KR100612897B1 - Proton conductive electrolyte, preparing method thereof, and fuel cell using the same - Google Patents

Proton conductive electrolyte, preparing method thereof, and fuel cell using the same Download PDF

Info

Publication number
KR100612897B1
KR100612897B1 KR1020050045215A KR20050045215A KR100612897B1 KR 100612897 B1 KR100612897 B1 KR 100612897B1 KR 1020050045215 A KR1020050045215 A KR 1020050045215A KR 20050045215 A KR20050045215 A KR 20050045215A KR 100612897 B1 KR100612897 B1 KR 100612897B1
Authority
KR
South Korea
Prior art keywords
proton conductive
conductive electrolyte
formula
compound
parts
Prior art date
Application number
KR1020050045215A
Other languages
Korean (ko)
Inventor
조명동
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Priority to KR1020050045215A priority Critical patent/KR100612897B1/en
Priority to US11/441,000 priority patent/US7816052B2/en
Priority to CNB2006100934685A priority patent/CN100462390C/en
Priority to JP2006148827A priority patent/JP4701126B2/en
Application granted granted Critical
Publication of KR100612897B1 publication Critical patent/KR100612897B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/0233Polyamines derived from (poly)oxazolines, (poly)oxazines or having pendant acyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)
  • Conductive Materials (AREA)

Abstract

본 발명은 폴리우레탄계 화합물, 폴리에틸렌(메타)아크릴산 및 가교제의 중합 결과물을 포함하는 프로톤 전도성 전해질, 그 제조방법 및 이를 구비하는 연료전지를 제공한다. 본 발명의 프로톤 전도성 전해질은 기존의 폴리벤즈이미다졸 및 나피온에 비하여 제조단가가 저렴하고, 용매 캐스팅 등의 방법을 적용하여 막 제조하기가 용이하며 두께 조절도 쉽다. 그리고 높은 기계적 강도 및 유연성을 갖고 있고 이온 전도도 특성이 매우 개선된 고분자 전해질막이다. 상술한 프로톤 전도성 전해질을 이용하면 100℃ 이상의 고온 및 무가습의 조건하에서 동작 가능하며 발전 성능이 향상된 연료전지를 제작할 수 있다.The present invention provides a proton conductive electrolyte comprising a polymerization product of a polyurethane compound, polyethylene (meth) acrylic acid, and a crosslinking agent, a method of manufacturing the same, and a fuel cell having the same. The proton conductive electrolyte of the present invention is less expensive to manufacture than conventional polybenzimidazole and Nafion, and is easy to manufacture a film by applying a solvent casting method, and also easy to control the thickness. In addition, it is a polymer electrolyte membrane having high mechanical strength and flexibility, and having greatly improved ion conductivity. By using the above-described proton conductive electrolyte, a fuel cell capable of operating under conditions of high temperature and no humidification of 100 ° C. or higher and having improved power generation performance can be manufactured.

Description

프로톤 전도성 전해질, 그 제조방법 및 이를 이용한 연료 전지{Proton conductive electrolyte, preparing method thereof, and fuel cell using the same}Proton conductive electrolyte, preparing method, and fuel cell using the same

도 1은 본 발명의 실시예 1에 따른 프로톤 전도성 전해질에서 온도에 따른 전도도 변화를 나타낸 그래프이고,1 is a graph showing the conductivity change with temperature in the proton conductive electrolyte according to Example 1 of the present invention,

도 2는 본 발명의 실시예 4에 따른 연료전지에 있어서, 초기상태에서의 전류밀도와 전지전압과의 관계를 나타내는 그래프이다.FIG. 2 is a graph showing the relationship between the current density in the initial state and the battery voltage in the fuel cell according to the fourth embodiment of the present invention.

본 발명은 프로톤 전도성 전해질, 그 제조방법 및 이를 이용한 연료전지에 관한 것으로서, 보다 상세하기로는 고온에서도 이온 전도도 특성이 우수한 고온 연료전지에 적합한 프로톤 전도성 전해질, 그 제조방법 및 상기 프로톤 전도성 전해질을 구비한 연료전지에 관한 것이다.The present invention relates to a proton conductive electrolyte, a method for manufacturing the same, and a fuel cell using the same, and more particularly, a proton conductive electrolyte suitable for a high temperature fuel cell having excellent ion conductivity characteristics even at high temperature, and a method of manufacturing the same and the proton conductive electrolyte. It relates to a fuel cell.

종래, 전압을 인가함으로써 이온이 이동하는 이온 전도체가 알려져 있다. 이 이온전도체는 전지나 전기화학센서 등의 전기화학 장치로서 널리 이용되고 있다.Background Art Conventionally, ion conductors in which ions move by applying a voltage are known. This ion conductor is widely used as an electrochemical device, such as a battery and an electrochemical sensor.

예를 들어, 연료전지에 있어서는 발전 효율, 시스템 효율, 구성 부재의 장기 내구성의 관점에서, 100 내지 300℃의 작동온도에서 무가습 혹은 상대 습도 50% 이하의 저가습 작동조건에서 양호한 프로톤 전도성을 장기 안정적으로 나타내는 프로톤 전도체가 요구되고 있다.For example, in fuel cells, in terms of power generation efficiency, system efficiency, and long-term durability of a component, good proton conductivity can be obtained in a low humidity operation condition of 100% to 300 ° C at a low humidity or a relative humidity of 50% or less. There is a demand for a stable proton conductor.

종래의 고체 고분자형 연료전지의 개발에 있어서는, 상기 요구를 감안하여 검토되어 왔는데, 퍼플루오르카본술폰산막을 전해질막으로 이용한 고체 고분자형 연료전지에서는 100 내지 300℃의 작동온도에서, 상대습도 50% 이하에서는 충분한 발전성능을 얻을 수 없는 단점이 있다.In the development of a conventional polymer electrolyte fuel cell, it has been considered in view of the above requirements. In a polymer electrolyte fuel cell using a perfluorocarbon sulfonic acid membrane as an electrolyte membrane, the relative humidity is 50% or less at an operating temperature of 100 to 300 ° C. In this case, there is a disadvantage in that sufficient power generation performance cannot be obtained.

또한, 종래 프로톤 전도성 부여제를 함유시킨 전해질막을 사용한 연료전지, 실리카 분산막을 사용한 연료전지, 무기-유기복합막을 사용한 연료전지, 인산 도프 그래프트막을 사용한 연료전지, 또는 이온성 액체복합막을 사용한 연료전지가 있다.In addition, a fuel cell using an electrolyte membrane containing a proton conductivity imparting agent, a fuel cell using a silica dispersion film, a fuel cell using an inorganic-organic composite membrane, a fuel cell using a phosphate dope graft membrane, or a fuel cell using an ionic liquid composite membrane have.

또한, 인산 등의 강산을 도핑시킨 폴리벤즈이미다졸로 이루어진 고체 고분자 전해질막이 개시되어 있다 (미국특허 제5,525,436호).Also disclosed is a solid polymer electrolyte membrane made of polybenzimidazole doped with a strong acid such as phosphoric acid (US Pat. No. 5,525,436).

그러나 상술한 전해질막은 고온에서 발전 성능을 장기간 안정적으로 발휘할 수 없다는 문제가 있다. 특히, 100 내지 300℃의 높은 작동온도, 무가습 혹은 상대습도 50% 이하의 사용 환경하에서의 장기안정성은 충분하지 않다.However, the above-described electrolyte membrane has a problem in that it is impossible to stably exhibit power generation performance at high temperatures. In particular, long-term stability under high operating temperatures of 100 to 300 ° C., no humidification or relative humidity of 50% or less is insufficient.

이에 본 발명이 이루고자 하는 기술적 과제는 상술한 문제점을 해결하여 고온에서도 높은 이온 전도도를 유지하며 전해질막의 변형없이 고온용 고분자 전해질막으로 적합한 프로톤 전도성 전해질, 그 제조방법 및 이를 이용하여 발전 성능이 개 선된 연료전지를 제공하는 것이다.Accordingly, the technical problem to be achieved by the present invention is to solve the above-mentioned problems, maintain high ionic conductivity even at high temperature, suitable for high temperature polymer electrolyte membrane without deformation of electrolyte membrane, its production method and improved power generation performance using the same. To provide a fuel cell.

상기 기술적 과제를 이루기 위하여 본 발명에서는,In the present invention to achieve the above technical problem,

하기 화학식 1로 표시되는 폴리우레탄계 화합물, 하기 화학식 2로 표시되는폴리에틸렌(메타)아크릴산 및 가교제의 중합 결과물을 포함하는 프로톤 전도성 전해질을 제공한다.Provided is a proton conductive electrolyte comprising a polymerization product of a polyurethane-based compound represented by Formula 1, a polyethylene (meth) acrylic acid represented by Formula 2, and a crosslinking agent.

[화학식 1][Formula 1]

Figure 112005028284946-pat00001
Figure 112005028284946-pat00001

상기식중, R은 치환 또는 비치환된 C1-C6 알킬렌기, 치환 또는 비치환된 C4-C20 사이클로알킬렌기, 치환 또는 비치환된 C6-C20 아릴렌기, 또는 치환 또는 비치환된 C2-C20 헤테로아릴렌기이고, Wherein R is a substituted or unsubstituted C1-C6 alkylene group, a substituted or unsubstituted C4-C20 cycloalkylene group, a substituted or unsubstituted C6-C20 arylene group, or a substituted or unsubstituted C2-C20 hetero Arylene group,

a는 10 내지 500의 수이고, a is a number from 10 to 500,

B는 H+, NH4+ 또는 알칼리 금속 이온이다.B is H + , NH 4 + or an alkali metal ion.

[화학식 2][Formula 2]

Figure 112005028284946-pat00002
Figure 112005028284946-pat00002

상기식중, R'은 수소 또는 메틸기이고, Wherein R 'is hydrogen or a methyl group ,

m은 70 내지 90몰%이고, n은 10 내지 30몰%이고, m is 70 to 90 mol%, n is 10 to 30 mol%,

b는 50 내지 1000의 수이다. b is a number from 50 to 1000.

본 발명의 다른 기술적 과제는 하기 화학식 2로 표시되는 폴리에틸렌아크릴산(PEAA)에 염기를 부가하여 대응하는 염을 얻는 단계;Another technical problem of the present invention is to obtain a corresponding salt by adding a base to polyethylene acrylic acid (PEAA) represented by the following formula (2);

상기 염에, 하기 화학식 1로 표시되는 폴리우레탄계 화합물, 가교제 및 용매를 부가하여 혼합물을 얻는 단계; 및Adding a polyurethane compound, a crosslinking agent, and a solvent represented by Formula 1 to the salt to obtain a mixture; And

상기 혼합물의 중합반응을 수행하여 상술한 프로톤 전도성 전해질을 제조하는 단계를 포함하는 것을 특징으로 하는 프로톤 전도성 전해질의 제조방법에 의하여 이루어진다.It is made by the method for producing a proton conductive electrolyte, characterized in that it comprises the step of preparing the above-mentioned proton conductive electrolyte by performing a polymerization reaction of the mixture.

[화학식 1][Formula 1]

Figure 112005028284946-pat00003
Figure 112005028284946-pat00003

상기식중, R은 치환 또는 비치환된 C1-C6 알킬렌기, 치환 또는 비치환된 C4-C20 사이클로알킬렌기, 치환 또는 비치환된 C6-C20 아릴렌기, 또는 치환 또는 비치환된 C2-C20 헤테로아릴렌기이고, Wherein R is a substituted or unsubstituted C1-C6 alkylene group, a substituted or unsubstituted C4-C20 cycloalkylene group, a substituted or unsubstituted C6-C20 arylene group, or a substituted or unsubstituted C2-C20 hetero Arylene group,

a는 10 내지 500의 수이고, a is a number from 10 to 500,

B는 H+, NH4 + 또는 알칼리 금속 이온이고, B is H + , NH 4 + or an alkali metal ion,

[화학식 2][Formula 2]

Figure 112005028284946-pat00004
Figure 112005028284946-pat00004

상기식중, R'은 수소 또는 메틸기이고,Wherein R 'is hydrogen or a methyl group,

m은 70 내지 90몰%이고, n은 10 내지 30몰%이고, m is 70 to 90 mol%, n is 10 to 30 mol%,

b는 50 내지 1000의 수이다. b is a number from 50 to 1000.

본 발명의 또 다른 기술적 과제는 프로톤 전도성 전해질을 포함하는 연료전Another technical problem of the present invention is a fuel field including a proton conductive electrolyte.

지에 의하여 이루어진다.Is done by

이하, 본 발명을 보다 상세하게 설명하기로 한다.Hereinafter, the present invention will be described in more detail.

본 발명의 프로톤 전도성 전해질은 수분산성인 하기 화학식 1로 표시되는 폴리우레탄계 화합물과 하기 화학식 2로 표시되는 폴리에틸렌(메타)아크릴산 (polyethylene (metha)acrylic acid) 및 가교제를 중합(가교)시키고, 여기에 산을 함침하여 얻어진 것이다. 이러한 전해질은 가교 정도에 따라 물리적 및 열적 특성이 상이한 특성을 나타내는데, 폴리에틸렌 (메타)아크릴산의 높은 기계적 강도와 폴리우레탄의 유연성을 모두 나타내면서 이온전도도 특성이 매우 우수하다.The proton conductive electrolyte of the present invention polymerizes (crosslinks) a polyurethane-based compound represented by the following Chemical Formula 1 and a polyethylene (metha) acrylic acid represented by the following Chemical Formula 2 and a crosslinking agent, It is obtained by impregnating an acid. These electrolytes exhibit different physical and thermal properties depending on the degree of crosslinking. The electrolyte exhibits both high mechanical strength of polyethylene (meth) acrylic acid and flexibility of polyurethane, and is excellent in ion conductivity.

[화학식 1][Formula 1]

Figure 112005028284946-pat00005
Figure 112005028284946-pat00005

상기식중, R은 치환 또는 비치환된 C1-C6 알킬렌기, 치환 또는 비치환된 C4- C20 사이클로알킬렌기, 치환 또는 비치환된 C6-C20 아릴렌기, 또는 치환 또는 비치환된 C2-C20 헤테로아릴렌기이고, Wherein R is a substituted or unsubstituted C1-C6 alkylene group, a substituted or unsubstituted C4-C20 cycloalkylene group, a substituted or unsubstituted C6-C20 arylene group, or a substituted or unsubstituted C2-C20 hetero Arylene group,

a는 10 내지 500의 수이고, a is a number from 10 to 500,

B는 H+, NH4 + 또는 알칼리 금속(예: Li+, Na+, 또는 K+)이고,B is H + , NH 4 + or an alkali metal such as Li + , Na + , or K + ,

[화학식 2][Formula 2]

Figure 112005028284946-pat00006
Figure 112005028284946-pat00006

상기식중, R'은 수소 또는 메틸기이고,Wherein R 'is hydrogen or a methyl group,

m은 70 내지 90몰%이고, n은 10 내지 30몰%이고, m is 70 to 90 mol%, n is 10 to 30 mol%,

b는 50 내지 1000의 수이다. b is a number from 50 to 1000.

상기 화학식 1의 수분산 폴리우레탄의 중량 평균 분자량은 5,000 내지 500,000 이며 바람직하게는 약 10,000이다. 그리고 상기 화학식 2의 폴리에틸렌(메타)아크릴산(polyethylene (metha)acrylic acid)의 중량평균분자량은 10,000 내지 500,000이며 바람직하게는 100,000 정도이다. The weight average molecular weight of the water-dispersed polyurethane of Formula 1 is 5,000 to 500,000 and preferably about 10,000. In addition, the weight average molecular weight of polyethylene (meth) acrylic acid of the formula (2) is 10,000 to 500,000, preferably about 100,000.

본 발명의 화학식 1에서 상기 비치환된 C1-C10의 알킬렌기의 구체적인 예로는 메틸렌, 에틸렌, 프로필렌, 이소부틸렌, sec-부틸렌, 펜틸렌, iso-아밀렌, 헥실렌 등을 들 수 있고, 상기 알킬렌중 하나 이상의 수소 원자는 할로겐원자, 히드록시기, 니트로기, 시아노기, 아미노기, 아미디노기, 히드라진, 히드라존, 카르복실 기나 그의 염, 술폰산기나 그의 염, 인산이나 그의 염, 또는 C1-C6의 알킬기, C2-C6 알케닐기, C2-C6 알키닐기, C1-C6의 헤테로알킬기, C2-C6의 아릴기, C6-C20의 아릴알킬기, C6-C20의 헤테로아릴기, 또는 C6-C20의 헤테로아릴알킬기로 치환될 수 있다.Specific examples of the unsubstituted C1-C10 alkylene group in Chemical Formula 1 of the present invention include methylene, ethylene, propylene, isobutylene, sec-butylene, pentylene, iso-amylene, hexylene, and the like. At least one hydrogen atom of the alkylene may be a halogen atom, a hydroxy group, a nitro group, a cyano group, an amino group, an amidino group, a hydrazine, a hydrazone, a carboxyl group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid or a salt thereof, or C1 -C6 alkyl group, C2-C6 alkenyl group, C2-C6 alkynyl group, C1-C6 heteroalkyl group, C2-C6 aryl group, C6-C20 arylalkyl group, C6-C20 heteroaryl group, or C6-C20 It may be substituted with a heteroarylalkyl group.

상기 아릴렌기는 단독 또는 조합하여 사용되어, 하나 이상의 고리를 포함하는 2가의 카보사이클 방향족 시스템을 의미하며 상기 고리들은 펜던트 방법으로 함께 부착되거나 또는 융합될 수 있다. 아릴렌이라는 용어는 페닐렌, 나프틸렌, 테트라히드로나프틸렌과 같은 방향족 라디칼을 포함한다. 상기 아릴렌기는 할로알킬렌, 니트로, 시아노, 알콕시 및 저급 알킬아미노와 같은 치환기를 가질 수 있다. 또한 상기 아릴렌기중 하나 이상의 수소원자는 상술한 알킬기의 경우와 마찬가지의 치환기로 치환가능하다.The arylene group used alone or in combination refers to a divalent carbocycle aromatic system comprising one or more rings, which rings can be attached or fused together in a pendant manner. The term arylene includes aromatic radicals such as phenylene, naphthylene, tetrahydronaphthylene. The arylene group may have substituents such as haloalkylene, nitro, cyano, alkoxy and lower alkylamino. At least one hydrogen atom in the arylene group may be substituted with the same substituent as in the alkyl group described above.

상기 헤테로아릴렌기는 N, O, P 또는 S 중에서 선택된 1, 2 또는 3개의 헤테로원자를 포함하고, 나머지 고리원자가 2가 모노사이클릭 또는 비사이클릭 방향족 유기 화합물을 의미한다. 상기 헤테로원자중 하나 이상의 수소원자는 상술한 알킬기의 경우와 마찬가지의 치환기로 치환가능하다. The heteroarylene group includes 1, 2 or 3 heteroatoms selected from N, O, P or S, and the remaining ring atoms refer to a divalent monocyclic or bicyclic aromatic organic compound. At least one hydrogen atom of the hetero atoms may be substituted with the same substituent as in the alkyl group described above.

상기 사이클로알킬렌기는 헥실렌기 등과 같은 그룹을 말하며, 상술한 사이클로알킬렌기중 하나 이상의 수소원자는 상술한 알킬기의 경우와 마찬가지의 치환기로 치환가능하다. The cycloalkylene group refers to a group such as a hexylene group and the like, and at least one hydrogen atom of the cycloalkylene group described above may be substituted with the same substituent as in the alkyl group described above.

상기 화학식 1의 폴리우레탄계 화합물의 구체적인 예로서, Primacor 5980(Dow Chemical사)가 있다. 또는 디메틸올부탄산(dimethylol butanoic acid), 디메틸올 프로피온산(dimethylol propionic acid), 폴리(테트라메틸렌 에테르 글리콜)poly(tetramethylene ether glycol)(PTMEG), 폴리(프로필렌 글리콜)(poly(propylene glycol): PPG), 폴리카프로락톤(polycaprolactone diol: PCL)과 같은 여러가지의 혼합물을 반응하여 얻을 수 있다. Specific examples of the polyurethane compound of Formula 1 include Primacor 5980 (Dow Chemical). Or dimethylol butanoic acid, dimethylol propionic acid, poly (tetramethylene ether glycol) poly (tetramethylene ether glycol) (PTMEG), poly (propylene glycol) (polyG) And various mixtures such as polycaprolactone diol (PCL).

상기 폴리에틸렌 (메타)아크릴산의 구체적인 예로서, 화학식 2에서 R'이 수소인 폴리에틸렌 아크릴산이 있다.As a specific example of the polyethylene (meth) acrylic acid, there is polyethylene acrylic acid in which R ′ is hydrogen in formula (2).

상기 가교제로는 아지리딘계 화합물을 사용하며, 이의 구체적인 예로서As the crosslinking agent, an aziridine-based compound is used, and as a specific example thereof

변성 디이소시아네이트 (예: 이소포론 디이소시아네이트(isophorone diisocyanate)) 및 디에폭사이드 화합물이 있다. Modified diisocyanates such as isophorone diisocyanate and diepoxide compounds.

본 발명의 프로톤 전도성 전해질은 상기 아지리딘계 화합물 이외에 필요에 따라 옥사졸린계 화합물을 더 부가할 수 있다. 이와 같이 옥사졸린계 화합물을 더 부가하면 높은 기계적 강도 및 고온에서의 높은 안정성을 갖는다는 잇점을 얻을 수 있어 보다 더 바람직하다. In the proton conductive electrolyte of the present invention, an oxazoline-based compound may be further added, if necessary, in addition to the aziridine-based compound. As such, further addition of an oxazoline-based compound can obtain the advantage of having high mechanical strength and high stability at high temperature, and thus more preferable.

상기 옥사졸린계 화합물의 예로서, EPOCROS(Nippon Shokubai사)가 있다. An example of the oxazoline-based compound is EPOCROS (Nippon Shokubai).

상술한 프로톤 전도성 전해질의 제조방법을 살펴보면 다음과 같다.Looking at the manufacturing method of the above-described proton conductive electrolyte is as follows.

먼저 상기 화학식 2의 폴리에틸렌 (메타)아크릴산에 염기를 부가하여 대응하는 염을 만들어 물에 용해되도록 한다. 여기에서 염기는 특별히 제한되지는 않으며, 예로서 암모니아수, 트리에틸아민(TEA), 트리부틸아민, 수산화 나트륨(NaOH), 수산화 칼륨(KOH) 및 수산화 리튬(LiOH)등을 사용하며, 이의 함량은 폴리에틸렌 (메타)아크릴산 100 중량부를 기준으로 하여 30 내지 100 중량부이다. 만약 염기의 함량이 30 중량부 미만이면 폴리에틸렌 (메타)아크릴산이 용해되지 않으므로 바람직하지 못하다. First, a base is added to polyethylene (meth) acrylic acid of Formula 2 to make a corresponding salt to be dissolved in water. The base is not particularly limited, and examples thereof include ammonia water, triethylamine (TEA), tributylamine, sodium hydroxide (NaOH), potassium hydroxide (KOH), lithium hydroxide (LiOH), and the like. 30 to 100 parts by weight based on 100 parts by weight of polyethylene (meth) acrylic acid. If the content of the base is less than 30 parts by weight, polyethylene (meth) acrylic acid is not dissolved, which is not preferable.

상기 폴리에틸렌 (메타)아크릴산의 염에 화학식 1의 폴리우레탄계 화합물, 및 용매를 부가 및 혼합한다. To the salt of polyethylene (meth) acrylic acid, a polyurethane-based compound of formula (1) and a solvent are added and mixed.

상기 폴리에틸렌 (메타)아크릴산의 함량은 화학식 1의 폴리우레탄계 화합물 100 중량부를 기준으로 하여 30 내지 65 중량부이다. 만약 폴리에틸렌 (메타)아크릴산의 함량이 30 중량부 미만이면 기계적 강도가 낮으며 고온에서 인산에 녹는 현상이 발생하고, 65 중량부를 초과하면 소량의 인산이 함침되어 전도도가 낮아지는 특성이 있어 바람직하지 못하다. 그리고 상기 가교제인 아지리딘계 화합물의 함량은 화학식 1의 폴리우레탄계 화합물 100 중량부를 기준으로 하여 10 내지 30 중량부이다. 만약 아지리딘계 화합물의 함량이 10 중량부 미만이면 기계적 물성이 저하되고, 30 중량부를 초과하면 이온전도도 특성이 저하되므로 바람직하지 못하다.The content of the polyethylene (meth) acrylic acid is 30 to 65 parts by weight based on 100 parts by weight of the polyurethane-based compound of Formula 1. If the content of polyethylene (meth) acrylic acid is less than 30 parts by weight, the mechanical strength is low and the phenomenon of dissolving in phosphoric acid at a high temperature occurs, and if it exceeds 65 parts by weight, a small amount of phosphoric acid is impregnated to lower the conductivity, which is not preferable. . And the content of the aziridine-based compound of the crosslinking agent is 10 to 30 parts by weight based on 100 parts by weight of the polyurethane-based compound of formula (1). If the content of the aziridine-based compound is less than 10 parts by weight, the mechanical properties are lowered. If the content of the aziridine compound is more than 30 parts by weight, the ion conductivity is lowered, which is not preferable.

필요에 따라 상기 혼합물에 옥사졸린계 화합물을 더 부가하기도 하며, 이 때 옥사졸린계 화합물의 함량은 상기 화학식 1의 폴리우레탄계 화합물 100 중량부를 기준으로 하여 5 내지 30 중량부이다. 만약 옥사졸린계 화합물의 함량이 5 중량부 미만이면 부가 효과가 미미하고, 30 중량부를 초과하면 고분자 막이 브리틸(brittle)해지는 경향으로 인산의 함침량이 낮아져 이온전도도의 저하되어 바람직하지 못하다.If necessary, an oxazoline compound may be further added to the mixture, wherein the content of the oxazoline compound is 5 to 30 parts by weight based on 100 parts by weight of the polyurethane compound of Chemical Formula 1. If the content of the oxazoline-based compound is less than 5 parts by weight, the addition effect is insignificant, and if it exceeds 30 parts by weight, the impregnated amount of phosphoric acid is lowered due to the tendency of the polymer membrane to be brittle, thereby lowering the ion conductivity, which is not preferable.

상기 용매의 예로서, 물(탈이온수)이며, 물에 대한 고형분 함량이 18 내지 30 중량%가 되도록 그 함량을 조절한다.An example of the solvent is water (deionized water), the content of which is adjusted so that the solid content of water is 18 to 30% by weight.

상기 혼합물을 캐스팅하고, 이를 80 내지 120℃에서 건조하여 중합(가교) 반응을 수행한다. 만약 상기 중합 온도가 80ㅀC 미만이면 중합 반응성이 저하되고 120℃를 초과하면 급격한 반응으로 가교가 지나치게 진행되어 바람직하지 못하다. 그리고 상기 중합 반응 시간은 중합 온도에 따라 가변적이나, 120℃에서 2시간 내지 100℃ 미만에서 4 시간동안 실시한다.The mixture is cast and dried at 80 to 120 ° C. to carry out a polymerization (crosslinking) reaction. If the polymerization temperature is less than 80 ° C, the polymerization reactivity is lowered, and if it exceeds 120 ℃ crosslinking proceeds excessively by an excessive reaction is not preferable. And the polymerization reaction time varies depending on the polymerization temperature, but is carried out at 120 ℃ 2 hours to less than 100 ℃ for 4 hours.

상기한 바와 같이 중합반응이 완결되면 여기에 산을 함침시켜 프로톤 전도성 전해질을 완성하게 된다.As described above, when the polymerization is completed, an acid is impregnated therein to complete the proton conductive electrolyte.

상기 산의 비제한적인 예로서, 인산 등을 사용하며, 이의 함량은 많으면 많을수록 이온 전도도 특성면에서 유리하나, 일실시예에 의하면, 화학식 1의 폴리우레탄 화합물 100 중량부를 기준으로 하여 150 내지 500 중량부를 사용한다.As a non-limiting example of the acid, phosphoric acid or the like is used, and a higher amount thereof is advantageous in terms of ionic conductivity, but according to one embodiment, 150 to 500 weight based on 100 parts by weight of the polyurethane compound of Formula 1 Use wealth

상기 인산의 농도는 특별하게 제한되는 것은 아니지만, 80 내지 100 중량%, 특히 85중량% 인산 수용액을 사용한다.The concentration of the phosphoric acid is not particularly limited, but an aqueous solution of 80 to 100% by weight, in particular 85% by weight, of phosphoric acid is used.

상기 산의 함침시 온도는 고온(80℃)에서 1 내지 4시간 특히 2시간동안 실시하는 것이 바람직하다. The temperature at the time of impregnation of the acid is preferably carried out at a high temperature (80 ℃) for 1 to 4 hours, especially 2 hours.

상기 과정에 따라 얻은 프로톤 전도성 전해질은 화학식 1의 폴리우레탄계 화합물과, 화학식 2의 폴리에틸렌 (메타)아크릴산과 가교제인 아지리딘계 화합물간의 중합 반응 결과물로 이루어진다. 만약 상기 제조과정시 옥사졸린계 화합물이 부가된다면 프로톤 전도성 전해질은 화학식 1의 폴리우레탄계 화합물과, 화학식 2의 폴리에틸렌 (메타)아크릴산과 아지리딘계 화합물과 옥사졸린계 화합물의 중합 반응 결과물로 이루어진다.The proton conductive electrolyte obtained according to the above process consists of a polymerization reaction between the polyurethane-based compound of Formula 1, polyethylene (meth) acrylic acid of Formula 2, and an aziridine-based compound as a crosslinking agent. If the oxazoline-based compound is added during the preparation process, the proton conductive electrolyte is composed of a result of polymerization of the polyurethane-based compound of Formula 1, polyethylene (meth) acrylic acid, aziridine-based compound, and oxazoline-based compound of Formula 2.

상기 과정에 따라 얻은 프로톤 전도성 전해질은 그 막 두께가 40 내지 80㎛이다.The proton conductive electrolyte obtained according to the above procedure has a film thickness of 40 to 80 mu m.

본 발명의 연료전지는, 상기 과정에 따라 얻은 프로톤 전도성 전해질을 전해질막으로 사용한 연료전지다. 상기 전해질막은 산소극, 연료극에 협지되고, 산화제 유로를 형성한 산화제 배류판을 산소극쪽에 마련하고, 연료유로를 형성한 연료 배류판을 연료극쪽에 마련한 것을 단위셀로 하여 고분자형 연료전지로 만든다.The fuel cell of the present invention is a fuel cell using the proton conductive electrolyte obtained according to the above process as an electrolyte membrane. The electrolyte membrane is formed into a polymer fuel cell using a unit cell in which an oxidant distribution plate having an oxidant flow path formed between the oxygen electrode and the fuel electrode is formed at the oxygen electrode side, and a fuel distribution plate having the fuel flow path formed at the fuel electrode side.

이렇게 하여, 작동온도가 100 내지 300℃에서, 무가습 혹은 상대습도 50% 이하라도 발전성능을 장기간 안정적(내구성)으로 나타내는 고체 고분자형 연료전지를 얻을 수 있고, 예를 들어, 자동차용이나 가정발전용 연료전지로서 유용하다.In this way, even when the operating temperature is 100 to 300 ° C., even when no humidification or relative humidity is 50% or less, a solid polymer fuel cell exhibiting stable power generation performance (durability) for a long time can be obtained. It is useful as a fuel cell.

이하, 본 발명을 하기 실시예를 들어 보다 상세하게 설명하기로 하되, 본 발명이 하기 실시예로만 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples, but the present invention is not limited to the following examples.

실시예 1: 폴리에틸렌 아크릴산(PEAA)와 폴리우레탄과 아리지딘계 화합물의 중량비가 0.5:0.5:0.2인 경우Example 1: When the weight ratio of polyethylene acrylic acid (PEAA), polyurethane and aridine-based compound is 0.5: 0.5: 0.2

PEAA(상품명: Primacor 5980: Dow Chemical) 40 중량부에 100% 암모니아수를 부가하여 얻은 결과물에 수분산성 폴리우레탄 30 중량부, 아지리딘계 화합물 10 중량부 및 EPOCROS(Nippon Shokubai사) 20 중량부를 블랜드하고, 여기에 용매인 탈이온수를 첨가하여 교반하였다. 30 parts by weight of a water dispersible polyurethane, 10 parts by weight of an aziridine compound and 20 parts by weight of EPOCROS (Nippon Shokubai) were blended into a result obtained by adding 100% ammonia water to 40 parts by weight of PEAA (trade name: Primacor 5980: Dow Chemical). Deionized water, which is a solvent, was added thereto and stirred.

상기 혼합물을 캐스팅하고, 이를 120℃에서 약 4시간동안 건조하여 약 100㎛ 두께의 막을 형성하였다. 이 막을 85% 인산에 상온에서 2시간동안 함침하여 프로톤 전도성 전해질을 제조하였다.The mixture was cast and dried at 120 ° C. for about 4 hours to form a film about 100 μm thick. The membrane was impregnated with 85% phosphoric acid at room temperature for 2 hours to produce a proton conductive electrolyte.

실시예 2Example 2

PEAA와 폴리우레탄과 아리지딘계 화합물간의 중량비가 0.67:0.47:0.35로 변화된 것을 제외하고는, 실시예 1과 동일한 방법에 따라 실시하여 프로톤 전도성 전해질을 제조하였다.A proton conductive electrolyte was prepared in the same manner as in Example 1 except that the weight ratio between PEAA, polyurethane, and an aridine compound was changed to 0.67: 0.47: 0.35.

실시예 3Example 3

PEAA와 폴리우레탄과 아리지딘계 화합물간의 중량비가 0.58:0.63:0.27로 변화된 것을 제외하고는, 실시예 1과 동일한 방법에 따라 실시하여 프로톤 전도성 전해질을 제조하였다.A proton conductive electrolyte was prepared in the same manner as in Example 1 except that the weight ratio between PEAA, polyurethane, and an aridine compound was changed to 0.58: 0.63: 0.27.

상기 실시예 1의 프로톤 전도성 전해질막의 시간 경과에 따른 전도도 변화를 조사하여 도 1에 나타내었다. 도 1에는 실시예 1의 경우와의 비교를 위하여 나피온막에 물을 함침하여 얻은 프로톤 전도성 전해질막(-◆-), 나피온막에 카보네이트를 함침하여 얻어진 프로톤 전도성 전해질막(-■-) 및 나피온막에 프로필렌 카보네이트(PC)를 함침하여 얻어진 프로톤 전도성 전해질막(-△-)에 대한 경우도 함께 도시하였다.The change in conductivity over time of the proton conductive electrolyte membrane of Example 1 was investigated and is shown in FIG. 1. 1 shows a proton conductive electrolyte membrane (-◆-) obtained by impregnating water in a Nafion membrane for comparison with the case of Example 1, and a proton conductive electrolyte membrane (-■-) obtained by impregnating a carbonate in a Nafion membrane. And a case of the proton conductive electrolyte membrane (-Δ-) obtained by impregnating propylene carbonate (PC) on the Nafion membrane.

도 1을 참조하면, 기존의 PEMFC에 적용하는 나피온-H2O 시스템과, 나피온-유기용매(고비점 유기 용매) 와 실시예 1의 프로톤 전도성 전해질막을 전해질로 사용한 시스템간의 비교 실험 결과로서, 실시예 1의 프로톤 전도성 전해질막이 고온에서전도도 특성이 우수하다는 것을 알 수 있었다.Referring to FIG. 1, as a result of a comparative experiment between a Nafion-H 2 O system applied to a conventional PEMFC, a system using a Nafion-organic solvent (high boiling point organic solvent) and the proton conductive electrolyte membrane of Example 1 as an electrolyte , The proton conductive electrolyte membrane of Example 1 was found to have excellent conductivity characteristics at high temperatures.

실시예 4Example 4

상기 실시예 1의 고체 고분자 전해질막을 시판중인 연료전지용 전극(Electrochemist사)으로 협지하여 막전극 접합체로 하여, 110℃~150℃, 무가습 조건하에서 수소/공기로 연료전지 운전을 수행했다. 전극면적은 3cm 3cm=9cm2이고, 가스공급량은 수소가 100ccm, 공기가 300ccm으로 했다.The solid polymer electrolyte membrane of Example 1 was sandwiched with a commercially available fuel cell electrode (Electrochemist) to form a membrane electrode assembly, and the fuel cell was operated with hydrogen / air under 110 ° C to 150 ° C and no humidification conditions. The electrode area was 3 cm 3 cm = 9 cm 2 , and the gas supply amount was 100 ccm for hydrogen and 300 ccm for air.

실시예 5-6Example 5-6

운전시 온도가 130℃ 및 150℃으로 각각 변화된 것을 제외하고는, 실시예 4와 동일한 방법에 따라 실시하였다.The operation was carried out in the same manner as in Example 4 except that the temperature was changed to 130 ° C. and 150 ° C. during the operation.

도 2에는 발전초기의 전류-전압 특성을 나타낸 것이고, 이로부터 본 발명의 실시예 4에 따른 연료전지는 고온에서 작동 가능하며, 특히 동일한 조건에서 나피온의 경우보다는 우수한 결과를 나타냈고, 기존의 폴리벤즈이미다졸(PBI)과 대등한 특성을 나타냈다.Figure 2 shows the current-voltage characteristics of the initial power generation, from which the fuel cell according to the fourth embodiment of the present invention is capable of operating at high temperatures, particularly in the same conditions showed better results than in the case of Nafion, It showed properties comparable to polybenzimidazole (PBI).

본 발명의 프로톤 전도성 전해질은 기존의 폴리벤즈이미다졸 및 나피온에 비하여 제조단가가 저렴하고, 용매 캐스팅 등의 방법을 적용하여 막 제조하기가 용이하며 두께 조절도 쉽다. 그리고 높은 기계적 강도 및 유연성을 갖고 있고 이온 전도도 특성이 매우 개선된 고분자 전해질막이다.The proton conductive electrolyte of the present invention is less expensive to manufacture than conventional polybenzimidazole and Nafion, and is easy to manufacture a film by applying a solvent casting method, and also easy to control the thickness. In addition, it is a polymer electrolyte membrane having high mechanical strength and flexibility, and having greatly improved ion conductivity.

상술한 프로톤 전도성 전해질을 이용하면 100℃ 이상의 고온 및 무가습의 조건하에서 동작 가능하며 발전 성능이 향상된 연료전지를 제작할 수 있다.By using the above-described proton conductive electrolyte, a fuel cell capable of operating under conditions of high temperature and no humidification of 100 ° C. or higher and having improved power generation performance can be manufactured.

Claims (19)

하기 화학식 1로 표시되는 폴리우레탄계 화합물, 하기 화학식 2로 표시되는폴리에틸렌(메타)아크릴산 및 가교제의 중합 결과물을 포함하는 프로톤 전도성 전해질.A proton conductive electrolyte comprising a polymerization product of a polyurethane-based compound represented by the following formula (1), a polyethylene (meth) acrylic acid represented by the following formula (2), and a crosslinking agent. [화학식 1] [Formula 1]
Figure 112005028284946-pat00007
Figure 112005028284946-pat00007
상기식중, R은 치환 또는 비치환된 C1-C6 알킬렌기, 치환 또는 비치환된 C4-C20 사이클로알킬렌기, 치환 또는 비치환된 C6-C20 아릴렌기, 또는 치환 또는 비치환된 C2-C20 헤테로아릴렌기이고, Wherein R is a substituted or unsubstituted C1-C6 alkylene group, a substituted or unsubstituted C4-C20 cycloalkylene group, a substituted or unsubstituted C6-C20 arylene group, or a substituted or unsubstituted C2-C20 hetero Arylene group, a는 10 내지 500의 수이고, a is a number from 10 to 500, B는 H+, NH4 +, 또는 알칼리 금속 이온이고, B is H + , NH 4 + , or an alkali metal ion, [화학식 2][Formula 2]
Figure 112005028284946-pat00008
Figure 112005028284946-pat00008
상기식중, R'은 수소 또는 메틸기이고,Wherein R 'is hydrogen or a methyl group, m은 70 내지 90몰%이고, n은 10 내지 30몰%이고, m is 70 to 90 mol%, n is 10 to 30 mol%, b는 50 내지 1000의 수이다. b is a number from 50 to 1000.
제1항에 있어서, 상기 가교제가 아지리딘계 화합물인 것을 특징으로 하는 프로톤 전도성 전해질.The proton conductive electrolyte according to claim 1, wherein the crosslinking agent is an aziridine compound. 제2항에 있어서, 상기 아지리딘계 화합물이 변성 디이소시아네이트 및 디에폭사이드 화합물중에서 선택되는 것을 특징으로 하는 프로톤 전도성 전해질.The proton conductive electrolyte according to claim 2, wherein the aziridine-based compound is selected from a modified diisocyanate and a diepoxide compound. 제1항에 있어서, 옥사졸린계 화합물이 더 포함되는 것을 특징으로 하는 프로톤 전도성 전해질.The proton conductive electrolyte of claim 1, further comprising an oxazoline compound. 제4항에 있어서, 상기 옥사졸린계 화합물의 함량은 상기 화학식 1의 폴리우레탄계 화합물 100 중량부를 기준으로 하여 5 내지 30 중량부인 것을 특징으로 하는 프로톤 전도성 전해질.The proton conductive electrolyte according to claim 4, wherein the content of the oxazoline-based compound is 5 to 30 parts by weight based on 100 parts by weight of the polyurethane-based compound of Formula 1. 제1항에 있어서, 상기 화학식 2의 표시되는 폴리에틸렌(메타)아크릴산의 함량은 상기 화학식 1의 폴리우레탄계 화합물 100 중량부를 기준으로 하여 30 내지 65 중량부인 것을 특징으로 하는 프로톤 전도성 전해질.According to claim 1, Proton conductive electrolyte, characterized in that the content of polyethylene (meth) acrylic acid represented by the formula (2) is 30 to 65 parts by weight based on 100 parts by weight of the polyurethane-based compound of formula (1). 제1항에 있어서, 산이 더 포함된 것을 특징으로 하는 프로톤 전도성 전해질.The proton conductive electrolyte of claim 1, further comprising an acid. 제7항에 있어서, 산이 인산이고, 상기 산의 함량은 화학식 1의 폴리우레탄 화합물 100 중량부를 기준으로 하여 150 내지 500 중량부인 것을 특징으로 하는 프로톤 전도성 전해질.The proton conductive electrolyte according to claim 7, wherein the acid is phosphoric acid, and the acid content is 150 to 500 parts by weight based on 100 parts by weight of the polyurethane compound of Formula 1. 하기 화학식 2로 표시되는 폴리에틸렌아크릴산(PEAA)에 염기를 부가하여 대응하는 염을 얻는 단계;Adding a base to polyethylene acrylic acid (PEAA) represented by Formula 2 to obtain a corresponding salt; 상기 염에, 하기 화학식 1로 표시되는 폴리우레탄계 화합물, 가교제 및 용매를 부가하여 혼합물을 얻는 단계; 및Adding a polyurethane compound, a crosslinking agent, and a solvent represented by Formula 1 to the salt to obtain a mixture; And 상기 혼합물의 중합반응을 수행하여 제1항 내지 제8항중 어느 한 항의 프로톤 전도성 전해질을 제조하는 단계를 포함하는 것을 특징으로 하는 프로톤 전도성 전해질의 제조방법.A method for producing a proton conductive electrolyte, comprising the step of preparing the proton conductive electrolyte of any one of claims 1 to 8 by performing a polymerization reaction of the mixture. [화학식 1][Formula 1]
Figure 112005028284946-pat00009
Figure 112005028284946-pat00009
상기식중, R은 치환 또는 비치환된 C1-C6 알킬렌기, 치환 또는 비치환된 C4-C20 사이클로알킬렌기, 치환 또는 비치환된 C6-C20 아릴렌기, 또는 치환 또는 비치환된 C2-C20 헤테로아릴렌기이고, Wherein R is a substituted or unsubstituted C1-C6 alkylene group, a substituted or unsubstituted C4-C20 cycloalkylene group, a substituted or unsubstituted C6-C20 arylene group, or a substituted or unsubstituted C2-C20 hetero Arylene group, a는 10 내지 500의 수이고, a is a number from 10 to 500, B는 H+, NH4 + 또는 알칼리 금속 이온이고, B is H + , NH 4 + or an alkali metal ion, [화학식 2][Formula 2]
Figure 112005028284946-pat00010
Figure 112005028284946-pat00010
상기식중, R'은 수소 또는 메틸기이고,Wherein R 'is hydrogen or a methyl group, m은 70 내지 90몰%이고, n은 10 내지 30몰%이고, m is 70 to 90 mol%, n is 10 to 30 mol%, b는 50 내지 1000의 수이다. b is a number from 50 to 1000.
제9항에 있어서, 상기 중합 반응을 수행한 결과물에 산을 함침하는 단계를 더 포함하는 것을 특징으로 하는 프로톤 전도성 전해질의 제조방법.10. The method of claim 9, further comprising the step of impregnating an acid to the result of the polymerization reaction. 제10항에 있어서, 상기 산이 인산인 것을 특징으로 하는 프로톤 전도성 전해질의 제조방법.The method of claim 10, wherein the acid is phosphoric acid. 제9항에 있어서, 상기 중합 반응이 80 내지 120℃에서 이루어지는 것을 특징으로 하는 프로톤 전도성 전해질의 제조방법.The method for producing a proton conductive electrolyte according to claim 9, wherein the polymerization reaction is performed at 80 to 120 ° C. 제9항에 있어서, 상기 염기가 암모니아수, 트리에틸아민(TEA), 트리부틸아 민, 수산화 나트륨(NaOH), 수산화 칼륨(KOH) 및 수산화 리튬(LiOH))중에서 선택된 하나 이상인 것을 특징으로 하는 프로톤 전도성 전해질의 제조방법.The proton of claim 9, wherein the base is at least one selected from ammonia water, triethylamine (TEA), tributylamine, sodium hydroxide (NaOH), potassium hydroxide (KOH) and lithium hydroxide (LiOH)). Method for producing a conductive electrolyte. 제9항에 있어서, 상기 혼합물의 중합 반응이,The method of claim 9, wherein the polymerization reaction of the mixture, 상기 혼합물을 캐스팅하고, 이를 80 내지 120℃에서 건조하는 과정을 통하여 이루어지는 것을 특징으로 하는 프로톤 전도성 전해질의 제조방법.Casting the mixture, it is made through the process of drying at 80 to 120 ℃ proton conductive electrolyte production method characterized in that. 제9항에 있어서, 상기 가교제가 아지리딘계 화합물인 것을 특징으로 하는 프로톤 전도성 전해질의 제조방법.The method for producing a proton conductive electrolyte according to claim 9, wherein the crosslinking agent is an aziridine compound. 제15항에 있어서, 상기 아지리딘계 화합물이 변성 디이소시아네이트 및 디에폭사이드 화합물중에서 선택되며, The compound of claim 15, wherein the aziridine-based compound is selected from modified diisocyanates and diepoxide compounds, 상기 아지리딘계 화합물의 함량은 화학식 1의 폴리우레탄계 화합물 100 중량부를 기준으로 하여 10 내지 30 중량부인 것을 특징으로 하는 프로톤 전도성 전해질의 제조방법.The content of the aziridine-based compound is a method for producing a proton conductive electrolyte, characterized in that 10 to 30 parts by weight based on 100 parts by weight of the polyurethane-based compound of formula (1). 제9항에 있어서, 상기 혼합물에 옥사졸린계 화합물을 더 부가되는 것을 특징으로 하는 프로톤 전도성 전해질의 제조방법.10. The method of claim 9, wherein an oxazoline compound is further added to the mixture. 제17항에 있어서, 상기 옥사졸린계 화합물의 함량은 상기 화학식 1의 폴리우 레탄계 화합물 100 중량부를 기준으로 하여 5 내지 30 중량부인 것을 특징으로 하는 프로톤 전도성 전해질의 제조방법.18. The method of claim 17, wherein the content of the oxazoline-based compound is 5 to 30 parts by weight based on 100 parts by weight of the polyurethane compound of Formula 1. 제1항 내지 제8항중 어느 한 항의 프로톤 전도성 전해질을 포함하는 연료전A fuel field comprising the proton conductive electrolyte of claim 1. 지.G.
KR1020050045215A 2005-05-27 2005-05-27 Proton conductive electrolyte, preparing method thereof, and fuel cell using the same KR100612897B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020050045215A KR100612897B1 (en) 2005-05-27 2005-05-27 Proton conductive electrolyte, preparing method thereof, and fuel cell using the same
US11/441,000 US7816052B2 (en) 2005-05-27 2006-05-26 Portion conductive electrolyte, method of preparing the same, electrode for fuel cell, method of manufacturing the electrode, and fuel cell including the same
CNB2006100934685A CN100462390C (en) 2005-05-27 2006-05-29 Portion conductive electrolyte, method of preparing the same, electrode for fuel cell, method of manufacturing the electrode, and fuel cell including the same
JP2006148827A JP4701126B2 (en) 2005-05-27 2006-05-29 PROTON CONDUCTIVE ELECTROLYTE AND ITS MANUFACTURING METHOD, FUEL CELL ELECTRODE AND ITS MANUFACTURING METHOD, AND FUEL CELL USING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050045215A KR100612897B1 (en) 2005-05-27 2005-05-27 Proton conductive electrolyte, preparing method thereof, and fuel cell using the same

Publications (1)

Publication Number Publication Date
KR100612897B1 true KR100612897B1 (en) 2006-08-14

Family

ID=37483512

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050045215A KR100612897B1 (en) 2005-05-27 2005-05-27 Proton conductive electrolyte, preparing method thereof, and fuel cell using the same

Country Status (2)

Country Link
KR (1) KR100612897B1 (en)
CN (1) CN100462390C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100773533B1 (en) 2006-12-18 2007-11-07 삼성에스디아이 주식회사 Polymer electrolyte, preparing method thereof, and fuel cell using the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111019144B (en) * 2019-12-23 2022-03-01 珠海冠宇电池股份有限公司 Polyolefin-g-polybenzimidazole graft copolymer and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002208436A (en) 2001-01-05 2002-07-26 Toyo Tire & Rubber Co Ltd Celled electrolyte element, and manufacturing method of the same
KR20020093781A (en) * 2002-05-23 2002-12-16 노환진 Lithium secondary battery and its fabrication
KR20030093019A (en) * 2002-06-01 2003-12-06 삼성에스디아이 주식회사 Lithium batteries
JP2005044681A (en) 2003-07-24 2005-02-17 Nippon Synthetic Chem Ind Co Ltd:The Binder composition for lithium secondary battery electrode, electrode for lithium secondary battery, and lithium secondary battery and manufacturing method thereof
KR20060010690A (en) * 2004-07-27 2006-02-02 삼성에스디아이 주식회사 Electrolyte for fuel cell and fuel cell employing the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4144830B2 (en) * 1999-04-27 2008-09-03 ユニケミカル株式会社 Solid polymer electrolyte membrane for fuel cells
KR100428977B1 (en) * 2001-11-24 2004-04-29 삼성에스디아이 주식회사 Polymer electrolyte composition for improving overcharge safety and lithium battery using the same
JP2005054170A (en) * 2003-07-23 2005-03-03 Sumitomo Chemical Co Ltd Copolymer and its application
JP4562364B2 (en) * 2003-09-12 2010-10-13 日本曹達株式会社 Block / graft copolymers and solid polymer electrolytes using them
KR100599677B1 (en) * 2003-10-31 2006-07-13 삼성에스디아이 주식회사 A method for preparing sulfonated polystyrene for polymer electrolyte of fuel cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002208436A (en) 2001-01-05 2002-07-26 Toyo Tire & Rubber Co Ltd Celled electrolyte element, and manufacturing method of the same
KR20020093781A (en) * 2002-05-23 2002-12-16 노환진 Lithium secondary battery and its fabrication
KR20030093019A (en) * 2002-06-01 2003-12-06 삼성에스디아이 주식회사 Lithium batteries
JP2005044681A (en) 2003-07-24 2005-02-17 Nippon Synthetic Chem Ind Co Ltd:The Binder composition for lithium secondary battery electrode, electrode for lithium secondary battery, and lithium secondary battery and manufacturing method thereof
KR20060010690A (en) * 2004-07-27 2006-02-02 삼성에스디아이 주식회사 Electrolyte for fuel cell and fuel cell employing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100773533B1 (en) 2006-12-18 2007-11-07 삼성에스디아이 주식회사 Polymer electrolyte, preparing method thereof, and fuel cell using the same

Also Published As

Publication number Publication date
CN100462390C (en) 2009-02-18
CN1872898A (en) 2006-12-06

Similar Documents

Publication Publication Date Title
EP3221912B1 (en) Novel polymers and methods for their manufacture
JP4588035B2 (en) POLYMER ELECTROLYTE MEMBRANE FOR FUEL CELL, MANUFACTURING METHOD THEREOF, AND FUEL CELL
JP2012089526A (en) Electrolyte membrane for fuel cell
US7547748B2 (en) Polymer comprising terminal sulfonic acid group, and polymer electrolyte and fuel cell using the same
US8715881B2 (en) Benzoxazine-based monomer, polymer thereof, electrode for fuel cell including the same, electrolyte membrane for fuel cell including the same, and fuel cell using the same
JP4701126B2 (en) PROTON CONDUCTIVE ELECTROLYTE AND ITS MANUFACTURING METHOD, FUEL CELL ELECTRODE AND ITS MANUFACTURING METHOD, AND FUEL CELL USING THE SAME
US20070166621A1 (en) Polymer membrane, method of preparing the same, and fuel cell using the same
JP2006147165A (en) Solid polymer electrolyte membrane, its manufacturing method, and fuel cell using it
US7488549B2 (en) Proton conducting polymer, polymer membrane comprising the same, method of manufacturing the polymer membrane, and fuel cell using the polymer membrane
KR101537310B1 (en) Electrolyte Membrane for fuel cell and fuel cell using the same
KR100612897B1 (en) Proton conductive electrolyte, preparing method thereof, and fuel cell using the same
KR100773533B1 (en) Polymer electrolyte, preparing method thereof, and fuel cell using the same
CN107207427B (en) Compound comprising aromatic ring, the polymer comprising the compound and the polyelectrolyte film using the polymer
JP4637488B2 (en) Gel electrolyte and fuel cell electrode and fuel cell
KR101395040B1 (en) Alkyl chain modified sulfonated poly(ether sulfone) copolymer and method for preparing the same
KR100668322B1 (en) Proton conductive solid polymer electrolyte film and fuel cell employing the same
US20090233144A1 (en) Polymer Electrolyte membrane with coating layer of anion binding agent and fuel cell using same
KR101558536B1 (en) Hyperbranched polymer electrode for fuel cell including the same electrolyte membrane for fuel cell including the same and fuel cell using the same
US9178218B2 (en) Hyper-branched polymer, electrode and electrolyte membrane including the hyper-branched polymer, and fuel cell including at least one of the electrode and the electrolyte membrane
KR100738058B1 (en) Electrode for fuel cell and fuel cell using the same
KR20090046685A (en) Benzoxazine-based monomer, benzooxzine-based polymer, electrode for fuel cell including the same, electrolyte membrane for fuel cell including the same, and fuel cell using the same
WO2006001083A1 (en) Solid polymer electrolyte, electrode for fuel cell, and fuel cell

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120720

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20130723

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140730

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20150721

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20160721

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20170720

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20180718

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20190801

Year of fee payment: 14