 ztの組成のインゴ
ットを3μm以下に粉砕し、磁場垂直方向に圧縮成形し
、その圧粉体をアルゴンン雰囲気下1170℃X1ll
r焼結する0次に、これを平均粒度50μm以下まで再
び粗砕する。この粉体を平均粒度3〜9μm20重量%
、10〜50μm80重量%となる様に粒度調整し、更
に、ステアリン酸0.1重量%を加え混合する。この粉
末を磁場中圧縮成形し、1170℃X1l(rで焼結し
、1150℃X O,5)1rで溶体化し、次いで80
0℃X 20Hrの時効処理を行った。
(Example 3) (SmsoCeso) (Cots, aFe++,
4CIJS, aZri) An ingot with the composition of
Next, this is crushed again to an average particle size of 50 μm or less. This powder has an average particle size of 3 to 9 μm and 20% by weight.
The particle size is adjusted to 10 to 50 μm and 80% by weight, and further, 0.1% by weight of stearic acid is added and mixed. This powder was compression molded in a magnetic field, sintered at 1170° C.
Aging treatment was performed at 0°C for 20 hours.

得られたポーラスな焼結体に実施例1と同様エポキシ樹
脂含浸、キュア処理を行った後、磁気特性を測定した。
The obtained porous sintered body was impregnated with epoxy resin and cured in the same manner as in Example 1, and then its magnetic properties were measured.

(比較例) Sm (COtJeaoCua、 aZrz、 8) 
7.36の組成のインゴットを3μmの粉末にし、磁場
垂直方向に配向し、圧縮成形し、その圧粉体にアルゴン
雰囲気下1220”cXI)lrの焼結、1200℃X
 30m1n、の溶体化、900’CX20Hrの時効
の熱処理を行う0次に、これを平均粒度3〜20μmま
で再び粉砕する。
(Comparative example) Sm (COtJeaoCua, aZrz, 8)
The ingot with the composition of 7.36 was made into a powder of 3 μm, oriented perpendicular to the magnetic field, compression molded, and the green compact was sintered at 1220"cXI)lr under an argon atmosphere at 1200°C.
A heat treatment of solution treatment of 30ml and aging of 900'CX20Hr is then carried out.Then, this is ground again to an average particle size of 3 to 20μm.

この粗粉を磁場中で圧縮成形し、その成形体にエポキシ
樹脂を含浸し、150℃で硬化させ、磁気特性を測定し
た結果を第1表に示す。
This coarse powder was compression molded in a magnetic field, the molded body was impregnated with epoxy resin, and cured at 150°C. The magnetic properties were measured. Table 1 shows the results.

第1表Table 1

Claims (1)

【特許請求の範囲】[Claims] 1.式 T(Co_1_−_x_−_y_−_zFe_
xCu_yM_z)_u(式中Rは希土類元素、MはZ
r、Ti、Mn、Mo、Al、の1種または2種以上、
xは0.1≦x≦0.3、yは0.03≦y≦0.1、
zは0.005≦z≦0.04、uは7.0≦u≦8.
0である。) で示される合金粉末を磁場中で成形し、焼結処理した後
、再粉砕して、平均粒度を10〜50μmが70〜10
0重量%、3〜9μmが30〜0重量%になる様に調整
し、この調整物を磁場中で配向させ、圧縮成形し、この
成形体を1100〜1250℃で焼結後、400〜90
0℃で時効処理し、ついでこの焼結体に熱硬化性樹脂を
含浸させた後、これを硬化させることを特徴とする希土
類プラスチック磁石の製造方法。
1. Formula T(Co_1_−_x_−_y_−_zFe_
xCu_yM_z)_u (in the formula, R is a rare earth element, M is Z
One or more of r, Ti, Mn, Mo, Al,
x is 0.1≦x≦0.3, y is 0.03≦y≦0.1,
z is 0.005≦z≦0.04, and u is 7.0≦u≦8.
It is 0. ) The alloy powder shown by is compacted in a magnetic field, subjected to sintering treatment, and then re-pulverized to reduce the average particle size from 10 to 50 μm to 70 to 10 μm.
0% by weight, 3-9μm becomes 30-0% by weight, this prepared product is oriented in a magnetic field, compression molded, and after sintering this molded body at 1100-1250℃, 400-90μm
A method for producing a rare earth plastic magnet, which comprises aging the sintered body at 0°C, impregnating the sintered body with a thermosetting resin, and then hardening the sintered body.
JP63170458A 1988-07-08 1988-07-08 Manufacturing method of rare earth plastic magnet Expired - Fee Related JP2892013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63170458A JP2892013B2 (en) 1988-07-08 1988-07-08 Manufacturing method of rare earth plastic magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63170458A JP2892013B2 (en) 1988-07-08 1988-07-08 Manufacturing method of rare earth plastic magnet

Publications (2)

Publication Number Publication Date
JPH0220002A true JPH0220002A (en) 1990-01-23
JP2892013B2 JP2892013B2 (en) 1999-05-17

Family

ID=15905312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63170458A Expired - Fee Related JP2892013B2 (en) 1988-07-08 1988-07-08 Manufacturing method of rare earth plastic magnet

Country Status (1)

Country Link
JP (1) JP2892013B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190115128A1 (en) * 2017-10-16 2019-04-18 Iowa State University Research Foundation, Inc. Feedstock and heterogeneous structure for tough rare earth permanent magnets and production therefor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53132425A (en) * 1977-04-26 1978-11-18 Fujitsu Ltd Production of rare earth elements-cobalt magnet
JPS5656606A (en) * 1979-10-16 1981-05-18 Daido Steel Co Ltd Manufacture of permanent magnet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53132425A (en) * 1977-04-26 1978-11-18 Fujitsu Ltd Production of rare earth elements-cobalt magnet
JPS5656606A (en) * 1979-10-16 1981-05-18 Daido Steel Co Ltd Manufacture of permanent magnet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190115128A1 (en) * 2017-10-16 2019-04-18 Iowa State University Research Foundation, Inc. Feedstock and heterogeneous structure for tough rare earth permanent magnets and production therefor

Also Published As

Publication number Publication date
JP2892013B2 (en) 1999-05-17

Similar Documents

Publication Publication Date Title
USRE38021E1 (en) Anisotropic magnetic powder and magnet thereof and method of producing same
JPWO2002103719A1 (en) Rare earth permanent magnet material
JP3540438B2 (en) Magnet and manufacturing method thereof
JPS6181606A (en) Preparation of rare earth magnet
JPH0551656B2 (en)
JP3222482B2 (en) Manufacturing method of permanent magnet
JP2731150B2 (en) Magnetic anisotropic bonded magnet, magnetic anisotropic magnetic powder used therefor, method for producing the same, and magnetic anisotropic powder magnet
JPS6181603A (en) Preparation of rare earth magnet
JPS62177158A (en) Permanent magnet material and its production
JPH05226123A (en) Magnetic material
JPH0220002A (en) Manufacture of rare earth element plastic magnet
JPS6181607A (en) Preparation of rare earth magnet
JPS62177150A (en) Permanent magnet material and its production
JP2739329B2 (en) Method for producing alloy powder for polymer composite type rare earth magnet
JPS5853699B2 (en) Method for manufacturing rare earth intermetallic compound magnets
JPH07110965B2 (en) Method for producing alloy powder for resin-bonded permanent magnet
JPS6318603A (en) Permanent magnet
JP2892012B2 (en) Manufacturing method of rare earth polar anisotropic permanent magnet
JP2978004B2 (en) Method for producing rare earth composite magnet having magnetic anisotropy
JPH01290205A (en) Manufacture of high-polymer composite type rare-earth magnet
JPH03217003A (en) Manufacture of bond-type permanent magnet
JPH04134806A (en) Manufacture of permanent magnet
JPS5848602A (en) Production of magnet of intermetallic compound
JPH02109305A (en) Manufacture of polymer complex type rare earth magnet
JPH06290921A (en) Manufacture of rare earth permanent magnet

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees