JPH02199769A - Battery with overcharge preventing function - Google Patents

Battery with overcharge preventing function

Info

Publication number
JPH02199769A
JPH02199769A JP1018672A JP1867289A JPH02199769A JP H02199769 A JPH02199769 A JP H02199769A JP 1018672 A JP1018672 A JP 1018672A JP 1867289 A JP1867289 A JP 1867289A JP H02199769 A JPH02199769 A JP H02199769A
Authority
JP
Japan
Prior art keywords
battery
voltage
separator
high molecular
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1018672A
Other languages
Japanese (ja)
Inventor
Tatsu Nagai
龍 長井
Hiroshi Hattori
浩 服部
Akira Kawakami
章 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP1018672A priority Critical patent/JPH02199769A/en
Publication of JPH02199769A publication Critical patent/JPH02199769A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To prevent a deterioration of the performance and the breakdown due to overcharge and achieve the prolongation of life and an improvement of the safety by disposing a separator containing a high molecular material revealing conductivity by the doping of ions between a positive electrode and a negative electrode. CONSTITUTION:In the inside of a battery case 1, a negative electrode 6 bonded to a negative terminal plate 2 through a collector 5 consisting of stainless net, a positive electrode 7 bonded to a positive terminal plate 3, and a separator 8 containing a high molecular material revealing conductivity by the doping of ions present between the both electrodes 6, 7 are mounted in the state dipped in an electrolyte. The combination of each kind of the electrode material of the both electrodes 6, 7, the high molecular material of the separator 8, and the electrolyte is selected in such a manner that the conversion voltage of the high molecular material is slightly higher than the charge terminating voltage in a secondary battery and nearly the same as the allowable voltage in a primary battery. Hence, a stable overcharge preventing function is given to the battery itself, and the prolongation of life and an improvement in safety can be achieved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、それ自体が過充電防止機能を有する電池に
関するものであり、とくに二次電池として充電時に規定
される充電終止電圧以上の電圧上昇を防止するのに有用
である。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a battery that itself has an overcharge prevention function, and in particular, the present invention relates to a battery that itself has an overcharge prevention function, and in particular, a battery that has a voltage rise above the end-of-charge voltage specified when charging as a secondary battery. Useful to prevent.

〔従来の技術〕[Conventional technology]

二次電池において電池性能を適正に保持する上で充電時
の終止電圧を厳守する必要があるが、実際の使用中には
事故や誤使用などによって高電圧が印加される機会が多
々あり、性能劣化を招くとともに、過剰反応に伴う発注
ガス圧で電池破壊を生じる危険がある。
In order to properly maintain battery performance in secondary batteries, it is necessary to strictly adhere to the final voltage during charging, but during actual use, there are many opportunities for high voltage to be applied due to accidents or misuse. In addition to causing deterioration, there is a risk that the battery may be destroyed due to the gas pressure caused by excessive reaction.

従来、このような過充電に対処する手段として、たとえ
ばリチウム電池ではガス抜き用の安全弁や防爆装置を付
設したり、またニカド電池や鉛電池では正極側で発生し
たガスを負極側で吸収させてサイクル的な自己放電を生
じさせる構造が採用されている(文献不詳)。
Conventionally, measures to deal with such overcharging include installing safety valves and explosion-proof devices for degassing in lithium batteries, and absorbing gas generated on the positive electrode side in nickel-cadmium and lead-acid batteries on the negative electrode side. A structure that causes cyclical self-discharge is adopted (document unknown).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記手段では過充電による性能劣化に対
して充分な効果が得られない上、これらの作用がいずれ
も電流値が大きくなると不可逆的なものであることから
過充電の程度や頻度に許容限界があり、また安全弁や防
爆装置を付設すると電池構成が複雑になって高コスト化
する一方、発生ガスを負極側で吸収させる場合は負極成
分を正極成分に対して大過剰とする必要があって電池が
大型化するという問題があった。
However, the above measures do not have a sufficient effect on performance deterioration due to overcharging, and all of these effects become irreversible when the current value increases, so there is a permissible limit on the degree and frequency of overcharging. In addition, adding safety valves and explosion-proof devices complicates the battery configuration and increases costs, while if the generated gas is to be absorbed on the negative electrode side, the negative electrode component must be in large excess of the positive electrode component. There was a problem that the battery became larger.

この発明は、上述の事情に鑑み、電池の基本的構成を改
変することなく、かつ電池特性を損なうことなく、電池
自体に安定した過充電防止機能を付与し、もって長寿命
で安全性にすぐれた電池を提供することを目的としてい
る。
In view of the above-mentioned circumstances, this invention provides a stable overcharge prevention function to the battery itself without changing the basic structure of the battery or impairing the battery characteristics, thereby achieving long life and excellent safety. The aim is to provide batteries with improved performance.

〔課題を解決するための手段〕[Means to solve the problem]

この発明者らは、上記目的を達成するために鋭意検討を
重ねる過程で、ポリマー電池の電極材料となる高分子物
質に着目した。すなわち、有機高分子物質は一般に不導
体であるが、上記電極材料となる高分子物質のようにイ
オンのドーピングによって導電性を発現する性質を存す
るものがあり、上記ポリマー電池はこの導体領域でのド
ーピング量の変化に伴う電極電位の変化を利用している
In the course of intensive studies to achieve the above object, the inventors focused on polymeric substances that can be used as electrode materials for polymer batteries. In other words, organic polymeric substances are generally nonconducting, but some polymeric substances, such as those used as electrode materials, have the property of exhibiting conductivity through ion doping, and the polymer battery described above has the property of exhibiting conductivity in this conductive region. It utilizes changes in electrode potential due to changes in doping amount.

この発明者らは、このような高分子物質におけるイオン
のドーピング量変化による絶縁体と導電体との間の転換
が急激かつ可逆的になされる点から、これらを電池内の
正極と負極との間に介在させることにより、充電時に電
池電圧が許容値以上になった際に絶縁体から導電体へと
転換して両極間の内部短絡を生起させて過充電を防止す
ることが可能であることを見い出し、この発明をなすに
至った。
The inventors have proposed that these polymer materials can be used as positive and negative electrodes in a battery, since the transition between an insulator and a conductor is rapid and reversible due to changes in the amount of ion doping in polymer materials. By interposing it between the two electrodes, it is possible to prevent overcharging by converting from an insulator to a conductor and causing an internal short circuit between the two electrodes when the battery voltage exceeds the allowable value during charging. They discovered this and came up with this invention.

すなわち、この発明は、正極と負極との間に、これら両
極に接してイオンのドーピングによって導電性を発現す
る高分子物質を含むセパレータが介在されてなる過充電
防止機能付き電池に係る。
That is, the present invention relates to a battery with an overcharge prevention function, in which a separator is interposed between a positive electrode and a negative electrode and includes a polymer substance that is in contact with these electrodes and exhibits conductivity by doping with ions.

〔発明の構成・作用〕[Structure and operation of the invention]

この発明の電池のセパレータに含有される前記の高分子
物質は、ドーピングイオンを供与する電解質の存在下で
電圧が印加されているとき、この電圧のある値を境とし
てイオンのドーピング量に急激な変化を生じ、このドー
ピング量に基づいて上記電圧値を境に低電圧側の絶縁体
と高電圧側の導電体とにシャープに転換する。そして、
この転換電圧は、高分子物質と正負極の電極材料と電解
質のそれぞれの種類の組み合わせによって固存の一定値
をとり、この組み合わせの変化によって任意に設定でき
る。
The above-mentioned polymeric substance contained in the separator of the battery of the present invention is characterized in that when a voltage is applied in the presence of an electrolyte that provides doping ions, the amount of ion doping increases rapidly after a certain value of this voltage. Based on this doping amount, there is a sharp transition between an insulator on the low voltage side and a conductor on the high voltage side at the voltage value. and,
This conversion voltage takes a fixed fixed value depending on the combination of the polymer substance, the positive and negative electrode materials, and the electrolyte, and can be arbitrarily set by changing this combination.

したがって、使用する電解質を本来の電池反応とともに
上記高分子物質に対するドーピングイオンを供与できる
ものとし、かつこの高分子物質の上記転換電圧を二次電
池の規定される充電終止電圧よりも若干高く設定するこ
とにより、充電時の両電極間の電位差が上記転換電圧以
上になった際にセパレータが導電状態となって両極を短
絡させるから、電池電圧は許容値以上に上昇せず、過充
電が回避される。そして、上記電位差が転換電圧以下で
は、セパレータは非導通状態を維持して本来の絶縁作用
を果たし、放電特性などの電池特性には悪影響がない。
Therefore, the electrolyte used should be one that can provide doping ions to the polymeric substance as well as the original battery reaction, and the conversion voltage of the polymeric substance should be set slightly higher than the end-of-charge voltage specified for the secondary battery. As a result, when the potential difference between both electrodes during charging exceeds the above conversion voltage, the separator becomes conductive and short-circuits both electrodes, so the battery voltage does not rise above the allowable value and overcharging is avoided. Ru. When the potential difference is below the conversion voltage, the separator maintains a non-conducting state and performs its original insulating function, and there is no adverse effect on battery characteristics such as discharge characteristics.

なお、上記転換電圧を充電終止電圧よりも若干高く設定
するのは、定常状態でのセパレータの絶縁性を高くして
セパレータを介した自己放電を極力少なくするためであ
る。
The reason why the conversion voltage is set slightly higher than the end-of-charge voltage is to increase the insulation properties of the separator in a steady state and to minimize self-discharge through the separator.

一方、−次電池においても事故や誤使用などの様々な要
因で許容値を越える逆印加電圧が加わって過充電状態と
なり性能劣化や破壊を生じることがあるが、この許容電
圧にほぼ一致する転換電圧に設定した前記高分子物質を
含むセパレータを用いることにより、前記同様に高い逆
印加電圧が印加された際にセパレータが導通状態となり
、電池が過充電状態となることを回避できる。
On the other hand, reverse applied voltage exceeding the allowable value may be applied to negative batteries due to various factors such as accidents or misuse, resulting in overcharging, resulting in performance deterioration or destruction. By using a separator containing the polymer material set to a voltage, it is possible to avoid the separator becoming conductive when a high reverse voltage is applied in the same manner as described above, and the battery being overcharged.

また、このようなセパレータの導通状態と非導通状態の
変化は前記高分子物質のイオンのドーピング量変化に基
づいた可逆的なものであることから、誤使用や事故その
他で高電圧の印加される機会が度々あっても、その都度
に全く変わりなく過充電防止機能が発揮される。
In addition, since the change in the conducting state and non-conducting state of the separator is reversible based on the change in the amount of ion doping in the polymer material, high voltage may not be applied due to misuse, accident, etc. Even if there are many occasions, the overcharging prevention function will be exhibited without any change each time.

このようなセパレータに含有させる前記の高分子物質と
しては、イオンのドーピングによって導電性を発現する
ものであればいずれも使用可能である。ただし、そのイ
オン種は電池の種類によって異なり、たとえばリチウム
電池ではアニオンをドーピングして導電性を発現するも
のが使用される。その具体例としては、ポリアニリン、
ポリアセチレン、ポリパラフェニレン、ポリチオフェン
、ポリピロールなどが挙げられる。そして、このような
高分子物質を含むセパレータを形成するには、通常、ポ
リプロピレン製不織布などの絶縁性多孔質基材の表面に
、化学酸化重合法、溶融浸漬、塗布、粉末の圧着などの
高分子物質の種類と性状に応じた適宜手段で咳高分子物
質層を形成すればよい。なお、これら高分子物質自体で
電解質を保持し得る多孔性フィルムを形成できる場合は
、これをセパレータとしてそのまま用いることも可能で
ある。
As the above-mentioned polymeric substance contained in such a separator, any substance can be used as long as it exhibits conductivity through ion doping. However, the ion species differ depending on the type of battery; for example, in lithium batteries, those that are doped with anions to develop conductivity are used. Specific examples include polyaniline,
Examples include polyacetylene, polyparaphenylene, polythiophene, and polypyrrole. To form a separator containing such a polymeric substance, a high-performance method such as chemical oxidation polymerization, melt dipping, coating, or powder compression is usually applied to the surface of an insulating porous substrate such as a nonwoven polypropylene fabric. The cough polymer material layer may be formed by any appropriate means depending on the type and properties of the molecular material. Note that if these polymeric substances themselves can form a porous film capable of holding an electrolyte, it is also possible to use this as it is as a separator.

第1図はボタン型電池に適用したこの発明の過充電防止
機能付き電池Cの構造例を示す。
FIG. 1 shows an example of the structure of a battery C with an overcharge prevention function according to the present invention applied to a button type battery.

図において、1は電池ケースであり、ともに皿型をなす
負極端子板2と正極端子板3とを向かい合わせ、両者の
周縁部を合成ゴムや合成樹脂などの弾性絶縁材料からな
る環状ガスケット4を介在して嵌合圧着することにより
、扁平な密閉容器を構成している。このケース1の内部
には、負極端子板2にステンレスネットなどからなる集
電体5を介して接合した負極6と、正極端子板3に接合
した正極7と、両極6.7間に介在する前記の高分子物
質を含むセパレータ8とが、電解液に浸漬された状態で
装填されている。
In the figure, 1 is a battery case, in which a negative electrode terminal plate 2 and a positive electrode terminal plate 3, both of which are plate-shaped, face each other, and a ring-shaped gasket 4 made of an elastic insulating material such as synthetic rubber or synthetic resin is attached to the peripheral edges of the two. A flat airtight container is constructed by intervening and fitting and crimping. Inside this case 1, there is a negative electrode 6 connected to the negative electrode terminal plate 2 via a current collector 5 made of stainless steel net, a positive electrode 7 connected to the positive electrode terminal plate 3, and an electrode interposed between the two electrodes 6 and 7. The separator 8 containing the above-mentioned polymeric substance is loaded in a state of being immersed in an electrolytic solution.

負極6および正極7には電池の種類に応じて様々な電極
材料が選択使用される。たとえば、リチウム二次および
一次電池では、一般に、負極6としてリチウムまたはリ
チウム合金が使用され、正極7として遷移金属の酸化物
または硫化物、活性炭素繊維、導電性高分子材料などが
使用される。
Various electrode materials are selected and used for the negative electrode 6 and the positive electrode 7 depending on the type of battery. For example, in lithium secondary and primary batteries, lithium or a lithium alloy is generally used as the negative electrode 6, and transition metal oxide or sulfide, activated carbon fiber, conductive polymer material, etc. are used as the positive electrode 7.

電解液としては、電池反応を生起させるとともにセパレ
ータの前記高分子物質にドーピングし得るイオンを供与
する電解質を溶媒に溶解したものが用いられ、この電解
質および溶媒の種類は電池の種類に応じて適宜選択され
る。たとえば、リチウム系電池では、L 1BFa 、
L i Cl0a 、LiBΦ4 (Φはフェニル基)
、LiPF、 、LiAsFaなどのリチウム塩をプロ
ピオンカーボネート、γ−ブチロラクトン、ジメトキシ
エタン、ジオキソランなどの非水系溶媒に溶解してなる
リチウムイオン伝導性電解液が好適である。また、この
ような電解液の代わりに同様のドーピングイオンを供与
できる固体電解質も使用可能である。
The electrolytic solution used is one in which an electrolyte that causes a battery reaction and provides ions that can be doped into the polymeric substance of the separator is dissolved in a solvent. selected. For example, in a lithium battery, L 1BFa,
L i Cl0a , LiBΦ4 (Φ is a phenyl group)
A lithium ion conductive electrolytic solution prepared by dissolving a lithium salt such as , LiPF, or LiAsFa in a nonaqueous solvent such as propion carbonate, γ-butyrolactone, dimethoxyethane, or dioxolane is suitable. Moreover, instead of such an electrolytic solution, a solid electrolyte that can provide similar doping ions can also be used.

上記の如き両極6.7の電極材料とセパレータ8の前記
高分子物質と電解質のそれぞれの種類の組み合わせは、
該高分子物質の転換電圧が二次電池では充電終止電圧よ
りも若干高めに、−次電池では許容電圧にほぼ一致する
ように選択される。
The combinations of the electrode materials of the bipolar electrodes 6.7 and the polymer substances and electrolytes of the separator 8 as described above are as follows:
The conversion voltage of the polymer material is selected so that it is slightly higher than the end-of-charge voltage for secondary batteries, and approximately equal to the allowable voltage for secondary batteries.

なお、この発明の過充電防止機能付き電池は、第1図で
例示したようなボタン型電池に限らず、様々な外形、構
造、大きさに形成できる。
Note that the battery with an overcharge prevention function of the present invention is not limited to the button type battery as illustrated in FIG. 1, but can be formed into various external shapes, structures, and sizes.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、正極と負極との間に、接触状態で介
在させるセパレータとしてイオンのドビングによって導
電性が発現する高分子物質を含むものを使用することか
ら、両極間の電位差が許容値以上になった際にセパレー
タが非導通状態から導通状態へと転換して、両極間の内
部短絡によって電池電圧が規定値以上に上昇するのを回
避する過充電防止機能を具備し、もって過充電による性
能低下や破壊を生じず長寿命で安全性の高い電池を提供
できる。しかも、この過充電防止機能は上記高分子物質
の電圧による可逆的なイオンのドピング量変化に基づ(
ものであるため、両極間の電位差が転換電圧以下になる
とセパレータは本来の非導通状態に復帰して内部放電に
至らず、かつ上記転換の繰り返しによる機能低下や経時
的機能低下がほとんどなく、長期にわたって確実な過充
電防止機能が発揮される。
According to this invention, since a separator that is interposed in contact between the positive electrode and the negative electrode contains a polymeric substance that exhibits conductivity through ion doping, the potential difference between the two electrodes is greater than a permissible value. It has an overcharge prevention function that prevents the battery voltage from rising above the specified value due to an internal short circuit between the two electrodes. It is possible to provide a highly safe battery with a long life and no performance deterioration or destruction. Moreover, this overcharge prevention function is based on the reversible change in the amount of ion doping due to the voltage of the polymer material (
Therefore, when the potential difference between the two electrodes becomes less than the conversion voltage, the separator returns to its original non-conducting state and does not cause internal discharge, and there is almost no functional deterioration due to repeated conversion or functional deterioration over time, and it can be used for a long period of time. Reliable overcharging prevention function is demonstrated throughout the battery life.

また、この発明の電池は、過充電防止機能を付与するた
めにセパレータとして前記の高分子物質を含むものを用
いることを除き、既存の電池と基本的構成および構造に
差異がないため、組立製作にあたって従来の工程、使用
部品、使用機器などを改変する必要がなく、したがって
低コストで製作できるという利点がある。
In addition, the battery of this invention has no difference in basic configuration and structure from existing batteries, except for the use of a separator containing the above-mentioned polymer substance to provide an overcharge prevention function, so it can be easily assembled and manufactured. There is no need to modify conventional processes, parts used, equipment used, etc., and therefore it has the advantage of being able to be manufactured at low cost.

〔実施例〕〔Example〕

以下、この発明の実施例を具体的に説明する。 Examples of the present invention will be described in detail below.

実施例 負極として厚さ0.24mのリチウム箔と厚さ0゜30
鶴のアルミニウム箔とを圧着してなる直径7゜75sn
のLi−Al圧着体、負極として37■のTiS、粉末
を直径7.75fiの円板状に加圧成形した成形体、セ
パレータとしてポリプロピレン不織布の繊維表面に化学
酸化重合法にてポリアニリンをセパレータ全体の5重量
%を占めるように被着させた直径9鶴、厚さ0.3鶴の
シート、電解液として1モル濃度のL−i(:l!O,
を含むプロビレンカーボネート、をそれぞれ使用して第
1図で示す構造で直径11.5mm、総厚2.0鶴のボ
タン型リチウム電池を作製した。
Example negative electrode: Lithium foil with a thickness of 0.24 m and a thickness of 0°30
Diameter 7゜75sn made by crimping with Tsuru's aluminum foil
37cm TiS as the negative electrode, a compact formed by pressure molding the powder into a disc shape with a diameter of 7.75fi, and as the separator polyaniline was applied to the fiber surface of a polypropylene nonwoven fabric using a chemical oxidation polymerization method on the entire separator. A sheet with a diameter of 9 squares and a thickness of 0.3 squares was deposited so as to account for 5% by weight of the electrolyte, and a 1 molar concentration of Li (:l!O,
A button-type lithium battery having a diameter of 11.5 mm and a total thickness of 2.0 cm was fabricated using each of propylene carbonate containing the following.

この電池について1mAの定電流で充電を行ったところ
、電池電圧は2.7V以上に上昇しないことが確認され
た。この結果から、上記実施例の電池では、両極間の電
位差が2,7■になった際にセパレータのポリアニリン
が絶縁体から導電体へと転換し、セパレータが導通状態
となって両極間に内部短絡を生じることが判る。また、
この充電後の電池電圧は2.5vまで比較的早く降下す
るが、この2.5■でセパレータが絶縁体となって自己
放電が非常に少なくなることも判明した。
When this battery was charged with a constant current of 1 mA, it was confirmed that the battery voltage did not rise above 2.7V. From this result, in the battery of the above example, when the potential difference between the two electrodes becomes 2.7 μm, the polyaniline in the separator converts from an insulator to a conductor, and the separator becomes electrically conductive, causing the internal space between the two electrodes to become conductive. It can be seen that a short circuit occurs. Also,
After this charging, the battery voltage drops to 2.5V relatively quickly, but it was also found that at this 2.5V, the separator becomes an insulator and self-discharge becomes extremely small.

ところで、一般に負極にLi−A1合金、正極にT i
 S zを用いた電池は、1.5〜2. l Vの電圧
範囲で二次電池として使用でき、この場合の充電終止電
圧を2.7V程度にすることが好ましいとされている。
By the way, Li-A1 alloy is generally used for the negative electrode, and Ti is used for the positive electrode.
A battery using Sz has a power rating of 1.5 to 2. It is said that it can be used as a secondary battery in the voltage range of 1 V, and in this case, it is preferable to set the end-of-charge voltage to about 2.7 V.

したがって、上記実施例の電池は、過充電防止機能付き
の上記二次電池として最適である。
Therefore, the battery of the above embodiment is most suitable as the above-mentioned secondary battery with an overcharge prevention function.

比較例 セパレータとしてポリアニリンを被着していないポリプ
ロピレン不織布のシートを用いた以外は、実施例と同様
にしてリチウム電池を作製した。この電池は、実施例と
同様に1mAの定電流で充電を行ったところ、電池電圧
が4.2Vまで上昇し、この状態で維持すると短時間で
電解液の分解による性能低下をきたすことが判明した。
Comparative Example A lithium battery was produced in the same manner as in the example except that a sheet of polypropylene nonwoven fabric not coated with polyaniline was used as a separator. When this battery was charged with a constant current of 1 mA as in the example, the battery voltage rose to 4.2 V, and it was found that if maintained in this state, performance would deteriorate in a short period of time due to decomposition of the electrolyte. did.

つぎに、上記実施例および比較例の電池について、それ
ぞれIKΩの抵抗を介して3■の定電圧電源に接続し、
3時間の定電圧充電を行ったのち、0、5 m A、2
時間の放電で1mAhの定電気量を取り出すサイクルを
1回とした各サイクルの放電終止電圧を測定したところ
、第2図で示す結果が得られた。この結果から、従来構
成である比較例の電池では充放電サイクル数の増加にほ
ぼ比例して大きな電圧低下を生じるのに対し、この発明
に係る実施例の電池では充放電サイクル数増加による電
圧低下がほとんどなく二次電池として極めて長寿命であ
ることが判る。
Next, the batteries of the above example and comparative example were connected to a constant voltage power supply of 3 cm through a resistor of IKΩ, respectively.
After 3 hours of constant voltage charging, 0.5 mA, 2
When the end-of-discharge voltage was measured for each cycle in which a constant amount of electricity of 1 mAh was taken out during discharge for an hour, the results shown in FIG. 2 were obtained. From this result, it can be seen that in the battery of the comparative example with the conventional configuration, a large voltage drop occurs almost in proportion to the increase in the number of charge/discharge cycles, whereas in the battery of the example according to the present invention, the voltage decreases due to the increase in the number of charge/discharge cycles. It can be seen that the battery has an extremely long life as a secondary battery with almost no lag.

また、上記実施例および比較例の電池について、IKΩ
の抵抗を介して種々の電圧でフローティング試験を行っ
たのち0.5 m Aにて終止電圧を1.5Vとする放
電容量を測定したところ、下表の結果が得られた。
In addition, for the batteries of the above examples and comparative examples, IKΩ
After performing a floating test at various voltages through the resistor, the discharge capacity was measured at 0.5 mA with a final voltage of 1.5V, and the results shown in the table below were obtained.

くフローティング後の放電容量(mAh)>構造例を示
す縦断面図、第2図はこの発明の実施例と比較例の各電
池の充放電サイクル特性図である。
Discharge capacity after floating (mAh) > A vertical cross-sectional view showing a structural example, and FIG. 2 is a chart of charge-discharge cycle characteristics of each battery of an example of the present invention and a comparative example.

C・・・電池、6・・・負極、7・・・正極、8・・・
セバレタ
C... Battery, 6... Negative electrode, 7... Positive electrode, 8...
Sebaleta

Claims (1)

【特許請求の範囲】[Claims] (1)正極と負極との間に、これら両極に接してイオン
のドーピングによつて導電性を発現する高分子物質を含
むセパレータが介在されてなる過充電防止機能付き電池
(1) A battery with an overcharge prevention function, in which a separator is interposed between a positive electrode and a negative electrode and includes a polymer substance that is in contact with these electrodes and exhibits conductivity through ion doping.
JP1018672A 1989-01-27 1989-01-27 Battery with overcharge preventing function Pending JPH02199769A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1018672A JPH02199769A (en) 1989-01-27 1989-01-27 Battery with overcharge preventing function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1018672A JPH02199769A (en) 1989-01-27 1989-01-27 Battery with overcharge preventing function

Publications (1)

Publication Number Publication Date
JPH02199769A true JPH02199769A (en) 1990-08-08

Family

ID=11978096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1018672A Pending JPH02199769A (en) 1989-01-27 1989-01-27 Battery with overcharge preventing function

Country Status (1)

Country Link
JP (1) JPH02199769A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002237285A (en) * 2001-02-08 2002-08-23 Tonen Chem Corp Separator for battery, and battery using the same
JP2004022295A (en) * 2002-06-14 2004-01-22 Toyota Motor Corp Separator, manufacturing method of the same, and storage element
KR100719672B1 (en) * 2005-05-17 2007-05-17 삼성에스디아이 주식회사 Lithium secondary battery
US7425385B2 (en) 2005-01-14 2008-09-16 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery
JP2009146810A (en) * 2007-12-17 2009-07-02 Casio Hitachi Mobile Communications Co Ltd Battery and electronic device
JP2018056573A (en) * 2011-06-03 2018-04-05 富士シリシア化学株式会社 Method for manufacturing separator

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002237285A (en) * 2001-02-08 2002-08-23 Tonen Chem Corp Separator for battery, and battery using the same
JP2004022295A (en) * 2002-06-14 2004-01-22 Toyota Motor Corp Separator, manufacturing method of the same, and storage element
US7425385B2 (en) 2005-01-14 2008-09-16 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery
KR100719672B1 (en) * 2005-05-17 2007-05-17 삼성에스디아이 주식회사 Lithium secondary battery
JP2009146810A (en) * 2007-12-17 2009-07-02 Casio Hitachi Mobile Communications Co Ltd Battery and electronic device
JP2018056573A (en) * 2011-06-03 2018-04-05 富士シリシア化学株式会社 Method for manufacturing separator

Similar Documents

Publication Publication Date Title
CA2156800C (en) Polymerizable aromatic additives for overcharge protection in non-aqueous rechargeable lithium batteries
JPH05325943A (en) Cylindrical secondary battery
CN1186846C (en) Non-aqueous electrolyte secondary battery and mfg. method
US20120007564A1 (en) Nonaqueous electrolyte secondary battery and method for charging the same
CN109167099A (en) A kind of battery of high safety and preparation method thereof
US5066556A (en) Non-aqueous electrolyte secondary cell
JP2000138073A (en) Entire solid lithium secondary battery
JPH02199769A (en) Battery with overcharge preventing function
KR100459871B1 (en) Composition of non-aqueous electrolytes useful for batteries and capacitors
CN107452513B (en) Lithium ion capacitor
JP4132945B2 (en) Nonaqueous electrolyte lithium ion battery and separator therefor
JP2000149996A (en) Manufacture of nonaqueous electrolyte secondary battery
CN211829006U (en) Lithium ion battery
JPH09245753A (en) Paired battery and grouped battery
KR101756938B1 (en) Anode active material and lithium secondary battery comprising the same
US20150002988A1 (en) Storage cell
JPH11121040A (en) Lithium secondary battery
JPH11204096A (en) Non-aqueous electrolyte battery and non-aqueous electrolyte battery pack
JP2000040499A (en) Nonaqueous electrolyte secondary battery
JPH10112305A (en) Nonaqueous electrolyte secondary battery and its manufacture
JPH042065A (en) Secondary battery with non-aqueous electrolyte and manufacture thereof
JP4054925B2 (en) Lithium battery
JP2680570B2 (en) Rechargeable battery
JPH02199778A (en) Overcharge preventing element
JPH07245094A (en) Organic electrolyte battery