KR100459871B1 - Composition of non-aqueous electrolytes useful for batteries and capacitors - Google Patents
Composition of non-aqueous electrolytes useful for batteries and capacitors Download PDFInfo
- Publication number
- KR100459871B1 KR100459871B1 KR10-2002-0028784A KR20020028784A KR100459871B1 KR 100459871 B1 KR100459871 B1 KR 100459871B1 KR 20020028784 A KR20020028784 A KR 20020028784A KR 100459871 B1 KR100459871 B1 KR 100459871B1
- Authority
- KR
- South Korea
- Prior art keywords
- battery
- group
- value
- carbonate
- general formula
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
- H01M10/0587—Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0567—Liquid materials characterised by the additives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0565—Polymeric materials, e.g. gel-type or solid-type
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Materials Engineering (AREA)
- Secondary Cells (AREA)
Abstract
본 발명은 전지 또는 콘덴서에 사용되는 비수계 전해액에 아크릴레이트 작용기를 가지는 가교성 단량체와 중합개시제를 첨가하고 열을 가해 가교시킴으로써, 전해액이 전지 또는 콘덴서의 내부로부터 누출되는 현상을 방지하고, 전극과 격리막간의 계면을 안정화시켜 수명을 향상시키고, 고온에서의 전기적 특성을 개선하는 목적이 있다.The present invention adds a crosslinkable monomer having an acrylate functional group and a polymerization initiator to a non-aqueous electrolyte used in a battery or a capacitor, and crosslinks by applying heat, thereby preventing the electrolyte from leaking from the inside of the battery or the capacitor, and The purpose is to stabilize the interface between the separators to improve their lifetime and to improve their electrical properties at high temperatures.
가교성 단량체로는 화학식 (CH₂=C(R₁)COO(CH₂)nCOO)₃C(CH₂)nX 로 표시되는 화합물과 화학식 (CH₂=C(R₁)COO(CH₂)nX 로 표시되는 화합물의 혼합물로 구성된다.The crosslinkable monomer is composed of a compound represented by the formula (CH₂ = C (R₁) COO (CH₂) nCOO) ₃C (CH₂) nX and a compound represented by the formula (CH₂ = C (R₁) COO (CH₂) nX do.
상기 화학식들에서 R₁은 수소원소 또는 메틸기, n은 1 내지 10 의 값을 가지며, X는 메틸기, 히드록시기 또는 아민기를 나타낸다.In the formulas, R 'represents a hydrogen element or a methyl group, n has a value of 1 to 10, and X represents a methyl group, a hydroxy group or an amine group.
Description
본 발명은 전지 또는 콘덴서에 사용되는 비수계 전해액의 조성물에 관한 것이다. 통상적으로 사용되는 전지 또는 콘덴서의 비수계 전해액에 아크릴레이트 작용기를 가지는 가교성 단량체와 중합개시제를 첨가하고 열을 가해 가교시킴으로써, 전해액이 폴리머화 된 아크릴레이트의 매트릭스내에 고정되어 전지 또는 콘덴서의내부로부터 누수되는 현상을 방지하고, 또한 양극, 분리막과 음극 사이의 계면을 접합시키는 역할을 하여 수명이 향상되고, 고온에서 방치할 경우에도 전지가 부풀어지지 않고, 내부 저항의 증가를 억제 시키는 목적이 있다.TECHNICAL FIELD This invention relates to the composition of the non-aqueous electrolyte solution used for a battery or a capacitor. By adding a crosslinkable monomer having an acrylate functional group and a polymerization initiator to a non-aqueous electrolyte of a battery or a capacitor, which is commonly used, and crosslinking by applying heat, the electrolyte is fixed in a matrix of polymerized acrylate, and is then discharged from the inside of the battery or capacitor. It is intended to prevent leakage and to improve the lifespan by bonding the interface between the positive electrode, the separator and the negative electrode, and to prevent the battery from swelling even when left at a high temperature.
이동용 에너지 저장장치인 전지나 콘덴서는 정보통신을 위한 휴대용 전자기기나 전기자전거, 전기자동차 등의 전원으로 수요가 점점 증가되고 있다. 전지나 콘덴서에 요구되는 특성은 에너지밀도, 충전 및 방전 특성, 수명, 고율 특성과 고온에서의 안정성 등 여러 가지 측면이 있다. 리튬 2차 전지는 높은 전압과 높은 에너지 밀도를 가지고 있어 가장 주목받고 있는 전지이며 전해질에 따라서 액체를 쓰는 액체형 전지, 액체와 폴리머를 혼용해서 쓰는 젤형 폴리머 전지와 순수하게 고분자만을 사용하는 고체형 폴리머 전지로 구분하기도 한다.Batteries and capacitors, which are mobile energy storage devices, are increasingly being used as power sources for portable electronic devices, electric bicycles, and electric vehicles for information and communication. The characteristics required for a battery or a capacitor have various aspects such as energy density, charge and discharge characteristics, lifetime, high rate characteristics, and stability at high temperatures. Lithium secondary battery has the highest voltage and high energy density. It is a battery that attracts the most attention. It is a liquid battery using liquid according to electrolyte, a gel polymer battery using a mixture of liquid and polymer, and a solid polymer battery using pure polymer only. It is also divided into.
리튬 2차 전지는 양극, 음극, 전해질, 격리막(separator), 외장재 등으로 주로 구성된다. 양극은 전류집전체에 양극 활물질, 도전제와 바인더(binder) 등의 혼합물이 결착되어 구성된다. 양극 활물질로는 LiCoO₂, LiMn₂O₄, LiNiO₂, LiMnO₂ 등의 리튬 전이금속 화합물이 주로 사용된다. 이들 물질들은 결정구조 내로 리튬이온이 삽입/탈리(intercalation/deintercalation)가 되면서 진행되는 전기화학적 반응전위가 높다. 음극 활물질은 리튬금속, 탄소 또는 흑연 등이 주로 사용되며 양극 활물질과는 반대로 전기화학적 반응 전위가 낮다. 전해질은 주로 에틸렌 카보네이트, 프로필렌 카보네이트, 디메틸 카보네이트, 디에틸 카보네이트, 메틸에틸 카보네이트 등의 비수계 극성 유기용매에 LiCF₃SO₃, Li(CF₃SO₂)₂, LiPF6,LiBF4, LiClO4, LiN(SO₂C₂F5)₂등의 리튬이온을 포함하는 염을 용해시켜 사용한다. 양극과 음극을 전기적으로 절연시키며 이온의 통로를 제공해주는 역할을 하는 격리막은 다공성 폴리에틸렌 등 폴리올레틴계 폴리머를 주로 사용한다. 전지의 내용물을 보호하며 전지외부로 전기적 통로를 제공하는 외장재로는 금속캔 또는 알루미늄과 몇 겹의 폴리머층으로 구성된 포장재(이하, 소프트팩이라 명명함)를 주로 사용한다.The lithium secondary battery is mainly composed of a positive electrode, a negative electrode, an electrolyte, a separator, a packaging material, and the like. The positive electrode is formed by binding a mixture of a positive electrode active material, a conductive agent, and a binder to a current collector. Lithium transition metal compounds such as LiCoO₂, LiMn₂O₄, LiNiO₂, and LiMnO₂ are mainly used as the positive electrode active material. These materials have a high electrochemical reaction potential that proceeds as lithium ions intercalate / deintercalation into the crystal structure. Lithium metal, carbon or graphite is mainly used as the negative electrode active material and has a low electrochemical reaction potential as opposed to the positive electrode active material. The electrolyte is mainly of ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, and the like of the non-aqueous polar organic solvent, LiCF₃SO₃, Li (CF₃SO₂) ₂, LiPF 6, LiBF 4, LiClO 4, LiN (SO₂C₂F 5) ₂ Salts containing lithium ions such as these are dissolved and used. As the separator which electrically insulates the positive electrode and the negative electrode and provides a passage of ions, a polyoletin-based polymer such as porous polyethylene is mainly used. As an exterior material that protects the contents of the battery and provides an electrical passage to the outside of the battery, a metal can or a packaging material (hereinafter referred to as a soft pack) composed of several layers of polymer layers is mainly used.
소프트팩을 쓰는 전지는 생산방법이 용이하고, 전지의 크기나 용량을 자유롭게 설계할 수 있는 이점이 있다.A battery using a soft pack has an advantage of easy production method and free design of the size and capacity of the battery.
미국특허 제 5,658,685호 제 5,639,573호, 제 5,460,904호, 제 5,837,015호, 제 6,124,061호 등에는 이러한 형태의 전지의 구성물 또는 제조방법 등에 대한 기술이 개시되어 있다.U.S. Pat.Nos. 5,658,685, 5,639,573, 5,460,904, 5,837,015, 6,124,061, and the like, disclose a technique for constructing or manufacturing a battery of this type.
그러나 소프트팩을 쓰는 경우, 전지 내부의 전해액 중 액체 성분이 누출되거나, 고온에 방치했을 때 전지내부에서 발생된 가스에 의해 전지가 부풀어 오르고, 전극과 격리막간의 계면이 불안정하여 전지의 내부 저항이 증가되는 문제점이 있다.However, in the case of using a soft pack, when the liquid component in the electrolyte inside the battery leaks, or when left at a high temperature, the battery swells due to the gas generated inside the battery, and the interface between the electrode and the separator is unstable, thereby increasing the internal resistance of the battery. There is a problem.
이에, 본 발명자는 종래의 문제점을 해결하고자 예의 연구한 결과, 전지 또는 콘덴서에 사용되는 비수계 전해액에 아크릴레이트 작용기를 가지는 가교성 단량체와 중합개시제를 첨가하고 열을 가해 가교시켜 폴리아크릴레이트를 형성하고, 전해질중의 액체 성분이 폴리아크릴레이트 매트릭스내에 함침되게 함으로써, 전지 또는 콘덴서의 내부로부터 액체 성분이 누출되는 현상을 방지한다. 또한, 전극과 격리막간의 접착을 강화시켜 안정화된 계면이 형성됨으로써 전지의 수명이 향상되며, 고온에서 방치할 경우에도 전지가 부풀어지지 않으며, 전지의 내부저항이 증가되는 현상을 개선하는 목적이 있다.Accordingly, the present inventors have diligently studied to solve the conventional problems, and as a result, a crosslinkable monomer having a acrylate functional group and a polymerization initiator are added to a non-aqueous electrolyte used in a battery or a capacitor and crosslinked by heat to form a polyacrylate. In addition, the liquid component in the electrolyte is impregnated into the polyacrylate matrix, thereby preventing the liquid component from leaking from inside the battery or the capacitor. In addition, by improving the adhesion between the electrode and the separator to form a stabilized interface to improve the life of the battery, the battery does not swell even when left at high temperature, the purpose of improving the phenomenon that the internal resistance of the battery increases.
도 1은 전극물질이 도포되지 않은 집전체 부위가 돌출된 형태로 일정한 크기로 전극이 전달된 형태를 나타내는 도면이다.1 is a view showing a form in which an electrode is delivered to a predetermined size in a shape where a current collector portion that is not coated with electrode material protrudes.
도 2는 양극과 음극들이 격리막 상에 일정한 순서로 배열된 형태를 나타내는 도면이다.2 is a view showing a form in which the anode and the cathode are arranged in a certain order on the separator.
도 3은 본 발명의 실시예 1 및 비교예 1에서 제조된 리튬이온 2차 전지의 고온방치 특성을 나타낸 그래프이다.3 is a graph showing the high-temperature standing characteristics of the lithium ion secondary battery prepared in Example 1 and Comparative Example 1 of the present invention.
도 4는 본 발명의 실시예 1 및 비교예 1에서 제조된 리튬이온 2차 전지의 방전 용량을 비교하여 나타낸 수명 곡선이다.Figure 4 is a life curve comparing the discharge capacity of the lithium ion secondary battery prepared in Example 1 and Comparative Example 1 of the present invention.
본 발명은 전지 또는 콘덴서에 사용되는 비수계 전해액에 아크릴레이트 작용기를 가지는 가교성 단량체와 중합개시제를 첨가하고 열을 가해 가교시킴으로써, 전해액이 전지 또는 콘덴서의 내부로부터 누출되는 현상을 방지하고, 전극과 격리막간의 계면을 안정화시켜 수명을 향상시키고, 고온에서의 전기적 특성을 개선하는 목적이 있다.The present invention adds a crosslinkable monomer having an acrylate functional group and a polymerization initiator to a non-aqueous electrolyte used in a battery or a capacitor, and crosslinks by applying heat, thereby preventing the electrolyte from leaking from the inside of the battery or the capacitor, and The purpose is to stabilize the interface between the separators to improve their lifetime and to improve their electrical properties at high temperatures.
가교성 단량체로는 하기 화학식 (1) 과 화학식 (2) 로 나타낼 수 있는 화합물들의 혼합물로 구성 된다 :The crosslinkable monomer consists of a mixture of compounds represented by the following formula (1) and formula (2):
상기 식에서,Where
R₁은 수소원소 또는 메틸기이고,R 'is a hydrogen element or a methyl group,
n은 1 내지 10 의 값을 가지며,n has a value from 1 to 10,
X는 메틸기, 히드록시기 또는 아민기 중에서 선택된다.X is chosen from a methyl group, a hydroxy group, or an amine group.
상기 식에서,Where
R₁은 수소원소 또는 메틸기이고,R 'is a hydrogen element or a methyl group,
n은 1 내지 10 의 값을 가지며,n has a value from 1 to 10,
X는 메틸기, 히드록시기 또는 아민기 중에서 선택된다.X is chosen from a methyl group, a hydroxy group, or an amine group.
화학식 (1) 과 화학식 (2) 로 표현되는 화합물들의 구성비는 당량비로 화학식(1):화학식(2)=1:5 내지 5:1 로 구성되며, 바람직하게는 화학식(1):화학식(2)=1:3 내지 3:1 의 당량비로 혼합물이 구성되는 것이다.The composition ratio of the compounds represented by the formula (1) and the formula (2) is composed of the formula (1): formula (2) = 1: 5 to 5: 1 in an equivalent ratio, preferably formula (1): formula (2) ) = 1: 3 to 3: 1 equivalent ratio of the mixture is composed.
본 발명에 따른 혼합물이 적용되는 리튬이온 2차 전지의 양극 및 음극은 기존에 널리 공지된 방법으로 제조한다. 즉, 양극은 활물질인 리튬전이금속 화합물 분말, 집전체와 활물질 간에 전자 전달을 용이하게 하기 위한 탄소분말, 활물질과 탄소분말을 결착시키고 집전체에 부착시켜 주는 역할을 하게 되는 수지 및 기타 목적의 첨가제를 용액 상에서 균일하게 혼합한 후에 전류 집전체인 알루미늄 금속박의 양면에 균일하게 도포, 건조 및 압착되어 있는 형태로 제조한다. 음극은 흑연 등 분말상의 활물질과 활물질을 결착시키고 집전체에 부착시켜주는 역할을 하게 되는 수지 및 기타 목적의 첨가제를 용액 상에서 균일하게 혼합한 후에 전류집전체인 구리 금속박의 양면에 균일하게 도포, 건조 및 압착되어 있는 형태로 제조한다.The positive electrode and the negative electrode of the lithium ion secondary battery to which the mixture according to the present invention is applied are manufactured by a conventionally well-known method. That is, the positive electrode is a lithium transition metal compound powder as an active material, a carbon powder for facilitating electron transfer between the current collector and the active material, a resin that binds the active material and the carbon powder and adheres to the current collector, and other additives for other purposes. After mixing uniformly on the solution, it is prepared in a form that is uniformly applied, dried and pressed on both sides of the aluminum metal foil as a current collector. The negative electrode is uniformly mixed on both sides of a copper metal foil as a current collector after uniformly mixing a powdery active material such as graphite and a resin and other purpose additives that serve to bind the active material and attaching the active material to a current collector on a solution. And it is prepared in a compressed form.
격리막은 기존에 널리 사용되는 다공성 폴리올레핀계 필름을 사용하며, 양극과 음극은 격리막을 사이에 두고 대면한 형태로 구성되며, 양극과 음극이 각각 절단되어 적층형 구조를 형성하거나 또는 리본형태에서 연속적으로 권취된 구조를 가진다. 전해질은 에틸렌 카보네이트, 프로필렌 카보네이트, 디메틸 카보네이트, 에틸메틸 카보네이트, 디에틸 카보네이트, 비닐리덴 카보네이트, γ-부티로락톤으로 이루어진 군으로부터 선택된 2종 이상의 혼합용액에, LiCF₃SO₃, Li(CF₃SO₂)₂, LiPF6, LiBF₄, LiClO₄, LiN(SO₂C₂F5)₂로 이루어진 군으로부터 선택된 1종 이상의 리튬염을 용해시켜 사용된다.The separator uses a widely used porous polyolefin-based film, and the anode and the cathode are configured to face each other with the separator interposed therebetween, and the cathode and the cathode are cut, respectively, to form a laminated structure or wound continuously in a ribbon form. Has a structure. The electrolyte of ethylene carbonate, propylene carbonate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, vinylidene carbonate, a mixed solution of two or more selected from the group consisting of γ- lactone butynyl, LiCF₃SO₃, Li (CF₃SO₂) ₂, LiPF 6 , LiBF₄, LiClO₄, LiN (SO₂C₂F 5 ) ₂ is used to dissolve one or more lithium salts selected from the group consisting of.
또한 외장재로는 철 또는 알루미늄 금속으로 이루어진 캔 형태 또는 알루미늄박과 폴리머층들로 구성된 외장재 등 다양하게 적용할 수 있다.In addition, the exterior material may be variously applied, such as a can form made of iron or aluminum metal, or an exterior material made of aluminum foil and polymer layers.
이하, 실시예를 들어 본 발명을 구체적으로 설명하지만, 본 발명의 범위가 이들 실시예로 한정되는 것은 아니다.Hereinafter, although an Example is given and this invention is demonstrated concretely, the scope of the present invention is not limited to these Examples.
실시예Example
실시예 1: 전지의 제조(1)Example 1 Preparation of Battery (1)
먼저, 양극 및 음극을 기존에 널리 공지되어 있는 일반적인 방법으로 제조하였다. 즉, 양극은 분말상태의 활물질로 LiCoO₂ 100g, 도전제로 카본 블랙 5g, 바인더로 폴리비닐리덴 플루오라이드 5g을 균일하게 혼합하고, 용매로서 N-메틸피를 리돈(NMP) 100ml를 첨가하여 반죽상태로 제조한 후, 집전체인 두께 15㎛의 알루미늄 호일 양면에 균일하게 통상적인 방법으로 도포, 건조, 압착공정을 거쳐 전체 두께가 150㎛가 되게 양극을 제조하였다. 음극은 분말상태의 흑연 100g과 바인더로 폴리비닐리덴 플루오라이드 10g을 균일하게 혼합하고, 용매로서 N-메틸피롤리돈(NMP) 100ml를 첨가하여 반죽상태로 제조한 후 집전체인 두께 10㎛의 구리 호일 양면에 통상적인 방법으로 균일하게 도포, 건조, 압착 공정을 거쳐 전체 두께가 150㎛가 되게 음극을 제조하였다.First, the positive electrode and the negative electrode were manufactured by a general method well known in the art. In other words, the positive electrode was uniformly mixed with 100 g of LiCoO₂ as a powdered active material, 5 g of carbon black as a conductive agent, and 5 g of polyvinylidene fluoride as a binder, and 100 ml of N-methylpyridone (NMP) was added as a solvent. After the preparation, the positive electrode was manufactured to have a total thickness of 150 μm through a coating, drying, and pressing process uniformly and conventionally on both sides of an aluminum foil having a thickness of 15 μm, which is a current collector. The negative electrode was uniformly mixed with 100 g of powdered graphite and 10 g of polyvinylidene fluoride with a binder, and 100 ml of N-methylpyrrolidone (NMP) was added as a solvent. A negative electrode was prepared to uniformly apply, dry, and press the copper foil on both sides of the copper foil to a total thickness of 150 μm.
평균분자량이 600,000인 폴리에틸렌 옥사이드 5g을 아세토나이트릴 95g에 용해한 용액을 다공성 폴리에틸렌막(엔텍사 제 Tecklon, 두께: 25㎛)의 한 면에 액체 정량 토출장치를 이용하여 두께 5㎛로 연속적으로 도포하였다. 상기 제조된 양극과 음극을 도 1과 같이 전극이 도포되지 않은 집전체 부위가 돌출된 형태로 일정한 크기로 절단하여 상기 폴리에틸렌막의 한면에 도 2의 첫 번째 배열구조로 배열하였다. 이어서 연속적으로 권취하여 양극과 음극이 상기 실시예 1에서 제조된 격리막을 사이에 두고 연속적으로 대면하는 적층체를 제조하였다. 돌출된 양극과 음극의 단자들은 각각 알루미늄과 니켈 리드선을 추가하여 초음파로 융착하여 병렬로 연결하였다. 일반적으로 전지에 사용되는 외장재를 성형하여 홈을 만들어 상기 적층체를 넣고, LiPF6이 1.2몰 농도이고 용매가 에틸렌 카보네이트와 디에틸 카보네이트와 메틸에틸카보네이터가 부피비로 3:1:6로 구성된 전해액 100g에 아크릴레이트 단량체인 6-하이드록시 헥실 에스테르 1.5g과 펜타에리드리올 트리아크릴레이트 2g을 첨가하여 혼합하고, 중합개시제인 비스-(4-티-부틸사이클로헥실) 퍼옥시 - 디카보네이트 0.2g을 첨가하여 균일하게 용해하여 혼합전해액을 제조하였다. 이렇게 제조된 혼합전해액 3g을 상기 전지에 주입하고, 외장재의 3면은 진공 상태에서 열융착한 후 60℃에서 12시간 방치하여 본 발명의 리튬이온 2차 전지를 제조하였다.A solution in which 5 g of polyethylene oxide having an average molecular weight of 600,000 was dissolved in 95 g of acetonitrile was continuously applied to one side of a porous polyethylene membrane (Tecklon, Entec Co., Ltd., thickness: 25 μm) at a thickness of 5 μm using a liquid metering discharge device. . The prepared positive electrode and the negative electrode were cut to a predetermined size in a shape in which a current collector portion where the electrode was not applied was protruded as shown in FIG. 1, and arranged in one side of the polyethylene film in the first arrangement structure of FIG. 2. Subsequently, it was wound continuously to prepare a laminate in which the anode and the cathode faced continuously with the separator prepared in Example 1 interposed therebetween. Protruding positive and negative terminals were connected in parallel by ultrasonic welding by adding aluminum and nickel lead wires, respectively. In general, the laminate is formed by forming a groove used in a battery to make a groove, and LiPF 6 is 1.2 mol, and the solvent is ethylene carbonate, diethyl carbonate, and methyl ethyl carbonate in a volume ratio of 3: 1: 6. To 100 g, 1.5 g of 6-hydroxy hexyl ester as an acrylate monomer and 2 g of pentaeryridol triacrylate are added and mixed, and 0.2 g of bis- (4-thi-butylcyclohexyl) peroxy-dicarbonate as a polymerization initiator. It was added to dissolve uniformly to prepare a mixed electrolyte solution. 3 g of the mixed electrolyte solution thus prepared was injected into the battery, and the three surfaces of the packaging material were heat-sealed in a vacuum state and left at 60 ° C. for 12 hours to prepare a lithium ion secondary battery of the present invention.
실시예 2: 전지의 제조(2)Example 2: Preparation of Battery (2)
상기 실시예 1에서 6-하이드록시 헥실 에스테르 1.0g과 펜타에리드리올 트리아크릴레이트 1.5g을 첨가하여 혼합하고, 다른 구성 요소와 제조방법은 상기 실시예 1과 동일하게 수행하여 리튬이온 2차 전지를 제조하였다.In Example 1, 1.0 g of 6-hydroxyhexyl ester and 1.5 g of pentaeryridol triacrylate are added and mixed, and the other components and the manufacturing method are performed in the same manner as in Example 1, to obtain a lithium ion secondary battery. Was prepared.
실시예 3: 전지의 제조(3)Example 3: Preparation of Battery (3)
실시예 1과 같이 전지의 구조가 연속적인 적층 구조가 아닌 기존에 알려진대로 양극/격리막/음극이 나선형으로 권취된 형태로 제작하고, 나머지는 상기 실시예 1과 동일하게 수행하여 리튬이온 2차 전지를 제조하였다.As described in Example 1, the structure of the battery is not a continuous stacked structure, and a cathode, a separator, and a cathode are manufactured in a spiral wound form as previously known, and the rest is performed in the same manner as in Example 1 to carry out a lithium ion secondary battery. Was prepared.
비교예 1: 전지의 제조(4)Comparative Example 1: Preparation of Battery (4)
상기 실시예 1에서 혼합전해액이 아닌 LiPF6이 1.2몰 농도이고 용매가 에틸렌 카보네이트와 디에틸 카보네이트와 메틸에틸카보네이터가 부피비로 3:1:6로 구성된 전해액 3g을 주입하고, 나머지는 상기 실시예 1과 동일하게 수행하여 리튬이온 2차 전지를 제조하였다.In Example 1, 3 g of LiPF 6, which is not a mixed electrolyte, was injected with 3 g of an electrolyte having a solvent ratio of 3: 1: 6 in an ethylene carbonate, a diethyl carbonate, and a methyl ethyl carbonator in a volume ratio, and the rest of the above Example The lithium ion secondary battery was prepared in the same manner as 1.
시험예 1: 전지의 고온방치 특성Test Example 1: High-temperature leaving characteristics of the battery
상기 실시예 1 및 비교예 1에서 제조된 전지를 대상으로 전지평가용 충방전기를 이용하여 0.2CmA 율로 완전히 충전시킨 후에, 85℃의 오븐에 넣고 전지의 두께를 일정 시간 간격으로 측정하였다. 그 결과를 도 3에 나타내었다. 실시예 1에의한 본 발명의 전지 두께가 비교예 1의 전지보다 두께가 증가하는 비율이 낮음을 알 수 있다. 이것은 본 발명에 의한 전지가 내부의 액체 전해액이 폴리아크릴레이트 매트릭스내에 고정되어 안정화 된 결과이다.After fully charging the battery prepared in Example 1 and Comparative Example 1 using a battery evaluation charger and charger at 0.2CmA rate, the battery was placed in an oven at 85 ° C. and the thickness of the battery was measured at regular intervals. The results are shown in FIG. It can be seen that the battery thickness of the present invention according to Example 1 has a lower rate of increase in thickness than the battery of Comparative Example 1. This is the result of the battery according to the present invention being stabilized by fixing the liquid electrolyte inside the polyacrylate matrix.
시험예 2: 전지의 수명특성Test Example 2: Battery Life Characteristics
상기 실시예 1 및 비교예 1에서 제조된 전지를 1CmA율로 연속적으로 충전과 방전을 거듭하여 수명 시험을 실시하였다. 그 결과를 도 4에 나타내었다.The batteries prepared in Example 1 and Comparative Example 1 were repeatedly charged and discharged at a rate of 1 CmA to carry out a life test. The results are shown in FIG.
도 4로부터 알 수 있는 바와 같이, 본 발명에 의한 실시예 1 에 의해 제조된 전지는 95 싸이클 이상이 진행되어도 방전 용량이 96 % 이상으로 유지되면서 평탄한 기울기를 가짐으로써 수명특성이 매우 우수한 것임을 알 수 있다. 반면 종래의 방법인 비교예 1에 의해 제조된 전지는 용량이 7%정도 감소하였다. 이러한 결과는 양극, 음극과 격리막간의 접착을 강화시켜 안정화된 계면이 형성됨으로써 전지의 수명이 향상된 것이다.As can be seen from Figure 4, the battery produced in Example 1 according to the present invention has a flat slope while maintaining a discharge capacity of 96% or more even after 95 cycles or more it can be seen that the life characteristics are very excellent have. On the other hand, the battery manufactured by Comparative Example 1, which is a conventional method, has a capacity of about 7%. This result is to improve the life of the battery by forming a stabilized interface by strengthening the adhesion between the positive electrode, the negative electrode and the separator.
상술한 바와 같이, 전지 또는 콘덴서에 사용되는 비수계 전해액에 아크릴레이트 작용기를 가지는 가교성 단량체와 중합개시제를 첨가하고 열을 가해 가교시켜 폴리아크릴레이트를 형성하고, 전해질중의 액체 성분이 폴리아크릴레이트 매트릭스내에 함침되게 함으로써, 전지 또는 콘덴서의 내부로부터 액체 성분이 누출되는 현상을 방지한다. 또한, 전극과 격리막간의 접착을 강화시켜 안정화된 계면이 형성됨으로써 전지의 수명이 향상되며, 고온에서 방치할 경우에도 전지가 부풀어지지 않는 효과가 있다.As described above, a crosslinkable monomer having an acrylate functional group and a polymerization initiator are added to a non-aqueous electrolyte solution used in a battery or a capacitor, and crosslinked by heating to form a polyacrylate, and the liquid component in the electrolyte is a polyacrylate. Immersion in the matrix prevents the leakage of liquid components from inside the cell or capacitor. In addition, by improving the adhesion between the electrode and the separator to form a stabilized interface to improve the life of the battery, there is an effect that the battery does not swell even when left at high temperatures.
Claims (6)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2002-0028784A KR100459871B1 (en) | 2002-05-23 | 2002-05-23 | Composition of non-aqueous electrolytes useful for batteries and capacitors |
KR10-2002-0075768A KR100509435B1 (en) | 2002-05-23 | 2002-12-02 | Lithium secondary battery and its fabrication |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2002-0028784A KR100459871B1 (en) | 2002-05-23 | 2002-05-23 | Composition of non-aqueous electrolytes useful for batteries and capacitors |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20030090919A KR20030090919A (en) | 2003-12-01 |
KR100459871B1 true KR100459871B1 (en) | 2004-12-03 |
Family
ID=27726480
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR10-2002-0028784A KR100459871B1 (en) | 2002-05-23 | 2002-05-23 | Composition of non-aqueous electrolytes useful for batteries and capacitors |
KR10-2002-0075768A KR100509435B1 (en) | 2002-05-23 | 2002-12-02 | Lithium secondary battery and its fabrication |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR10-2002-0075768A KR100509435B1 (en) | 2002-05-23 | 2002-12-02 | Lithium secondary battery and its fabrication |
Country Status (1)
Country | Link |
---|---|
KR (2) | KR100459871B1 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100726065B1 (en) * | 2004-12-22 | 2007-06-08 | 에스케이 주식회사 | High power lithium unit cell and high power lithium battery pack having the same |
KR100612897B1 (en) * | 2005-05-27 | 2006-08-14 | 삼성에스디아이 주식회사 | Proton conductive electrolyte, preparing method thereof, and fuel cell using the same |
KR100738058B1 (en) * | 2006-01-11 | 2007-07-10 | 삼성에스디아이 주식회사 | Electrode for fuel cell and fuel cell using the same |
KR100773533B1 (en) * | 2006-12-18 | 2007-11-07 | 삼성에스디아이 주식회사 | Polymer electrolyte, preparing method thereof, and fuel cell using the same |
CN200997421Y (en) * | 2006-12-19 | 2007-12-26 | 比亚迪股份有限公司 | High-safety laminated lithium-ion battery |
KR100966024B1 (en) | 2007-04-24 | 2010-06-24 | 주식회사 엘지화학 | A electrochemical device having a different kind of separators |
KR101090684B1 (en) * | 2009-07-16 | 2011-12-08 | 에스케이이노베이션 주식회사 | Electrode assembly for battery and manufacturing thereof |
KR20140052412A (en) | 2012-10-24 | 2014-05-07 | 삼성에스디아이 주식회사 | Rechargeable lithium battery and method of preparing same |
CN114094181B (en) * | 2020-08-25 | 2024-05-14 | 深圳市比亚迪锂电池有限公司 | Lithium ion electrolyte, preparation method and lithium ion battery |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60157106A (en) * | 1983-12-19 | 1985-08-17 | スペクトラム コントロ−ル インコ−ポレ−テツド | Capacitor with dielectric having multifunction acrylate polymer, method of producing and chemical substance for dielectric |
JPH02298504A (en) * | 1989-05-15 | 1990-12-10 | Fuji Photo Film Co Ltd | High polymer solid electrolyte |
JPH03177410A (en) * | 1989-12-05 | 1991-08-01 | Fuji Photo Film Co Ltd | Polymer solid electrolyte |
JPH05109311A (en) * | 1991-10-15 | 1993-04-30 | Dai Ichi Kogyo Seiyaku Co Ltd | Solid electrolyte |
US5326657A (en) * | 1991-07-26 | 1994-07-05 | Nippon Oil Co., Ltd. | Polymeric solid electrolytes and production process thereof |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4406057A (en) * | 1981-03-20 | 1983-09-27 | Gnb Batteries Inc. | Method of making lead-acid battery element stack |
JPH0237455U (en) * | 1988-09-01 | 1990-03-12 | ||
KR100515572B1 (en) * | 2000-02-08 | 2005-09-20 | 주식회사 엘지화학 | Stacked electrochemical cell and method for preparing the same |
KR100341834B1 (en) * | 2000-05-01 | 2002-06-24 | 구자홍 | Folding winder |
KR20020066599A (en) * | 2001-02-12 | 2002-08-21 | 삼성에스디아이 주식회사 | The Interface Structure of A Secondary Battery |
KR100413608B1 (en) * | 2001-10-16 | 2004-01-03 | 주식회사 에너랜드 | Separator for lithium ion secondary batteries, method for producing the same, and lithium ion secondary batteries using the same |
-
2002
- 2002-05-23 KR KR10-2002-0028784A patent/KR100459871B1/en not_active IP Right Cessation
- 2002-12-02 KR KR10-2002-0075768A patent/KR100509435B1/en not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60157106A (en) * | 1983-12-19 | 1985-08-17 | スペクトラム コントロ−ル インコ−ポレ−テツド | Capacitor with dielectric having multifunction acrylate polymer, method of producing and chemical substance for dielectric |
JPH02298504A (en) * | 1989-05-15 | 1990-12-10 | Fuji Photo Film Co Ltd | High polymer solid electrolyte |
JPH03177410A (en) * | 1989-12-05 | 1991-08-01 | Fuji Photo Film Co Ltd | Polymer solid electrolyte |
US5326657A (en) * | 1991-07-26 | 1994-07-05 | Nippon Oil Co., Ltd. | Polymeric solid electrolytes and production process thereof |
JPH05109311A (en) * | 1991-10-15 | 1993-04-30 | Dai Ichi Kogyo Seiyaku Co Ltd | Solid electrolyte |
Also Published As
Publication number | Publication date |
---|---|
KR100509435B1 (en) | 2005-08-24 |
KR20020093781A (en) | 2002-12-16 |
KR20030090919A (en) | 2003-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6645667B1 (en) | Lithium secondary cell | |
US6800397B2 (en) | Non-aqueous electrolyte secondary battery and process for the preparation thereof | |
JP3797197B2 (en) | Nonaqueous electrolyte secondary battery | |
JP5262175B2 (en) | Negative electrode and secondary battery | |
KR100413608B1 (en) | Separator for lithium ion secondary batteries, method for producing the same, and lithium ion secondary batteries using the same | |
US20060240290A1 (en) | High rate pulsed battery | |
US20070248884A1 (en) | Negative electrode and secondary battery | |
KR20060052499A (en) | Cathode and battery | |
KR20060132606A (en) | Lithium ion battery and methods of manufacturing same | |
JP2002063938A (en) | Secondary battery and its manufacturing method | |
KR20100007974A (en) | Lithium secondary battery | |
CN111384399A (en) | Protective coating for lithium metal electrodes | |
US7767350B2 (en) | Nonaqueous electrolyte battery | |
US6984471B2 (en) | Nonaqueous electrolyte and nonaqueous electrolyte battery | |
CN101924244A (en) | Battery | |
KR20160036577A (en) | Lithium secondary battery and electrolyte solution for lithium secondary batteries | |
US20010016281A1 (en) | Secondary battery | |
KR100459871B1 (en) | Composition of non-aqueous electrolytes useful for batteries and capacitors | |
KR20080027136A (en) | Battery | |
JP2001185213A (en) | Nonaqueous electrolyte battery and manufacturing method therefor | |
JP2000138073A (en) | Entire solid lithium secondary battery | |
JP2005347222A (en) | Electrolyte liquid and battery | |
JP4385418B2 (en) | Gel electrolyte secondary battery | |
JP2004087325A (en) | Nonaqueous electrolytic solution battery | |
JP5426809B2 (en) | Secondary battery, electronic equipment using secondary battery and transportation equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
N231 | Notification of change of applicant | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20130204 Year of fee payment: 9 |
|
FPAY | Annual fee payment |
Payment date: 20131107 Year of fee payment: 10 |
|
FPAY | Annual fee payment |
Payment date: 20141120 Year of fee payment: 11 |
|
LAPS | Lapse due to unpaid annual fee |