JP2000138073A - Entire solid lithium secondary battery - Google Patents

Entire solid lithium secondary battery

Info

Publication number
JP2000138073A
JP2000138073A JP10311499A JP31149998A JP2000138073A JP 2000138073 A JP2000138073 A JP 2000138073A JP 10311499 A JP10311499 A JP 10311499A JP 31149998 A JP31149998 A JP 31149998A JP 2000138073 A JP2000138073 A JP 2000138073A
Authority
JP
Japan
Prior art keywords
solid electrolyte
secondary battery
charge
lithium secondary
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10311499A
Other languages
Japanese (ja)
Inventor
Toshihiko Kamimura
俊彦 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP10311499A priority Critical patent/JP2000138073A/en
Publication of JP2000138073A publication Critical patent/JP2000138073A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To eliminate occurrence of leak of an electrolyte, improve safety, and improve a charge/discharge cycle characteristic by impregnating solid electrolyte and electrodes with a polymeric solid electrolyte containing solute and polymerizing them. SOLUTION: Polymeric solid electrolyte containing solute is impregnated into a pair of electrodes 4 comprising solid electrolyte 5 using lithium oxide containing transition metal such as Ti, V, Cr, Mn, Fe, Co, or Ni, a positive electrode 2, and a negative electrode 3, and they are polymerized. This polymeric solid electrolyte is composed of one or plural kinds of polyethylene-oxide polymeric solid electrolyte and polypropylene-oxide polymeric solid electrolyte, and the solute is composed of one or plural kinds of LiBF4, LiN(CF3SO2)2, LiC(CF3SO2)2. Thus, a contact area of the solid electrolyte 5 and the electrodes 4 can be increased, therefore, movement of lithium ions following a charge/ discharge reaction is smoothened, and internal resistance of this secondary battery can be reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電解質として固体
状の電解質を用いた全固体リチウム二次電池に関する。
The present invention relates to an all-solid lithium secondary battery using a solid electrolyte as an electrolyte.

【0002】[0002]

【従来の技術および発明が解決しようとする課題】従来
から、正負一対の電極間に水系あるいは非水系の電解質
を用いた各種電池が開発されているが、近年のビデオ撮
影装置、ノートパソコン、あるいは携帯電話のような携
帯用情報端末機器の薄型かつ軽量小型化に伴い、充放電
におけるレート特性、サイクル特性、保存特性、あるい
はエネルギー密度などの点で満足すべきものではなかっ
た。
2. Description of the Related Art Conventionally, various batteries using an aqueous or non-aqueous electrolyte between a pair of positive and negative electrodes have been developed. As portable information terminal devices such as mobile phones have become thinner, lighter and smaller, they have not been satisfactory in terms of rate characteristics, cycle characteristics, storage characteristics, energy density, and the like in charge and discharge.

【0003】このような諸特性を満足する電池として、
高電圧で高いエネルギー密度を有する二次電池の研究開
発が盛んに行われており、特に軽量で再使用可能な小型
の二次電池としては、負極に金属リチウムを用いたリチ
ウム二次電池が携帯用情報端未機器の電源用として脚光
を浴びている。
As a battery satisfying these characteristics,
Research and development of secondary batteries with high voltage and high energy density are being actively conducted, and lithium secondary batteries using metallic lithium for the negative electrode are particularly portable as lightweight and reusable small secondary batteries. It is in the limelight as a power source for devices that do not have information terminals.

【0004】しかしながら、従来のリチウム二次電池は
負極に金属リチウムを用いており、この金属リチウムは
反応性に富むものの、燃え易い材料で突然発火する恐れ
があることから、安全確保の点で本質的な問題があっ
た。
[0004] However, the conventional lithium secondary battery uses lithium metal for the negative electrode. Although this lithium metal is highly reactive, it is a flammable material and may be ignited suddenly. Problem.

【0005】このような問題を解決するために、電極を
構成する材料として負極を黒鉛などの層状構造を有する
材料に置き換えたリチウム二次電池が提案されている
(特開平7−12226号公報参照)。
In order to solve such a problem, there has been proposed a lithium secondary battery in which a negative electrode is replaced by a material having a layered structure such as graphite as a material constituting an electrode (see Japanese Patent Application Laid-Open No. 7-12226). ).

【0006】ところが、このリチウム二次電池は層状構
造を有する黒鉛などを負極としているため、この黒鉛表
面に結合したキノン基やケトン基などの種々の末端基は
電気化学的に還元され易いものが多く、1回目の初期充
電反応において末端基と電解質が関係した電気化学的還
元反応によりガスが発生して電池の内圧が上昇し、電池
が破裂したり、電池性能の劣化が生じる他、電解質にリ
チウム塩を溶解した可燃性の有機系電解液を用いている
ことから、液漏れの問題があり、やはり安全性確保のた
めに、二重三重の安全策が必要であるという問題があっ
た。
However, since this lithium secondary battery uses graphite or the like having a layered structure as a negative electrode, various terminal groups such as quinone groups and ketone groups bonded to the graphite surface are easily reduced electrochemically. In many cases, gas is generated by the electrochemical reduction reaction involving the terminal groups and the electrolyte in the first initial charging reaction, the internal pressure of the battery rises, the battery ruptures, the battery performance deteriorates, and the Since a flammable organic electrolyte in which a lithium salt is dissolved is used, there is a problem of liquid leakage, and there is also a problem that double and triple safety measures are required to ensure safety.

【0007】また、一対の正負極間に有機高分子と有機
系電解液からなる固体電解質を介在させて、電解質の流
動性を押さえたリチウム二次電池も提案されている(特
開平8−315855)。
A lithium secondary battery in which a solid electrolyte comprising an organic polymer and an organic electrolytic solution is interposed between a pair of positive and negative electrodes to suppress the fluidity of the electrolyte has also been proposed (JP-A-8-315855). ).

【0008】しかしながら、このリチウム二次電池は有
機系電解液を含有しており、高温時の充放電過程におい
て、この有機系電解液が分解反応を起こしてガスを発生
し、電池の内圧が上昇するという問題がある。
However, this lithium secondary battery contains an organic electrolyte, and in the charging / discharging process at a high temperature, the organic electrolyte causes a decomposition reaction to generate gas, thereby increasing the internal pressure of the battery. There is a problem of doing.

【0009】[0009]

【発明の目的】本発明は、このような従来技術の課題に
鑑みて成されたものであり、電解質が酸化還元反応でガ
スを発生して破裂したり、電解質の液漏れなどが発生す
ることを解消し、安全性に優れ、且つ充放電のサイクル
特性が向上した全固体リチウム二次電池を提供すること
を目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems in the prior art, and it has been found that the electrolyte generates a gas by an oxidation-reduction reaction and ruptures, or the electrolyte leaks. It is an object of the present invention to provide an all-solid lithium secondary battery which is excellent in safety and has improved charge / discharge cycle characteristics.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、本発明に係る全固体リチウム二次電池によれば、固
体電解質と電極を電気化学的な酸化還元反応に伴うイオ
ンの吸蔵と放出現象を示す材料を組み合わせて形成した
全固体リチウム二次電池において、前記固体電解質と電
極に溶質を含む高分子固体電解質を含浸させて重合させ
た。
In order to achieve the above object, according to the all-solid lithium secondary battery of the present invention, the solid electrolyte and the electrode absorb and release ions accompanying the electrochemical redox reaction. In an all-solid lithium secondary battery formed by combining materials exhibiting a phenomenon, the solid electrolyte and the electrode were impregnated with a polymer solid electrolyte containing a solute and polymerized.

【0011】また、上記全固体リチウム二次電池におい
ては、前記高分子固体電解質がポリエチレンオキサイド
系高分子固体電解質またはポリプロピレンオキサイド系
高分子固体電解質のいずれか一種または複数種から成
り、かつ前記溶質がLiBF4、LiN(CF3
2 2 、LiC(CF3 SO2 2 のうちのいずれか
一種または複数種から成ることが望ましい。
In the above all-solid lithium secondary battery, the polymer solid electrolyte comprises one or more of a polyethylene oxide-based polymer solid electrolyte and a polypropylene oxide-based polymer solid electrolyte, and the solute is LiBF 4 , LiN (CF 3 S
Desirably, it is composed of one or more of O 2 ) 2 and LiC (CF 3 SO 2 ) 2 .

【0012】[0012]

【作用】本発明の全固体リチウム二次電池では、その電
解質に液体、特に有機系電解液を使用しないことから、
電解質の液漏れが無くなり、さらに電解質が水分や空気
と反応を起こすことがなく、また固体電解質と電極に溶
質を含む高分子固体電解質を含浸させて重合させること
から、従来品では点接触に近い状態にある固体電解質粒
子と電極活物質粒子の空隙に高分子固体電解質が存在す
ることになり、固体電解質と電極の接触面積を増加させ
ることができ、充放電反応に伴うリチウムイオンの移動
がスムーズになり、二次電池特性に優れる全固体リチウ
ム二次電池とすることができる。
In the all-solid-state lithium secondary battery of the present invention, a liquid, particularly an organic electrolyte, is not used for the electrolyte.
Eliminating electrolyte leakage, the electrolyte does not react with moisture or air, and the solid electrolyte and the electrode are impregnated with a polymer solid electrolyte containing a solute and polymerized. The polymer solid electrolyte is present in the gap between the solid electrolyte particles in the state and the electrode active material particles, so that the contact area between the solid electrolyte and the electrode can be increased, and the movement of lithium ions accompanying the charge / discharge reaction is smooth. Thus, an all-solid lithium secondary battery having excellent secondary battery characteristics can be obtained.

【0013】[0013]

【発明の実施の形態】以下、本発明の全固体リチウム二
次電池の実施形態を添付図面に基づき詳細に説明する。
図1は、本発明の全固体リチウム二次電池の一実施形態
を示す断面図である。図1において、1は正極2と負極
3から成る一対の電極4と、固体電解質5とから成る全
固体リチウム二次電池であり、一対の電極4を成す正極
2と負極3は、集電体6に塗布されて形成されており、
一対の電極4の間に固体電解質5を介在させ、気密性を
保持できるパッケージ7で外装して構成されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the all-solid lithium secondary battery of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a sectional view showing an embodiment of the all-solid lithium secondary battery of the present invention. In FIG. 1, reference numeral 1 denotes an all-solid lithium secondary battery including a pair of electrodes 4 including a positive electrode 2 and a negative electrode 3 and a solid electrolyte 5. The positive electrode 2 and the negative electrode 3 forming the pair of electrodes 4 include a current collector. 6 is formed by applying
A solid electrolyte 5 is interposed between the pair of electrodes 4 and is packaged with a package 7 capable of maintaining airtightness.

【0014】本発明の全固体リチウム二次電池は、電気
化学的な酸化還元反応に伴うイオンの吸蔵と放出現象を
示し、且つ後述する充放電電位を有する材料の組み合わ
せで電極4と固体電解質5が構成されるものであり、か
かる現象を示し、所定の充放電電位を有するものであれ
ば特に限定するものではない。例えばLiCoO2 、L
iNiO2 、LiCrO2 、LiVO2 、LiNi1/2
Co1/2 4 、LiMn2 4 、LiMnO2 、Li4
Mn5 12、LiTiO2 、LiFeO2 、LiRuO
2 、LiWO2 、λ−MnO2 、V2 5 、Li4 Ti
5 12、アナターゼ型TiO2 、Nb2 5 などの公知
の材料を用いることができる。
The all-solid-state lithium secondary battery of the present invention exhibits the occlusion and release phenomena of ions accompanying the electrochemical oxidation-reduction reaction, and uses a combination of a material having a charge / discharge potential to be described later and an electrode Is not particularly limited as long as it shows such a phenomenon and has a predetermined charge / discharge potential. For example, LiCoO 2 , L
iNiO 2 , LiCrO 2 , LiVO 2 , LiNi 1/2
Co 1/2 O 4 , LiMn 2 O 4 , LiMnO 2 , Li 4
Mn 5 O 12, LiTiO 2, LiFeO 2, LiRuO
2 , LiWO 2 , λ-MnO 2 , V 2 O 5 , Li 4 Ti
Known materials such as 5 O 12 , anatase TiO 2 and Nb 2 O 5 can be used.

【0015】二次電池の起電力を考慮すれば、電極4を
構成する材料の充放電電位の差が大であることが望まし
く、かつ固体電解質5を構成する材料の充放電電位がそ
れらよりさらに低いことがより好適である。例えば、電
極4を構成する活物質は金属リチウムを基準電位として
正極2の充放電電位が2.5〜4.0Vである材料から
成り、負極3の充放電電位が2.0〜3.0Vである材
料から成り、また固体電解質5は金属リチウムを基準電
位としてその充放電電位が1.5〜2.9Vである材料
から成ることがより望ましいものである。
In consideration of the electromotive force of the secondary battery, it is desirable that the difference between the charge and discharge potentials of the material forming the electrode 4 is large, and the charge and discharge potential of the material forming the solid electrolyte 5 is further higher than those. Lower is more preferred. For example, the active material forming the electrode 4 is made of a material in which the charge and discharge potential of the positive electrode 2 is 2.5 to 4.0 V with reference to metallic lithium, and the charge and discharge potential of the negative electrode 3 is 2.0 to 3.0 V. More preferably, the solid electrolyte 5 is made of a material having a charge / discharge potential of 1.5 to 2.9 V with respect to lithium metal as a reference potential.

【0016】金属リチウムを基準電位とし、その充放電
電位が最も低い材料を固体電解質5の材料とし、中間の
充放電電位を示す材料を負極3を構成する活物質材料に
適用し、最も高い充放電電位を示す材料を正極2を構成
する活物質材料として組み合わせ、金属リチウムを基準
電位として正極2と負極3の充放電電位の差が大きいこ
とが、より高い充放電電位を得ることができ、望ましい
組み合わせとなる。つまり、本発明の全固体リチウム二
次電池の充放電電位は、他の二次電池と同様に正極2と
負極3の充放電電位の差によって決定されるためであ
る。
Metallic lithium is used as a reference potential, a material having the lowest charge / discharge potential is used as the material of the solid electrolyte 5, and a material exhibiting an intermediate charge / discharge potential is applied to the active material constituting the negative electrode 3, and the highest charge / discharge potential is applied. A material exhibiting a discharge potential is combined as an active material constituting the positive electrode 2, and a large difference between the charge and discharge potentials of the positive electrode 2 and the negative electrode 3 with metal lithium as a reference potential enables a higher charge and discharge potential to be obtained. It is a desirable combination. That is, the charge / discharge potential of the all-solid lithium secondary battery of the present invention is determined by the difference between the charge / discharge potentials of the positive electrode 2 and the negative electrode 3 as in other secondary batteries.

【0017】具体的には、金属リチウムを基準電位とし
てその充放電電位が約4Vを示すLiCoO2 を正極2
を構成する活物質材料として選択すると、負極3を構成
する活物質材料には充放電電位が約3Vを示すLiMn
2 を選択することができ、固体電解質5の材料には負
極3を構成する活物質材料の充放電電位よりさらに低い
充放電電位を有するものであることが必要であることか
ら、例えば約1.55Vの充放電電位を示すLi4 Ti
5 12を用いることが望ましい。かかる組み合わせによ
り、それぞれ正極2、負極3、固体電解質5として積層
体を形成し、その充放電電位を測定すると、約1Vの充
放電電位を示すことが確認できる。
Specifically, LiCoO 2 , whose charge / discharge potential is about 4 V with metallic lithium as a reference potential, is
Is selected as the active material constituting the negative electrode 3, the active material constituting the negative electrode 3 is LiMn having a charge / discharge potential of about 3 V.
O 2 can be selected, and the material of the solid electrolyte 5 needs to have a charge / discharge potential lower than the charge / discharge potential of the active material constituting the negative electrode 3. Li 4 Ti exhibiting a charge / discharge potential of 0.55 V
It is desirable to use 5 O 12 . With such a combination, a laminate is formed as each of the positive electrode 2, the negative electrode 3, and the solid electrolyte 5, and when the charge / discharge potential is measured, it can be confirmed that the laminate exhibits a charge / discharge potential of about 1V.

【0018】また、負極3に金属酸化物を使用する具体
例としては、負極3を構成する活物質材料に金属リチウ
ムを基準電位としてその充放電電位が約1.8Vを示す
アナターゼ型TiO2 を選択することができ、正極2を
構成する活物質材料に充放電電位が約4Vを示すLiM
2 4 を選択し、さらに固体電解質5の材料に充放電
電位が約1.55Vを示すLi4 Ti5 12を選択し、
これらを組み合わせてそれぞれ正極2、負極3、固体電
解質5として積層体を形成し、その充放電電位を測定す
ると、約2.2Vの充放電電位を示すことが確認でき
る。
Further, as a specific example of using a metal oxide for the negative electrode 3, an anatase type TiO 2 having a charge / discharge potential of about 1.8 V with metallic lithium as a reference potential is used as an active material constituting the negative electrode 3. LiM which has a charge / discharge potential of about 4 V for the active material constituting the positive electrode 2 can be selected.
n 2 O 4 was selected, and Li 4 Ti 5 O 12 having a charge / discharge potential of about 1.55 V was selected as the material of the solid electrolyte 5.
When a laminate is formed as the positive electrode 2, the negative electrode 3, and the solid electrolyte 5 by combining these, and the charge / discharge potential is measured, it can be confirmed that the laminate exhibits a charge / discharge potential of about 2.2V.

【0019】固体電解質5は、Ti、V、Cr、Mn、
Fe、Co、Niなどの遷移金属を含むリチウム酸化物
が用いられ、このような組み合わせの選択が広いという
点から、遷移金属を含むリチウム酸化物が金属リチウム
を基準電位として1.5〜1.6Vの充放電電位を有す
るチタン酸リチウム(Li4 Ti5 12)であることが
最適である。
The solid electrolyte 5 includes Ti, V, Cr, Mn,
Since a lithium oxide containing a transition metal such as Fe, Co, and Ni is used, and the selection of such a combination is wide, the lithium oxide containing a transition metal is 1.5 to 1. Most preferably, it is lithium titanate (Li 4 Ti 5 O 12 ) having a charge / discharge potential of 6 V.

【0020】このように、固体電解質5と電極4を電気
化学的な酸化還元反応に伴うイオンの吸蔵と放出現象を
示す材料を組み合わせて形成すると、負極に金属リチウ
ムを用いていないことから、充放電反応に伴うリチウム
の析出反応を抑制でき、且つ有機系電解液を用いないこ
とから液漏れが発生せず、安全性を向上させることがで
きる。
As described above, when the solid electrolyte 5 and the electrode 4 are formed by combining a material exhibiting the occlusion and release phenomena of ions accompanying the electrochemical oxidation-reduction reaction, the negative electrode does not use metallic lithium. The deposition reaction of lithium accompanying the discharge reaction can be suppressed, and since no organic electrolyte is used, no liquid leakage occurs and safety can be improved.

【0021】上記のような全固体リチウム二次電池は、
固体電解質材料にテフロン系やスチレン系の有機物から
成るバインダーを添加して調製すると共に、正極2と負
極3は活物質材料にアセチレンブラック、ケッチェンブ
ラックあるいは黒鉛などの電子電導性を付与させる添加
物と、テフロン系やスチレン系の有機物から成るバイン
ダーを添加して調製して成型し、80〜200℃程度の
温度で加熱処理することにより形成される。
The all-solid lithium secondary battery as described above is
The positive electrode 2 and the negative electrode 3 are prepared by adding a binder made of a Teflon-based or styrene-based organic material to a solid electrolyte material, and the electron-conductive material such as acetylene black, Ketjen black or graphite is added to the active material. And a binder made of a Teflon-based or styrene-based organic substance is added, molded and molded, and heat-treated at a temperature of about 80 to 200 ° C.

【0022】本発明の全固体リチウム二次電池では、固
体電解質5と電極4に溶質を含む高分子固体電解質を含
浸させて重合させる。この高分子固体電解質は、ポリエ
チレンオキサイド系高分子固体電解質またはポリプロピ
レンオキサイド系高分子固体電解質のいずれか一種また
は複数種から成り、かつ溶質はLiBF4 、LiN(C
3 SO2 2 、LiC(CF3 SO2 2 のうちのい
ずれか一種または複数種から成る。
In the all-solid lithium secondary battery of the present invention, the solid electrolyte 5 and the electrode 4 are polymerized by impregnating a solid polymer electrolyte containing a solute. This polymer solid electrolyte is composed of one or more of a polyethylene oxide-based polymer solid electrolyte and a polypropylene oxide-based polymer solid electrolyte, and the solutes are LiBF 4 , LiN (C
It is composed of one or more of F 3 SO 2 ) 2 and LiC (CF 3 SO 2 ) 2 .

【0023】このように、固体電解質5と電極4に溶質
を含む高分子固体電解質を含浸させて重合させると、固
体電解質粒子や=電極活物質粒子の空隙に高分子固体電
解質が存在することになり、固体電解質と電極の接触面
積を増加させることができ、充放電反応に伴うリチウム
イオンの移動がスムーズになるとともに、二次電池の内
部抵抗を低減させることができ、二次電池特性、特にサ
イクル特性に優れる全固体リチウム二次電池とすること
ができる。
As described above, when the solid electrolyte 5 and the electrode 4 are impregnated with the polymer solid electrolyte containing a solute and polymerized, the presence of the polymer solid electrolyte in the gaps between the solid electrolyte particles and the electrode active material particles is reduced. The contact area between the solid electrolyte and the electrode can be increased, the movement of lithium ions accompanying the charge / discharge reaction becomes smooth, and the internal resistance of the secondary battery can be reduced. An all-solid lithium secondary battery having excellent cycle characteristics can be obtained.

【0024】高分子固体電解質としては、ポリエチレン
オキサイド系高分子固体電解質またはポリプロピレンオ
キサイド系高分子固体電解質のいずれか一種または複数
種を用いることが望ましい。ポリエチレンオキサイド系
高分子固体電解質またはポリプロピレンオキサイド系高
分子固体電解質以外にも、ポリエチレンイミン系、ポリ
アルキレンサルファイド系、ポリビニルピロリドン系な
どの高分子固体電解質があるが、ポリエチレンオキサイ
ド系またはポリプロピレンオキサイド系高分子固体電解
質は、充放電家庭で化学的に安定であり、リチウムイオ
ンの析出が起こりにくい特徴がある。
As the polymer solid electrolyte, it is desirable to use one or more of a polyethylene oxide-based polymer solid electrolyte and a polypropylene oxide-based polymer solid electrolyte. In addition to polyethylene oxide-based polymer solid electrolyte or polypropylene oxide-based polymer solid electrolyte, there are polymer solid electrolytes such as polyethyleneimine-based, polyalkylene sulfide-based, and polyvinylpyrrolidone-based polymers. The solid electrolyte is characterized by being chemically stable at home in charge and discharge, and hardly causing lithium ion deposition.

【0025】溶質としては、LiBF4 、LiN(CF
3 SO2 2 、LiC(CF3 SO2 2 のうちのいず
れか一種または複数種を用いることが望ましい。これら
の他にも、LiClO4 、LiPF6 、LiAsF6
どがあるが、LiBF4 、LiN(CF3 SO2 2
LiC(CF3 SO2 2 などはポリエチレンオキサイ
ド系高分子固体電解質またはポリプロピレンオキサイド
系高分子固体電解質中で熱的に安定であり、且つ耐電圧
性が高い。
As the solute, LiBF 4 , LiN (CF
It is desirable to use one or more of 3 SO 2 ) 2 and LiC (CF 3 SO 2 ) 2 . In addition to these, there are LiClO 4 , LiPF 6 , LiAsF 6 and the like, but LiBF 4 , LiN (CF 3 SO 2 ) 2 ,
LiC (CF 3 SO 2 ) 2 and the like are thermally stable in a polyethylene oxide-based polymer solid electrolyte or a polypropylene oxide-based polymer solid electrolyte, and have high withstand voltage.

【0026】ポリエチレンオキサイド系高分子固体電解
質またはポリプロピレンオキサイド系高分子固体電解質
は、先に溶質を溶解させた高分子固体電解質に過酸化物
系もしくはアゾ系などの重合開始剤を添加して、光照射
または加熱により速やかに重合させることができる。
The polyethylene oxide-based polymer solid electrolyte or the polypropylene oxide-based polymer solid electrolyte is prepared by adding a polymerization initiator such as a peroxide or an azo to a polymer solid electrolyte in which a solute has been dissolved, and It can be polymerized quickly by irradiation or heating.

【0027】なお、集電体6としては、アルミニウム
(Al)、銅(Cu)あるいはニッケル(Ni)などの
金属箔を用いることができる。
As the current collector 6, a metal foil such as aluminum (Al), copper (Cu) or nickel (Ni) can be used.

【0028】また、パッケージ7には、気密性を保持で
きれば材質の限定はなく、例えばアルミニウム製ラミネ
ート材、ニッケル(Ni)、アルミニウム(Al)など
の金属あるいはシュリンクケースなどを用いることがで
きる。
The material of the package 7 is not limited as long as it can maintain airtightness. For example, a laminate made of aluminum, a metal such as nickel (Ni), aluminum (Al), or a shrink case can be used.

【0029】[0029]

【実施例】次に、本発明の全固体リチウム二次電池を以
下に詳述するようにして評価した。
Next, the all solid lithium secondary battery of the present invention was evaluated as described in detail below.

【0030】(実施例)先ず、正極を構成する活物質材
料としてLiCoO2 を80重量%に、電子導電性を付
与させる添加物としてアセチレンブラックを11重量
%、およびテフロン系バインダーを9重量%を混合した
後、この混合物に公知の有機溶媒を同一重量比で添加混
合して正極形成用ペーストを調製した。
EXAMPLE First, 80% by weight of LiCoO 2 as an active material constituting the positive electrode, 11% by weight of acetylene black as an additive for imparting electronic conductivity, and 9% by weight of a Teflon-based binder were used. After mixing, a known organic solvent was added to the mixture at the same weight ratio and mixed to prepare a positive electrode forming paste.

【0031】一方、負極を構成する活物質材料としてL
4 Mn5 12を80重量%に、電子導電性を付与させ
る添加物としてアセチレンブラックを11重量%、およ
びテフロン系バインダーを9重量%を混合した後、この
混合物に公知の有機溶媒を同一重量比で添加混合して負
極形成用ペーストを調製した。
On the other hand, L as an active material constituting the negative electrode
After mixing 80% by weight of i 4 Mn 5 O 12 , 11% by weight of acetylene black as an additive for imparting electronic conductivity, and 9% by weight of a Teflon-based binder, the mixture is mixed with a known organic solvent. A paste for forming a negative electrode was prepared by adding and mixing at a weight ratio.

【0032】次いで、集電板として厚さ20μmのアル
ミニウム箔を用い、このアルミニウム箔上にそれぞれ正
極形成用、負極形成用ペーストを塗布し、充分に乾燥さ
せて溶媒を除去した後、ロール加圧により正極の厚さを
80μm、負極の厚さを75μmとなるように調整し
た。
Next, a 20 μm-thick aluminum foil was used as a current collecting plate, and a paste for forming a positive electrode and a paste for forming a negative electrode were applied on the aluminum foil, dried sufficiently, and the solvent was removed. Thus, the thickness of the positive electrode was adjusted to 80 μm, and the thickness of the negative electrode was adjusted to 75 μm.

【0033】一方、固体電解質としてLi4 Ti5 12
を90重量%に、テフロン系バインダーを10重量%を
混合した後、この混合物に同一重量比で公知の有機溶媒
を添加混合して固体電解質形成用ペーストを調製した。
On the other hand, Li 4 Ti 5 O 12 is used as a solid electrolyte.
Was mixed with 10% by weight of a Teflon-based binder, and a known organic solvent was added to the mixture at the same weight ratio and mixed to prepare a paste for forming a solid electrolyte.

【0034】次に、得られた固体電解質形成用ペースト
を正極もしくは負極に塗布し、充分に乾燥させて溶媒を
除去した後、ロール加圧により固体電解質の厚さを20
μmに調整した。
Next, the obtained paste for forming a solid electrolyte is applied to a positive electrode or a negative electrode, and is sufficiently dried to remove the solvent.
It was adjusted to μm.

【0035】したがって、本実施例では、金属リチウム
を基準電位として充放電電位が約4Vと最も高いLiC
oO2 を正極の活物質とし、約3Vの充放電電位を有す
るLi4 Mn5 12を負極の活物質とし、充放電電位が
約1.55Vと最も低いLi4 Ti5 12を固体電解質
として電気化学素子を構成したものである。
Therefore, in this embodiment, the highest charge / discharge potential of about 4 V with LiC
oO 2 is used as a positive electrode active material, Li 4 Mn 5 O 12 having a charge / discharge potential of about 3 V is used as a negative electrode active material, and Li 4 Ti 5 O 12 having a charge / discharge potential of about 1.55 V, which is the lowest, is a solid electrolyte. As an electrochemical device.

【0036】また、上記積層体に含浸硬化させる高分子
固体電解質は、モノマー状にあるポリエチレンオキサイ
ドを92重量%に、溶質となるLiBF4 を8重量%溶
解した。LiBF4 はポリエチレンオキサイドに直接溶
解しにくいため、事前にN−メチル−2−ピロリドンに
溶解させた後、モノマー状のポリエチレンオキサイドと
混合させた。この混合物を上記積層体に含浸させ所定の
温度にてNMPを蒸発乾燥させたのち高分子固体電解質
を含浸させて重合させた。得られた積層体を測定用の気
密セルに組み上げた。
In the solid polymer electrolyte to be impregnated and cured in the laminate, 92 wt% of polyethylene oxide in a monomer state and 8 wt% of LiBF 4 as a solute were dissolved. Since LiBF 4 is hard to dissolve directly in polyethylene oxide, it was previously dissolved in N-methyl-2-pyrrolidone and then mixed with monomeric polyethylene oxide. This mixture was impregnated into the laminate, NMP was evaporated and dried at a predetermined temperature, and then impregnated with a polymer solid electrolyte to polymerize. The obtained laminate was assembled into an airtight cell for measurement.

【0037】かくして得られた電極および固体電解質層
を被着した電極を30mm角の大きさに切り出した後、
120℃の温度で2時間、真空乾燥させてから、両電極
を貼り合わせて積層体を作製し、さらにロール加圧して
密着性を向上させた。
After the electrode thus obtained and the electrode having the solid electrolyte layer applied thereto were cut into a 30 mm square size,
After vacuum drying at a temperature of 120 ° C. for 2 hours, both electrodes were bonded to each other to form a laminate, and the roll was pressed to improve the adhesion.

【0038】(比較例)正極を構成する活物質材料とし
てLiCoO2 を、負極を構成する活物質材料としてL
4 Mn5 12を採用した以外は、実施例1と同様にし
て正極を厚さ80μmに、負極を厚さ75μmとなるよ
うに調整すると共に、固体電解質としてLi4 Mn5
12を用いる以外は実施例1と同様にして厚さ20μmに
調整した。
(Comparative Example) LiCoO 2 was used as an active material constituting the positive electrode, and LCoO 2 was used as an active material constituting the negative electrode.
Except that i 4 Mn 5 O 12 was employed, the positive electrode was adjusted to a thickness of 80 μm and the negative electrode was adjusted to a thickness of 75 μm in the same manner as in Example 1, and Li 4 Mn 5 O was used as a solid electrolyte.
The thickness was adjusted to 20 μm in the same manner as in Example 1 except that 12 was used.

【0039】また、この比較例では上記積層体に高分子
固体電解質の含浸硬化は行わず、実施例1と同様にして
得られた電極および固体電解質層を被着した電極を30
mm角の大きさに切り出した後、120℃の温度で2時
間真空乾燥させてから両電極を貼り合わせ積層体を作製
し、さらにロール加圧して密着性を向上させ、得られた
積層体を測定用の気密セルに組み上げた。
In this comparative example, the laminate was not impregnated and cured with a solid polymer electrolyte, and the electrode obtained in the same manner as in Example 1 and the electrode having the solid electrolyte layer applied thereto were not cured.
After being cut into a size of mm square, vacuum drying was performed at a temperature of 120 ° C. for 2 hours, and then both electrodes were bonded to each other to produce a laminate. It was assembled into an airtight cell for measurement.

【0040】(評価)かくして得られた評価用のセルを
用いて、充放電装置により、充電条件として500μA
の電流で前記評価用のセルに2.5Vまで充電を行い、
電圧が2.5Vに到達後、充電を停止して5分間保持
し、その後0.5Vの電圧まで500μAの放電電流で
放電し、次に再度2.0Vまで充電し、この電圧に到達
後、充電を停止して5分間保持する充放電サイクル試験
を行い、一定サイクル毎に放電電気量を求めて二次電池
としての電池性能の評価を行った。
(Evaluation) Using the cell for evaluation thus obtained, a charging / discharging device was used to set the charging condition to 500 μA.
The cell for evaluation is charged to 2.5 V with a current of
After the voltage reaches 2.5 V, the charging is stopped and held for 5 minutes, then discharged with a discharge current of 500 μA to a voltage of 0.5 V, and then charged again to 2.0 V, and after reaching this voltage, A charge / discharge cycle test in which charging was stopped and held for 5 minutes was performed, and the amount of discharged electricity was determined for each fixed cycle to evaluate battery performance as a secondary battery.

【0041】その結果、上記比較例の試料では20回の
充放電サイクルで放電電気量が初期値の80%以下にな
ったのに対して、上記実施例の試料では同じ充放電サイ
クルで放電電気量が初期値の80%以上を保持してお
り、サイクル特性に優れていることが分かる。つまり、
固体電解質および電極内に存在する空隙に高分子固体電
解質を含浸させて重合させることにより、固体電解質と
電極の接触面積を増加させることができ、充放電反応に
伴うリチウムイオンの移動がスムーズになったことがわ
かる。
As a result, in the sample of the comparative example, the amount of discharge electricity was 80% or less of the initial value in 20 charge / discharge cycles, whereas in the sample of the above example, the discharge electricity was equal in the same charge / discharge cycle. The amount retained at 80% or more of the initial value, indicating that the cycle characteristics were excellent. That is,
The polymer electrolyte is impregnated into the solid electrolyte and the voids in the electrode and polymerized, so that the contact area between the solid electrolyte and the electrode can be increased, and the movement of lithium ions during the charge / discharge reaction becomes smoother. You can see that

【0042】なお、本発明は、上記実施形態に示したも
のに限定されるものではなく、その要旨を逸脱しない範
囲において適宜変更して実施できるものである。
It should be noted that the present invention is not limited to the above-described embodiment, but can be implemented with appropriate modifications without departing from the scope of the invention.

【0043】[0043]

【発明の効果】以上のように、本発明の全固体リチウム
二次電池は、固体電解質と電極に溶質を含む高分子固体
電解質を含浸させて重合させたことから、有機系電解液
が不要となって液漏れが発生せず、安全性が向上すると
共に、固体電解質粒子や電極活物質粒子の空隙に高分子
固体電解質が存在することから、固体電解質と電極の接
触面積を増大させることができ、充放電反応に伴うリチ
ウムイオンの移動がスムーズになると共に、二次電池の
内部抵抗を低減させることができ、二次電池特性、特に
サイクル特性に優れる全固体リチウム二次電池とするこ
とができる。
As described above, the all-solid lithium secondary battery of the present invention impregnates the solid electrolyte and the electrode with the polymer solid electrolyte containing a solute and polymerizes the same. Liquid leakage does not occur, safety is improved, and the solid electrolyte and the electrode active material particles have a polymer solid electrolyte in the gap, so that the contact area between the solid electrolyte and the electrode can be increased. In addition, the movement of lithium ions accompanying the charge / discharge reaction becomes smooth, the internal resistance of the secondary battery can be reduced, and an all-solid lithium secondary battery having excellent secondary battery characteristics, particularly excellent cycle characteristics, can be obtained. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る全固体リチウム二次電池の一実施
形態を示す断面図である。
FIG. 1 is a cross-sectional view showing one embodiment of an all-solid lithium secondary battery according to the present invention.

【符号の説明】[Explanation of symbols]

1‥‥‥全固体リチウム二次電池、2‥‥‥正極、3‥
‥‥負極、4‥‥‥一対の電極、5‥‥‥固体電解質
1 ‥‥‥ All-solid lithium secondary battery, 2 ‥‥‥ positive electrode, 3 ‥
{Negative electrode, 4} A pair of electrodes, 5} Solid electrolyte

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 固体電解質と電極を電気化学的な酸化還
元反応に伴うイオンの吸蔵と放出現象を示す材料を組み
合わせて形成した全固体リチウム二次電池において、前
記固体電解質と電極に溶質を含む高分子固体電解質を含
浸させて重合させたことを特徴とする全固体リチウム二
次電池。
1. An all-solid lithium secondary battery in which a solid electrolyte and an electrode are formed by combining a material exhibiting an occlusion and release phenomenon of ions associated with an electrochemical oxidation-reduction reaction, wherein the solid electrolyte and the electrode contain a solute. An all-solid lithium secondary battery characterized by being impregnated with a polymer solid electrolyte and polymerized.
【請求項2】 前記高分子固体電解質がポリエチレンオ
キサイド系高分子固体電解質またはポリプロピレンオキ
サイド系高分子固体電解質のいずれか一種または複数種
から成り、かつ前記溶質がLiBF4 、LiN(CF3
SO2 2 、LiC(CF3 SO2 2 のうちのいずれ
か一種または複数種から成ることを特徴とする請求項1
に記載の全固体リチウム二次電池。
2. The polymer solid electrolyte comprises one or more of a polyethylene oxide-based polymer solid electrolyte and a polypropylene oxide-based polymer solid electrolyte, and the solute is LiBF 4 , LiN (CF 3).
SO 2) 2, LiC (CF 3 SO 2) according to claim 1, characterized in that it consists of any one or more of the 2
2. The all-solid lithium secondary battery according to 1.
JP10311499A 1998-10-30 1998-10-30 Entire solid lithium secondary battery Pending JP2000138073A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10311499A JP2000138073A (en) 1998-10-30 1998-10-30 Entire solid lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10311499A JP2000138073A (en) 1998-10-30 1998-10-30 Entire solid lithium secondary battery

Publications (1)

Publication Number Publication Date
JP2000138073A true JP2000138073A (en) 2000-05-16

Family

ID=18017978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10311499A Pending JP2000138073A (en) 1998-10-30 1998-10-30 Entire solid lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2000138073A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003338321A (en) * 2002-05-20 2003-11-28 Central Res Inst Of Electric Power Ind Secondary battery
US7201999B2 (en) 2002-10-01 2007-04-10 Kabushiki Kaisha Toyota Chuo Kenkyusho Secondary cell
JP2010113820A (en) * 2008-11-04 2010-05-20 Idemitsu Kosan Co Ltd Lithium ion conductive solid electrolyte composition and battery using it
JP2010231969A (en) * 2009-03-26 2010-10-14 Seiko Epson Corp Solid secondary battery and method for manufacturing the same
JP2014241275A (en) * 2013-06-11 2014-12-25 アイメックImec Solid-state battery and method for manufacturing thereof
US9039939B2 (en) 2007-03-29 2015-05-26 Tdk Corporation Production method of active material, and active material
US9246193B2 (en) 2007-03-29 2016-01-26 Tdk Corporation All-solid-state lithium-ion secondary battery and production method thereof
KR20160014137A (en) 2014-07-28 2016-02-11 한국전기연구원 Secondary Batteries Comprising Solid Electrolyte With Wetted Ionic Liquids
WO2017033765A1 (en) * 2015-08-26 2017-03-02 富士フイルム株式会社 Method for producing electrode sheet for all-solid-state secondary batteries and method for manufacturing all-solid-state secondary battery
WO2018180768A1 (en) * 2017-03-31 2018-10-04 倉敷紡績株式会社 Electrode sheet, all-solid battery, manufacturing method for electrode sheet, and manufacturing method for all-solid battery
WO2019031438A1 (en) * 2017-08-10 2019-02-14 倉敷紡績株式会社 Method for manufacturing electrode sheet, all-solid-state cell, and method for manufacturing all-solid-state cell
KR20210093907A (en) 2018-11-26 2021-07-28 가부시키가이샤 오사카소다 An electrode for an inorganic solid electrolyte secondary battery, and an inorganic solid electrolyte secondary battery
KR20220153801A (en) 2021-05-12 2022-11-21 대진대학교 산학협력단 Polymer electrolyte based on ionic liquids for all-solid state secondary battery and method for manufacturing the same

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003338321A (en) * 2002-05-20 2003-11-28 Central Res Inst Of Electric Power Ind Secondary battery
US7201999B2 (en) 2002-10-01 2007-04-10 Kabushiki Kaisha Toyota Chuo Kenkyusho Secondary cell
US9039939B2 (en) 2007-03-29 2015-05-26 Tdk Corporation Production method of active material, and active material
US9246193B2 (en) 2007-03-29 2016-01-26 Tdk Corporation All-solid-state lithium-ion secondary battery and production method thereof
US9419308B2 (en) 2007-03-29 2016-08-16 Tdk Corporation All-solid-state lithium-ion secondary battery and production method thereof
JP2010113820A (en) * 2008-11-04 2010-05-20 Idemitsu Kosan Co Ltd Lithium ion conductive solid electrolyte composition and battery using it
JP2010231969A (en) * 2009-03-26 2010-10-14 Seiko Epson Corp Solid secondary battery and method for manufacturing the same
JP2014241275A (en) * 2013-06-11 2014-12-25 アイメックImec Solid-state battery and method for manufacturing thereof
KR20160014137A (en) 2014-07-28 2016-02-11 한국전기연구원 Secondary Batteries Comprising Solid Electrolyte With Wetted Ionic Liquids
JPWO2017033765A1 (en) * 2015-08-26 2018-05-24 富士フイルム株式会社 Electrode sheet for all-solid-state secondary battery and method for producing all-solid-state secondary battery
WO2017033765A1 (en) * 2015-08-26 2017-03-02 富士フイルム株式会社 Method for producing electrode sheet for all-solid-state secondary batteries and method for manufacturing all-solid-state secondary battery
WO2018180768A1 (en) * 2017-03-31 2018-10-04 倉敷紡績株式会社 Electrode sheet, all-solid battery, manufacturing method for electrode sheet, and manufacturing method for all-solid battery
CN110383560A (en) * 2017-03-31 2019-10-25 仓敷纺绩株式会社 The manufacturing method of electrode slice, all-solid-state battery, the manufacturing method of electrode slice and all-solid-state battery
JPWO2018180768A1 (en) * 2017-03-31 2020-02-06 倉敷紡績株式会社 Electrode sheet, all-solid battery, method for manufacturing electrode sheet, and method for manufacturing all-solid battery
JP7066677B2 (en) 2017-03-31 2022-05-13 倉敷紡績株式会社 All-solid-state battery manufacturing method
WO2019031438A1 (en) * 2017-08-10 2019-02-14 倉敷紡績株式会社 Method for manufacturing electrode sheet, all-solid-state cell, and method for manufacturing all-solid-state cell
CN110998951A (en) * 2017-08-10 2020-04-10 仓敷纺绩株式会社 Electrode sheet manufacturing method, all-solid-state battery, and all-solid-state battery manufacturing method
JPWO2019031438A1 (en) * 2017-08-10 2020-08-20 倉敷紡績株式会社 Electrode sheet manufacturing method, all-solid-state battery and all-solid-state battery manufacturing method
JP7066719B2 (en) 2017-08-10 2022-05-13 倉敷紡績株式会社 Electrode sheet manufacturing method, all-solid-state battery and all-solid-state battery manufacturing method
KR20210093907A (en) 2018-11-26 2021-07-28 가부시키가이샤 오사카소다 An electrode for an inorganic solid electrolyte secondary battery, and an inorganic solid electrolyte secondary battery
KR20220153801A (en) 2021-05-12 2022-11-21 대진대학교 산학협력단 Polymer electrolyte based on ionic liquids for all-solid state secondary battery and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP3797197B2 (en) Nonaqueous electrolyte secondary battery
US8993174B2 (en) Electrode assembly having novel structure and secondary battery using the same
JP4352475B2 (en) Solid electrolyte secondary battery
KR20180036600A (en) Anode for lithium secondary battery with double protective layer and lithium secondary battery comprising the same
JP2020526897A (en) Composite solid electrolyte membrane for all-solid-state battery and all-solid-state battery containing it
KR20100094363A (en) Nonaqueous electrolyte secondary battery
JP2000058116A (en) Nonaqueous battery electrolyte and secondary battery using the same
JP4033595B2 (en) Lithium polymer secondary battery
JP2001176482A (en) Nonaqueous electrolyte secondary battery
JP2001357883A (en) Gel-like electrolytic solution and lithium battery using the same
JP2000138073A (en) Entire solid lithium secondary battery
CN113614951A (en) Method for preparing negative electrode for secondary battery
JPH07326383A (en) Polymeric sold electrolyte battery and manufacture thereof
JP2000149989A (en) Nonaqueous electrolyte battery
JP2022547501A (en) Method for manufacturing secondary battery
KR100459871B1 (en) Composition of non-aqueous electrolytes useful for batteries and capacitors
JP4193248B2 (en) Gel electrolyte battery
JP6992362B2 (en) Lithium ion secondary battery
JP2007172879A (en) Battery and its manufacturing method
JP2002216848A (en) Gelled electrolyte, and gelled electrolyte cell using the same
JP2003168427A (en) Nonaqueous electrolyte battery
JP2000149996A (en) Manufacture of nonaqueous electrolyte secondary battery
JP2019160616A (en) Lithium ion secondary battery
JP2007172878A (en) Battery and its manufacturing method
JP4207239B2 (en) Organic electrolyte battery

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20071214

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20071214

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071214

Year of fee payment: 6

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081214

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081214

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081214

Year of fee payment: 7

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081214

Year of fee payment: 7

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081214

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081214

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20091214

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20121214

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20131214

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250