JP2010113820A - Lithium ion conductive solid electrolyte composition and battery using it - Google Patents

Lithium ion conductive solid electrolyte composition and battery using it Download PDF

Info

Publication number
JP2010113820A
JP2010113820A JP2008282974A JP2008282974A JP2010113820A JP 2010113820 A JP2010113820 A JP 2010113820A JP 2008282974 A JP2008282974 A JP 2008282974A JP 2008282974 A JP2008282974 A JP 2008282974A JP 2010113820 A JP2010113820 A JP 2010113820A
Authority
JP
Japan
Prior art keywords
solid electrolyte
lithium
composition
group
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008282974A
Other languages
Japanese (ja)
Other versions
JP5580979B2 (en
Inventor
Takeshi Ota
剛 太田
Hiroyuki Tamura
裕之 田村
Hiroshi Takahashi
洋志 高橋
Kazuaki Yanagi
和明 柳
Kyoko Sugiyama
享子 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2008282974A priority Critical patent/JP5580979B2/en
Publication of JP2010113820A publication Critical patent/JP2010113820A/en
Application granted granted Critical
Publication of JP5580979B2 publication Critical patent/JP5580979B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composition with excellent processibility by retaining solid electrolyte while maintaining ion conductivity. <P>SOLUTION: The composition contains lithium ion conductive solid electrolyte consisting of at least a kind or more elements selected from phosphorus, silicon, germanium, and boron; and a kind or more compounds selected from a carbonate compound expressed in: R<SB>1</SB>-O-C(=O)-O-R<SB>2</SB>(in the formula, R<SB>1</SB>, R<SB>2</SB>denote a group with the carbon number of 2 or more, respectively); an ether compound expressed in: R<SB>3</SB>-O-R<SB>4</SB>-O-R<SB>5</SB>(in the formula, R<SB>3</SB>and R<SB>5</SB>denote a group with the carbon number of 2 or more, and R<SB>4</SB>denotes a group with the carbon number of 1 or more); and a nitrile compound expressed in R<SB>6</SB>-CN (in the formula, R<SB>6</SB>denotes a group with the carbon number of 2 or more). <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、リチウムイオン伝導性電解質組成物及びそれを用いたリチウム電池に関する。   The present invention relates to a lithium ion conductive electrolyte composition and a lithium battery using the same.

近年、携帯情報端末、携帯電子機器、家庭用小型電力貯蔵装置、モーターを動力源とする自動二輪車、電気自動車、ハイブリッド電気自動車等に用いられる高性能リチウム電池等二次電池の需要が増加している。
使用される用途が広がるのに伴い、二次電池の更なる安全性の向上及び高性能化が要求されている。
In recent years, the demand for secondary batteries such as high-performance lithium batteries used in personal digital assistants, portable electronic devices, small household power storage devices, motorcycles powered by motors, electric vehicles, hybrid electric vehicles, etc. has increased. Yes.
As the applications for use expand, further improvements in safety and performance of secondary batteries are required.

無機固体電解質は、その性質上一般に不燃で、通常使用される有機溶媒電解質と比較し安全性の高い材料である。そのため、該電解質を用いた高い安全性を備えたリチウム電池の開発が望まれている。   Inorganic solid electrolytes are generally nonflammable in nature and are safer materials than commonly used organic solvent electrolytes. Therefore, development of a lithium battery having high safety using the electrolyte is desired.

特許文献1には、固体電解質を塗布してシート化する際に、固体電解質を溶剤に懸濁させ、さらにバインダーを添加することが開示されている。この際、硫化物系固体電解質は、使用できる溶剤がヘプタンやトルエン等の炭化水素溶媒に限られていた。しかしながら、炭化水素溶媒はイオン伝導性、電子伝導性において不活性であり、残存することは好ましくない。残存した炭化水素溶媒を含んで電池を製造すると電池性能が落ちる。   Patent Document 1 discloses that when a solid electrolyte is applied to form a sheet, the solid electrolyte is suspended in a solvent and a binder is further added. At this time, the usable solvent for the sulfide-based solid electrolyte is limited to hydrocarbon solvents such as heptane and toluene. However, the hydrocarbon solvent is inactive in ionic conductivity and electronic conductivity, and it is not preferable to remain. When a battery is manufactured including the remaining hydrocarbon solvent, the battery performance is lowered.

また、これまで、ジメチルカーボネート等の電解液をLiS−SiS−LiPO電解質に接触させてその安定性を調べた例はあるが、色相等の変化を観察しただけであり、電解質の性能や電池にしたときの影響については触れられていない(非特許文献1)。 In addition, until now, there is an example in which an electrolyte such as dimethyl carbonate is brought into contact with a Li 2 S—SiS 2 —Li 3 PO 4 electrolyte to examine its stability, but only changes in hue and the like were observed, No mention is made of the performance of the electrolyte or the effect of the battery (Non-Patent Document 1).

上記のように、硫化物系電解質を用いるとき、使用できる溶媒やバインダーが限られていた。また、ポリエーテル系ポリマー等の極性の高いポリマーや、それに電解質を含ませたものを使用してシート状に成型することは困難であった。   As described above, when a sulfide-based electrolyte is used, usable solvents and binders are limited. In addition, it has been difficult to form a sheet using a highly polar polymer such as a polyether-based polymer or a polymer containing an electrolyte.

特許文献2には酸化物系固体電解質にポリエーテル系バインダーとリチウム塩を混合した例が開示されているが、イオン伝導度も充分でなく、また、一般に酸化物系固体電解質はその粒子界面の抵抗が大きいため、電池としたときにインピーダンスが増大するといった課題があった。
特開2005−353309号公報 特開2007−220377号公報 新エネルギー・産業技術総合開発機構 平成13年度成果報告書 「安定性を向上させた全固体リチウム電池用新規無機電解質の開発」
Patent Document 2 discloses an example in which a polyether binder and a lithium salt are mixed with an oxide solid electrolyte. However, ionic conductivity is not sufficient, and generally an oxide solid electrolyte has a particle interface. Since the resistance is large, there is a problem that the impedance increases when the battery is used.
JP 2005-353309 A JP 2007-220377 A New Energy and Industrial Technology Development Organization 2001 Results Report “Development of a New Inorganic Electrolyte for All Solid Lithium Batteries with Improved Stability”

本発明の目的は、イオン伝導度を維持しながら固体電解質を保持し、イオン伝導度を低下させることなく固体電解質を分散でき加工性の良い組成物を提供することである。   An object of the present invention is to provide a composition having good processability that can maintain a solid electrolyte while maintaining ionic conductivity and can disperse the solid electrolyte without lowering the ionic conductivity.

本発明によれば、以下の組成物、リチウム電池等が提供される。
1.りん、ケイ素、ゲルマニウム、ほう素から選ばれた少なくとも1種類以上の元素、リチウム及び硫黄からなるリチウムイオン伝導性固体電解質と、
下記式(1)で表される炭酸エステル化合物、下記式(2)で表されるエーテル化合物、下記式(3)で表されるニトリル化合物から選ばれた1種類以上の化合物とを含むことを特徴とする組成物。
−O−C(=O)−O−R (1)
(式(1)中、R、Rはそれぞれ炭素数2以上の基である。)
−O−R−O−R (2)
(式(2)中、R、Rはそれぞれ炭素数2以上の基であり、Rは炭素数1以上の基である。)
−CN (3)
(式(3)中、Rは炭素数2以上の基である。)
2.さらに高分子化合物を含むことを特徴とする1に記載の組成物。
3.さらにリチウム電解質塩を含むことを特徴とする1又は2に記載の組成物。
4.1〜3のいずれか一項に記載の組成物を用いて製造した固体電解質シート。
5.4に記載の固体電解質シートを用いたことを特徴とするリチウム電池。
6.5に記載のリチウム電池を備えたことを特徴とする装置。
According to the present invention, the following composition, lithium battery and the like are provided.
1. A lithium ion conductive solid electrolyte comprising at least one element selected from phosphorus, silicon, germanium, and boron, lithium and sulfur;
1 or more types of compounds chosen from the carbonate compound represented by following formula (1), the ether compound represented by following formula (2), and the nitrile compound represented by following formula (3). A featured composition.
R 1 —O—C (═O) —O—R 2 (1)
(In Formula (1), R 1 and R 2 are each a group having 2 or more carbon atoms.)
R 3 —O—R 4 —O—R 5 (2)
(In the formula (2), R 3, R 5 are each the number 2 or more groups carbons, R 4 is one or more groups carbon atoms.)
R 6 -CN (3)
(In Formula (3), R 6 is a group having 2 or more carbon atoms.)
2. 2. The composition according to 1, further comprising a polymer compound.
3. The composition according to 1 or 2, further comprising a lithium electrolyte salt.
The solid electrolyte sheet manufactured using the composition as described in any one of 4.1-3.
A lithium battery using the solid electrolyte sheet described in 5.4.
An apparatus comprising the lithium battery according to 6.5.

本発明によれば、イオン伝導度を維持しながら固体電解質を保持し、加工性の良い組成物が提供できる。   ADVANTAGE OF THE INVENTION According to this invention, a solid electrolyte is hold | maintained, maintaining ionic conductivity, and a composition with favorable workability can be provided.

本発明の組成物は、リチウムイオン伝導性固体電解質と、炭酸エステル化合物、エーテル化合物、ニトリル化合物から選ばれた1種類以上の化合物(以下、炭酸エステル化合物等ともいう)とを含む。炭酸エステル化合物等は、溶媒として用いる。本発明の組成物は、固体電解質を炭酸エステル化合物等に分散又は溶解したスラリー又は溶液である。
ここで、本発明の組成物は、固体電解質を炭酸エステル化合物等に分散又は溶解した固体電解質スラリー(又は固体電解質溶液)の他、固体電解質と正極活物質とを炭酸エステル化合物等に分散又は溶解した正極合材スラリー又は正極合材溶液、固体電解質と負極活物質とを炭酸エステル化合物等に分散又は溶解した負極合材スラリー又は負極合材溶液が含まれる。
The composition of the present invention includes a lithium ion conductive solid electrolyte and one or more compounds selected from a carbonate ester compound, an ether compound, and a nitrile compound (hereinafter also referred to as a carbonate ester compound). A carbonate ester compound or the like is used as a solvent. The composition of the present invention is a slurry or solution in which a solid electrolyte is dispersed or dissolved in a carbonate compound or the like.
Here, the composition of the present invention includes a solid electrolyte slurry (or a solid electrolyte solution) in which a solid electrolyte is dispersed or dissolved in a carbonate compound or the like, and a solid electrolyte and a positive electrode active material are dispersed or dissolved in a carbonate compound or the like. And a negative electrode mixture slurry or a negative electrode mixture solution obtained by dispersing or dissolving a solid electrolyte and a negative electrode active material in a carbonate compound or the like.

リチウムイオン伝導性固体電解質は、りん、ケイ素、ゲルマニウム、ほう素から選ばれた少なくとも1種類以上の元素と、リチウム及び硫黄からなる。
リチウムイオン伝導性固体電解質は、硫化リチウムと、硫化りん、硫化ゲルマニウム、硫化ケイ素、硫化ほう素を反応させて製造する。
The lithium ion conductive solid electrolyte is composed of at least one element selected from phosphorus, silicon, germanium, and boron, and lithium and sulfur.
The lithium ion conductive solid electrolyte is produced by reacting lithium sulfide with phosphorus sulfide, germanium sulfide, silicon sulfide, and boron sulfide.

硫化リチウムは、例えば、特許3528866号に記載の方法で合成することができる。またWO2005/040039に記載の方法等で精製し、99%以上の純度であるものが好ましい。
硫化リチウムは、あらかじめ粉砕等の処理により、平均粒子径を10μm以下とすることが好ましい。より好ましくは5μm以下である。平均粒子径が小さいと反応時間や得られる固体電解質の伝導度の点で有利である。
Lithium sulfide can be synthesized, for example, by the method described in Japanese Patent No. 3528866. Further, those purified by the method described in WO2005 / 040039 and having a purity of 99% or more are preferred.
The lithium sulfide preferably has an average particle size of 10 μm or less by a treatment such as pulverization in advance. More preferably, it is 5 μm or less. A small average particle size is advantageous in terms of reaction time and conductivity of the obtained solid electrolyte.

硫化リチウムは、硫化りん、硫化ゲルマニウム、硫化ケイ素、硫化ほう素と反応させることができるが、硫化りんが好まししい。硫化りんの中でも、五硫化二りんが特に好ましい   Lithium sulfide can be reacted with phosphorus sulfide, germanium sulfide, silicon sulfide, and boron sulfide, with phosphorus sulfide being preferred. Among phosphorus sulfides, diphosphorus pentasulfide is particularly preferable.

原料として硫化リチウムを用いる割合は、硫化リチウムと、硫化りん、硫化ゲルマニウム、硫化ケイ素、硫化ほう素から選ばれた1種類以上の化合物の全体の30〜95mol%、好ましくは40〜85mol%、より好ましくは50〜75mol%である。   The proportion of lithium sulfide used as a raw material is 30 to 95 mol%, preferably 40 to 85 mol% of the total of one or more compounds selected from lithium sulfide and phosphorus sulfide, germanium sulfide, silicon sulfide and boron sulfide. Preferably it is 50-75 mol%.

固体電解質は、これら原料を用いて、メカニカルミリング(特開2005−228570)、溶媒中における反応(特開2007−265523)等の方法により合成される。   The solid electrolyte is synthesized using these raw materials by methods such as mechanical milling (Japanese Patent Laid-Open No. 2005-228570) and reaction in a solvent (Japanese Patent Laid-Open No. 2007-265523).

炭酸エステル化合物は下記式(1)で表される。
−O−C(=O)−O−R (1)
式(1)中、R、Rはそれぞれ炭素数2以上の基である。
好ましくはR、Rはそれぞれ炭素数2以上(より好ましくは炭素数2〜6、特に好ましくは炭素数2〜4)のアルキル基、アルケニル基、アルキニル基又は炭素数6以上(より好ましくは炭素数6〜10)のアリール基である。アルキル基には、直鎖アルキル、分岐アルキル、環状アルキル基が含まれる。
具体的にはエチルメチルカーボネート、ジエチルカーボネート、ジプロピルカーボネート、ジブチルカーボネート、ジフェニルカーボネート等が挙げられる。
The carbonate compound is represented by the following formula (1).
R 1 —O—C (═O) —O—R 2 (1)
In formula (1), R 1 and R 2 are each a group having 2 or more carbon atoms.
Preferably, R 1 and R 2 are each an alkyl group, an alkenyl group, an alkynyl group, or a carbon number of 6 or more (more preferably) having 2 or more carbon atoms (more preferably 2 to 6 carbon atoms, particularly preferably 2 to 4 carbon atoms). An aryl group having 6 to 10 carbon atoms. Alkyl groups include straight chain alkyl, branched alkyl, and cyclic alkyl groups.
Specific examples include ethyl methyl carbonate, diethyl carbonate, dipropyl carbonate, dibutyl carbonate, and diphenyl carbonate.

エーテル化合物は下記式(2)で表される。
−O−R−O−R (2)
式(2)中、R、Rはそれぞれ炭素数2以上の基である。Rは炭素数1以上の基である。
好ましくはR、Rはそれぞれ炭素数2以上(より好ましくは炭素数2〜6、特に好ましくは炭素数2〜4)のアルキル基、アルケニル基、アルキニル基又は炭素数6以上(より好ましくは炭素数6〜10、特に好ましくは炭素数2〜4)のアリール基である。
好ましくはRは炭素数1以上(より好ましくは炭素数1〜6、特に好ましくは炭素数1〜4)のアルキレン基又は炭素数6以上(より好ましくは炭素数6〜10)のアリーレン基である。
具体的にはジエトキシエタン、ジエトキシプロパン、ジエトキシブタン、ジエトキシプロパン等が挙げられる。
The ether compound is represented by the following formula (2).
R 3 —O—R 4 —O—R 5 (2)
In formula (2), R 3 and R 5 are each a group having 2 or more carbon atoms. R 4 is a group having 1 or more carbon atoms.
Preferably, R 3 and R 5 are each an alkyl group, alkenyl group, alkynyl group or 6 or more carbon atoms (more preferably 2 or more carbon atoms, more preferably 2 to 4 carbon atoms, more preferably 2 to 4 carbon atoms). An aryl group having 6 to 10 carbon atoms, particularly preferably 2 to 4 carbon atoms.
R 4 is preferably an alkylene group having 1 or more carbon atoms (more preferably 1 to 6 carbon atoms, particularly preferably 1 to 4 carbon atoms) or an arylene group having 6 or more carbon atoms (more preferably 6 to 10 carbon atoms). is there.
Specific examples include diethoxyethane, diethoxypropane, diethoxybutane, diethoxypropane and the like.

ニトリル化合物下記式(3)で表される。
−CN (3)
式(3)中、Rは炭素数2以上の基である。
好ましくはRは炭素数2以上(より好ましくは炭素数2〜6、特に好ましくは炭素数2〜4)のアルキル基、アルケニル基、アルキニル基又は炭素数6以上(より好ましくは炭素数6〜10)のアリール基である。
具体的にはプロピオニトリル、ブチロニトリル等が挙げられる。
Nitrile compound is represented by the following formula (3).
R 6 -CN (3)
In Formula (3), R 6 is a group having 2 or more carbon atoms.
Preferably R 6 is an alkyl group having 2 or more carbon atoms (more preferably 2 to 6 carbon atoms, particularly preferably 2 to 4 carbon atoms), an alkenyl group, an alkynyl group or having 6 or more carbon atoms (more preferably 6 to carbon atoms 10) an aryl group.
Specific examples include propionitrile and butyronitrile.

炭酸エステル化合物等は、あらかじめ脱水されていることが好ましい。具体的に水分含有量が100ppm以下が好ましく、より好ましくは30ppm以下である。   The carbonate compound and the like are preferably dehydrated in advance. Specifically, the water content is preferably 100 ppm or less, more preferably 30 ppm or less.

上記炭酸エステル化合物等は単独で用いてもよく、混合物を用いてもよい。   The carbonate ester compounds and the like may be used alone or in a mixture.

必要に応じて他の溶媒、例えば、ヘキサン、ヘプタン、デカン、トルエン、キシレン等の炭化水素類、ジクロロメタン、クロロベンゼン等のハロゲン化炭化水素等を加えることができる。   If necessary, other solvents such as hydrocarbons such as hexane, heptane, decane, toluene and xylene, halogenated hydrocarbons such as dichloromethane and chlorobenzene, and the like can be added.

本発明の組成物は、さらに高分子化合物を含むことができる。
ここで、高分子化合物は、固体電解質粒子同士をつなぎ合わせる結着剤として用いるものである。
高分子化合物として、特に制限はないが、例えば、ポリエーテル、ポリオレフィン、(メタ)アクリル樹脂、スチレンブタジエンゴム、シリコーン、エチレンオキサイド−プロピレンオキサイド共重合体、ポリエチレンオキシド樹脂等が挙げられる。好適にはポリエーテル等、リチウム電解質塩と組み合わせたときにイオン伝導性が得られるものが挙げられる。
The composition of the present invention may further contain a polymer compound.
Here, the polymer compound is used as a binder for joining solid electrolyte particles together.
Although there is no restriction | limiting in particular as a high molecular compound, For example, polyether, polyolefin, (meth) acrylic resin, styrene butadiene rubber, silicone, an ethylene oxide propylene oxide copolymer, a polyethylene oxide resin etc. are mentioned. Preferable examples include those that can obtain ionic conductivity when combined with a lithium electrolyte salt such as polyether.

本発明の組成物は、さらにリチウム電解質塩を含むことができる。リチウム電解質塩を含むことによりイオン伝導度を向上させることができる。
リチウム電解質塩として、特に制限は無いが、公知のものを使用することができる。
具体的には、六フッ化リン酸リチウム、四フッ化ホウ酸リチウム、過塩素酸リチウム、リチウムビス(トリフルオロメタンスルホニル)イミド、リチウムビス(ペンタフルオロエタンスルホニル)イミド、トリフルオロメタンスルホン酸リチウム等が挙げられる。
The composition of the present invention may further contain a lithium electrolyte salt. By including the lithium electrolyte salt, ionic conductivity can be improved.
Although there is no restriction | limiting in particular as lithium electrolyte salt, A well-known thing can be used.
Specifically, lithium hexafluorophosphate, lithium tetrafluoroborate, lithium perchlorate, lithium bis (trifluoromethanesulfonyl) imide, lithium bis (pentafluoroethanesulfonyl) imide, lithium trifluoromethanesulfonate, etc. Can be mentioned.

本発明の組成物は、本発明の効果を損なわない範囲において、増粘剤等を含むことができる。   The composition of this invention can contain a thickener etc. in the range which does not impair the effect of this invention.

本発明の組成物は、上記成分を混合して製造する。
具体的には、固体電解質と、炭酸エステル化合物等(溶媒)を混合して固体電解質を含むスラリー又は溶液を製造する。
ここで、電解質が多量の溶媒を吸収して膨潤しないことが好ましい。通常、電解質0.001〜1Kg/L−溶媒、好ましくは0.005〜0.5Kg/L−溶媒、より好ましくは、0.01〜0.3Kg/L−溶媒である。
The composition of the present invention is produced by mixing the above components.
Specifically, a solid electrolyte and a carbonate compound or the like (solvent) are mixed to produce a slurry or solution containing the solid electrolyte.
Here, it is preferable that the electrolyte does not swell due to absorption of a large amount of solvent. Usually, the electrolyte is 0.001 to 1 Kg / L-solvent, preferably 0.005 to 0.5 Kg / L-solvent, and more preferably 0.01 to 0.3 Kg / L-solvent.

また、適宜、高分子化合物、リチウム電解質塩を添加することができる。
高分子化合物の添加量は、固体電解質に対して、0.1〜10重量%であることが好ましい。溶媒に対しての濃度は特に制限ないが、通常、高分子化合物0.1〜10重量%、好ましくは0.5〜3重量%、より好ましくは0.7〜2重量%程度である。
リチウム電解質塩の添加量は、固体電解質に対して、0.01〜10重量%であることが好ましい。
In addition, a polymer compound and a lithium electrolyte salt can be appropriately added.
The addition amount of the polymer compound is preferably 0.1 to 10% by weight with respect to the solid electrolyte. The concentration with respect to the solvent is not particularly limited, but is usually about 0.1 to 10% by weight, preferably about 0.5 to 3% by weight, and more preferably about 0.7 to 2% by weight.
The addition amount of the lithium electrolyte salt is preferably 0.01 to 10% by weight with respect to the solid electrolyte.

本発明の組成物は、リチウム電池等の固体二次電池の固体電解質層又は電極に用いることができる。
図1は固体二次電池の構造を示す概略断面図である。
全固体二次電池1は、正極10及び負極30からなる一対の電極間に固体電解質層20が挟持されており、正極10及び負極30にはそれぞれ集電体40及び42が設けられている。
本発明の組成物は、固体電解質層20に用いることができる。
また、上記正極合材スラリー(又は正極合材溶液)を固体電解質層20(又は正極集電体)に塗布後乾燥して正極10を形成できる。同様に、上記負極合材スラリー(又は負極合材溶液)を固体電解質層20(又は負極集電体)に塗布後乾燥して負極30を形成できる。
適宜、上記高分子化合物、リチウム電解質塩等を添加することができる。
投入順に特に制限は無い。温度は溶剤の沸点以下、凝固点以上が好ましい。混合に際しては通常の撹拌機を使用することができる。
The composition of the present invention can be used for a solid electrolyte layer or an electrode of a solid secondary battery such as a lithium battery.
FIG. 1 is a schematic cross-sectional view showing the structure of a solid secondary battery.
In the all solid state secondary battery 1, the solid electrolyte layer 20 is sandwiched between a pair of electrodes composed of a positive electrode 10 and a negative electrode 30, and current collectors 40 and 42 are provided on the positive electrode 10 and the negative electrode 30, respectively.
The composition of the present invention can be used for the solid electrolyte layer 20.
The positive electrode mixture slurry (or the positive electrode mixture solution) can be applied to the solid electrolyte layer 20 (or the positive electrode current collector) and then dried to form the positive electrode 10. Similarly, the negative electrode mixture 30 (or the negative electrode mixture solution) can be applied to the solid electrolyte layer 20 (or the negative electrode current collector) and then dried to form the negative electrode 30.
The above polymer compound, lithium electrolyte salt and the like can be appropriately added.
There is no particular restriction on the order of input. The temperature is preferably below the boiling point of the solvent and above the freezing point. A normal stirrer can be used for mixing.

正極活物質としては、リチウムイオンの挿入脱離が可能な金属酸化物、電池分野において正極活物質として公知のものが使用できる。
例えば、硫化物系では、硫化チタン(TiS)、硫化モリブデン(MoS)、硫化鉄(FeS、FeS)、硫化銅(CuS)及び硫化ニッケル(Ni)等が使用でき、特にTiSが好適である。これらの物質は1種を単独で、又は2種以上を組み合わせて使用することができる。
また、酸化物系では、酸化ビスマス(Bi)、鉛酸ビスマス(BiPb)、酸化銅(CuO)、酸化バナジウム(V13)、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMn)、オリビン型リン酸鉄リチウム(LiFePO)や、ニッケルーマンガン系酸化物(LiNi0.5Mn0.5)、ニッケルーアルミニウムーコバルト系酸化物(LiNi0.08Co0.15Al0.15)、ニッケルーマンガンーコバルト系酸化物(LiNi0.33Co0.33Mn0.33)等が使用でき、特にLiCoOやLiNi0.08Co0.15Al0.15が好適である。これらの物質は1種を単独で、又は2種以上を組み合わせて使用することができる。
尚、上記の硫化物系と酸化物系を混合して用いることも可能である。また、上記の他に、セレン化ニオブ(NbSe)も使用することができる。
As the positive electrode active material, a metal oxide capable of inserting and desorbing lithium ions and those known as positive electrode active materials in the battery field can be used.
For example, in the sulfide system, titanium sulfide (TiS 2 ), molybdenum sulfide (MoS 2 ), iron sulfide (FeS, FeS 2 ), copper sulfide (CuS), nickel sulfide (Ni 3 S 2 ), etc. can be used. TiS 2 is preferred. These substances can be used alone or in combination of two or more.
In the oxide system, bismuth oxide (Bi 2 O 3 ), bismuth lead acid (Bi 2 Pb 2 O 5 ), copper oxide (CuO), vanadium oxide (V 6 O 13 ), lithium cobalt oxide (LiCoO 2 ) , Lithium nickelate (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ), olivine-type lithium iron phosphate (LiFePO 4 ), nickel-manganese oxide (LiNi 0.5 Mn 0.5 O 2 ), Nickel-aluminum-cobalt oxide (LiNi 0.08 Co 0.15 Al 0.15 O 2 ), nickel-manganese-cobalt oxide (LiNi 0.33 Co 0.33 Mn 0.33 O 2 ), etc. LiCoO 2 and LiNi 0.08 Co 0.15 Al 0.15 O 2 are particularly suitable. These substances can be used alone or in combination of two or more.
It is also possible to use a mixture of the above sulfides and oxides. In addition to the above, niobium selenide (NbSe 3 ) can also be used.

負極活物質としては、リチウムイオンの挿入脱離が可能な物質、電池分野において負極活物質として公知のものが使用できる。
例えば、炭素材料、具体的には、人造黒鉛、黒鉛炭素繊維、樹脂焼成炭素、熱分解気相成長炭素、コークス、メソカーボンマイクロビーズ(MCMB)、フルフリルアルコール樹脂焼成炭素、ポリアセン、ピッチ系炭素繊維、気相成長炭素繊維、天然黒鉛及び難黒鉛化性炭素等が挙げられ、特に人造黒鉛が好適である。
また、金属リチウム、金属インジウム、金属アルミ、金属ケイ素、金属スズ等の金属自体や他の元素、化合物と組合せた合金を、負極活物質として用いることができる。
これらの負極活物質は1種を単独で、又は2種以上を組み合わせて使用することができる。
As the negative electrode active material, a material capable of inserting and desorbing lithium ions, and a material known as a negative electrode active material in the battery field can be used.
For example, carbon materials, specifically artificial graphite, graphite carbon fiber, resin-fired carbon, pyrolytic vapor-grown carbon, coke, mesocarbon microbeads (MCMB), furfuryl alcohol resin-fired carbon, polyacene, pitch-based carbon Examples thereof include fibers, vapor-grown carbon fibers, natural graphite and non-graphitizable carbon, and artificial graphite is particularly preferable.
An alloy combined with a metal itself such as metallic lithium, metallic indium, metallic aluminum, metallic silicon, metallic tin, or another element or compound can be used as the negative electrode active material.
These negative electrode active materials can be used individually by 1 type or in combination of 2 or more types.

固体電解質層又は電極を成形する方法は、シート状に形成できる方法であればよく、特に限定されない。例えば、プレス成形やロールプレス成形等の成形加工法、ドクターブレードやスクリーン印刷等の塗布法によるシート化法等が挙げられる。
なかでも塗布によりシート状にすることが好ましい。本発明の組成物は、主に上記固体電解質と上記有機溶剤から構成されるが、必要に応じて樹脂等の結着剤(上記高分子化合物)や増粘剤等を添加してもよい。例えば、ドクターブレード等を用いて組成物を塗布、乾燥し、シート状に形成した後、プレスやロールプレス等によりシート化された固体電解質を圧密化できる。特にロールプレスが好ましい。プレス圧力は、30MPa〜1000MPa程度が好ましい。
その際の温度は材料が分解、変質しない範囲であれば、何れでもよく、通常、300℃以下である。電極又は固体電解質シートを作る際に、あえて溶媒を固体電解質に含有、残存させても差し支えない。
The method for forming the solid electrolyte layer or the electrode is not particularly limited as long as it can be formed into a sheet shape. For example, a forming method such as press molding or roll press molding, a sheet forming method by a coating method such as doctor blade or screen printing, and the like can be mentioned.
Of these, it is preferable to form a sheet by coating. The composition of the present invention is mainly composed of the solid electrolyte and the organic solvent. If necessary, a binder such as a resin (the polymer compound), a thickener, and the like may be added. For example, the composition can be applied and dried using a doctor blade or the like, formed into a sheet, and then the solid electrolyte formed into a sheet by pressing or roll pressing can be consolidated. A roll press is particularly preferable. The pressing pressure is preferably about 30 MPa to 1000 MPa.
The temperature at that time may be any as long as the material does not decompose or deteriorate, and is usually 300 ° C. or lower. When making an electrode or a solid electrolyte sheet, a solvent may be intentionally included in the solid electrolyte and left as it is.

製造例1
<固体電解質の製造>
特開2005−228570号公報記載の方法に準拠してリチウム、硫黄、りんを含有する固体電解質を合成した。具体的には以下のようにして合成した。
LiSとP(アルドリッチ製)の混合物(LiSとPのモル比;68対32)約1gと、直径10mmのアルミナ製ボール10個とを45mLのアルミナ製容器に入れ、遊星型ボールミル(フリッチュ社製:型番P−7)にて、窒素中、室温(25℃)にて、回転速度370rpmで、20時間メカニカルミリング処理して、白黄色の粉末である硫化物ガラスを得た。
同粉末を窒素気流下300℃、2時間加熱処理して、平均粒子径10μmのリチウムイオン伝導性物質を得た。
得られたリチウムイオン伝導性物質は、以下の実施例、比較例で固体電解質として使用した。
Production Example 1
<Manufacture of solid electrolyte>
A solid electrolyte containing lithium, sulfur and phosphorus was synthesized according to the method described in JP-A-2005-228570. Specifically, it was synthesized as follows.
A 45 mL alumina container containing about 1 g of a mixture of Li 2 S and P 2 S 5 (manufactured by Aldrich) (molar ratio of Li 2 S to P 2 S 5 ; 68:32) and 10 alumina balls having a diameter of 10 mm And then subjected to mechanical milling for 20 hours at room temperature (25 ° C.) in nitrogen at room temperature (25 ° C.) with a planetary ball mill (manufactured by Fritsch: Model No. P-7), and sulfurized as a white yellow powder A physical glass was obtained.
The powder was heat-treated at 300 ° C. for 2 hours under a nitrogen stream to obtain a lithium ion conductive material having an average particle size of 10 μm.
The obtained lithium ion conductive material was used as a solid electrolyte in the following Examples and Comparative Examples.

実施例1
<組成物の製造>
窒素気流下で、固体電解質5gにジエチルカーボネート(キシダ化学製 水分30ppm以下)15mL加え、1時間撹拌して組成物を作製した。
溶媒を室温で真空乾燥させ、さらに150℃で1時間加熱乾燥した。得られた乾燥電解質(以下、「乾燥固体電解質」という。)のイオン伝導度は1.2×10−3S/cmであった。
尚、実施例、比較例においてイオン伝導度は交流インピーダンス法にて測定した。
Example 1
<Production of composition>
Under a nitrogen stream, 15 mL of diethyl carbonate (moisture 30 ppm or less manufactured by Kishida Chemical Co., Ltd.) was added to 5 g of the solid electrolyte, and stirred for 1 hour to prepare a composition.
The solvent was vacuum-dried at room temperature, and further heat-dried at 150 ° C. for 1 hour. The obtained dry electrolyte (hereinafter referred to as “dry solid electrolyte”) had an ionic conductivity of 1.2 × 10 −3 S / cm.
In Examples and Comparative Examples, ionic conductivity was measured by an AC impedance method.

実施例2
<組成物の製造>
ジエチルカーボネートの代わりにジエトキシエタン(キシダ化学製 水分50ppm以下)を用いた他は実施例1と同様にして組成物を作製した。組成物を乾燥して得られた乾燥固体電解質のイオン伝導度は1.1×10−3S/cmであった。
Example 2
<Production of composition>
A composition was prepared in the same manner as in Example 1 except that diethoxyethane (water content of 50 ppm or less manufactured by Kishida Chemical Co., Ltd.) was used instead of diethyl carbonate. The ionic conductivity of the dried solid electrolyte obtained by drying the composition was 1.1 × 10 −3 S / cm.

実施例3
<組成物の製造>
ジエチルカーボネートの代わりにプロピオニトリル(キシダ化学製 水分30ppm以下)を用いた他は実施例1と同様にして組成物を作製した。組成物を乾燥して得られた乾燥固体電解質のイオン伝導度は1.1×10−3S/cmであった。
Example 3
<Production of composition>
A composition was prepared in the same manner as in Example 1 except that propionitrile (water content of 30 ppm or less manufactured by Kishida Chemical Co., Ltd.) was used instead of diethyl carbonate. Ion conductivity of the resulting dry solid electrolyte by drying the composition was 1.1 × 10 -3 S / cm.

比較例1
<組成物の製造>
ジエチルカーボネートの代わりにジメチルカーボネート(キシダ化学製 水分30ppm以下)を用いた他は実施例1と同様にして組成物を作製した。組成物を乾燥して得られた乾燥固体電解質のイオン伝導度は4.2×10−6S/cmであった。
Comparative Example 1
<Production of composition>
A composition was prepared in the same manner as in Example 1 except that dimethyl carbonate (manufactured by Kishida Chemical Co., Ltd., water content of 30 ppm or less) was used instead of diethyl carbonate. The ionic conductivity of the dried solid electrolyte obtained by drying the composition was 4.2 × 10 −6 S / cm.

比較例2
<組成物の製造>
ジエトキシエタンの代わりにジメトキシエタン(キシダ化学製 水分30ppm以下)を用いた他は実施例2と同様にして組成物を作製した。組成物を乾燥して得られた乾燥固体電解質のイオン伝導度は3.0×10−7S/cmであった。
Comparative Example 2
<Production of composition>
A composition was prepared in the same manner as in Example 2, except that dimethoxyethane (water content of 30 ppm or less manufactured by Kishida Chemical Co., Ltd.) was used instead of diethoxyethane. The ionic conductivity of the dried solid electrolyte obtained by drying the composition was 3.0 × 10 −7 S / cm.

比較例3
<組成物の製造>
プロピオニトリルの代わりにアセトニトリル(キシダ化学製 水分30ppm以下)を用いた他は実施例3と同様にして組成物を作製した。組成物を乾燥して得られた乾燥固体電解質のイオン伝導度は1.6×10−7S/cmであった。
Comparative Example 3
<Production of composition>
A composition was prepared in the same manner as in Example 3 except that acetonitrile (water content of 30 ppm or less manufactured by Kishida Chemical Co., Ltd.) was used instead of propionitrile. The ionic conductivity of the dried solid electrolyte obtained by drying the composition was 1.6 × 10 −7 S / cm.

実施例4
<固体電解質シートの製造>
窒素気流下で、ジエチルカーボネート15mL、エチレンオキサイド−プロピレンオキサイド共重合体0.26g及びリチウム塩(トリフルオロメタンスルホン酸リチウム)0.065gを加え、室温にて撹拌した。共重合体及びリチウム塩は溶媒に溶解した。さらに、固体電解質5g加え、1時間撹拌した。このスラリーをアルミシート上にバーコーターを用いて塗布したのち、溶媒を室温で乾燥させ、さらに150℃で1時間加熱乾燥した。電解質を含む柔軟なシートが得られた。得られた固体電解質シートのイオン伝導度は8.0×10−4S/cmであった。
Example 4
<Manufacture of solid electrolyte sheet>
Under a nitrogen stream, 15 mL of diethyl carbonate, 0.26 g of ethylene oxide-propylene oxide copolymer and 0.065 g of lithium salt (lithium trifluoromethanesulfonate) were added and stirred at room temperature. The copolymer and lithium salt were dissolved in a solvent. Further, 5 g of solid electrolyte was added and stirred for 1 hour. The slurry was applied on an aluminum sheet using a bar coater, and then the solvent was dried at room temperature and further dried by heating at 150 ° C. for 1 hour. A flexible sheet containing the electrolyte was obtained. The ionic conductivity of the obtained solid electrolyte sheet was 8.0 × 10 −4 S / cm.

実施例5
<固体電解質シートの製造>
ジエチルカーボネートの代わりにジエトキシエタンを用いた他は実施例4と同様にしてシートを作製した。
電解質を含む柔軟なシートが得られた。得られた固体電解質シートのイオン伝導度は7.3×10−4S/cmであった。
Example 5
<Manufacture of solid electrolyte sheet>
A sheet was prepared in the same manner as in Example 4 except that diethoxyethane was used instead of diethyl carbonate.
A flexible sheet containing the electrolyte was obtained. The ionic conductivity of the obtained solid electrolyte sheet was 7.3 × 10 −4 S / cm.

実施例6
<固体電解質シートの製造>
ジエチルカーボネートの代わりにプロピオンカーボネートを用いた他は実施例4と同様にしてシートを作製した。
得られた固体電解質シートのイオン伝導度は5.0×10−4S/cmであった。
Example 6
<Manufacture of solid electrolyte sheet>
A sheet was produced in the same manner as in Example 4 except that propion carbonate was used instead of diethyl carbonate.
The ionic conductivity of the obtained solid electrolyte sheet was 5.0 × 10 −4 S / cm.

実施例7
<固体電解質シートの製造>
ジエチルカーボネート15mlにリチウム塩(トリフルオロメタンスルホン酸リチウム)(キシダ化学製)0.065gを加え、溶解させた。さらにポリエチレンオキシド樹脂(明成化学工業 アルコックスE60)を0.26g添加した。透明な粘度のある溶液が得られた。これに固体電解質5gを加え組成物とした。このスラリーをアルミシート上にバーコーターを用いて塗布したのち、溶媒を室温で乾燥させ、さらに150℃で1時間加熱乾燥した。電解質を含む柔軟なシートが得られた。得られた固体電解質シートのイオン伝導度は3.3×10−4S/cmであった。
Example 7
<Manufacture of solid electrolyte sheet>
To 15 ml of diethyl carbonate, 0.065 g of lithium salt (lithium trifluoromethanesulfonate) (manufactured by Kishida Chemical Co., Ltd.) was added and dissolved. Further, 0.26 g of polyethylene oxide resin (Meisei Chemical Co., Ltd., Alcox E60) was added. A clear viscous solution was obtained. To this, 5 g of a solid electrolyte was added to obtain a composition. The slurry was applied on an aluminum sheet using a bar coater, and then the solvent was dried at room temperature and further dried by heating at 150 ° C. for 1 hour. A flexible sheet containing the electrolyte was obtained. The ionic conductivity of the obtained solid electrolyte sheet was 3.3 × 10 −4 S / cm.

比較例4
<固体電解質シートの製造>
窒素気流下で、トルエン(和光純薬工業 水分30ppm以下)15mlにエチレンオキサイド−プロピレンオキサイド共重合体0.26g及びリチウム塩(トリフルオロメタンスルホン酸リチウム)0.065gを加え、室温にて撹拌した。同樹脂は溶解せずにゲル状の沈殿物が生じた。これに固体電解質5gを添加しスラリー状にした後、アルミシート上にバーコーターを用いて塗布したが、電解質とゲル状物質が分離しており、均一に塗布することができなかった。
Comparative Example 4
<Manufacture of solid electrolyte sheet>
Under a nitrogen stream, 0.26 g of ethylene oxide-propylene oxide copolymer and 0.065 g of lithium salt (lithium trifluoromethanesulfonate) were added to 15 ml of toluene (Wako Pure Chemical Industries, Ltd., water content of 30 ppm or less) and stirred at room temperature. The resin did not dissolve and a gel-like precipitate was formed. After adding 5 g of solid electrolyte to this and making it into a slurry, it was applied onto an aluminum sheet using a bar coater. However, the electrolyte and the gel-like substance were separated and could not be applied uniformly.

比較例5
<固体電解質シートの製造>
窒素気流下で、トルエン(和光純薬工業 水分30ppm以下)15mlにポリエチレンオキシド樹脂(明成化学工業 アルコックスE60)を0.26g及びリチウム塩(トリフルオロメタンスルホン酸リチウム)(キシダ化学製)0.065gを添加した。ゲル状の沈殿物が生じた。これに固体電解質5gを添加しスラリー状にした後、アルミシート上にバーコーターを用いて塗布したが、電解質とゲル状物質が分離しており、均一に塗布することができなかった。
Comparative Example 5
<Manufacture of solid electrolyte sheet>
Under nitrogen flow, 0.26 g of polyethylene oxide resin (Meisei Chemical Co., Ltd. Alcox E60) and 0.065 g of lithium salt (lithium trifluoromethanesulfonate) (manufactured by Kishida Chemical Co., Ltd.) in 15 ml of toluene (Wako Pure Chemical Industries moisture 30 ppm or less) Was added. A gel-like precipitate was formed. After adding 5 g of solid electrolyte to this and making it into a slurry, it was applied onto an aluminum sheet using a bar coater. However, the electrolyte and the gel-like substance were separated and could not be applied uniformly.

実施例8
<電池の製造>
実施例1で作製した乾燥固体電解質0.2gを金型内で成型して電解質層を作製した。これに正極活物質LNCAO(戸田工業製)と実施例1で作製した乾燥固体電解質の合剤(正極活物質:電解質=7:3)0.1gを投入して再度成型し、正極、電解質層を有する層状ペレットを作製した。正極の反対側の電解質層に接するように負極としてIn箔を配置し、これを電池容器に収容し密封して、20kgf/cmのばねで押さえて電池を作製した。得られた電池の初期充放電性能は、充電0.2mA/cmで155mAh/g、放電0.2mA/cmで110mAh/gであった。
Example 8
<Manufacture of batteries>
An electrolyte layer was prepared by molding 0.2 g of the dry solid electrolyte prepared in Example 1 in a mold. A positive electrode active material LNCAO (manufactured by Toda Kogyo Co., Ltd.) and 0.1 g of the dry solid electrolyte mixture produced in Example 1 (positive electrode active material: electrolyte = 7: 3) were added and molded again, and the positive electrode, electrolyte layer A layered pellet having An In foil was placed as a negative electrode so as to be in contact with the electrolyte layer on the opposite side of the positive electrode, and this was accommodated in a battery container, sealed, and pressed with a 20 kgf / cm 2 spring to produce a battery. The resulting initial charge-discharge performance of the battery, 155 mAh / g at charge 0.2 mA / cm 2, was 110 mAh / g at a discharge 0.2 mA / cm 2.

実施例9
<電池の製造>
実施例2で作製した乾燥固体電解質を用い、実施例8と同様にして電池を作製した。得られた電池の初期充放電性能は、充電0.2mA/cmで145mAh/g、放電0.2mA/cmで105mAh/gであった。
Example 9
<Manufacture of batteries>
A battery was produced in the same manner as in Example 8 using the dry solid electrolyte produced in Example 2. The initial charge / discharge performance of the obtained battery was 145 mAh / g at a charge of 0.2 mA / cm 2 and 105 mAh / g at a discharge of 0.2 mA / cm 2 .

比較例6
<電池の製造>
溶媒を添加し乾燥させる処理をしていない製造例1で得た固体電解質(リチウムイオン伝導性物質)をそのまま用い、実施例8と同様にして電池を作製した。得られた電池の初期充放電性能は、充電0.2mA/cmで140mAh/g、放電0.2mA/cmで100mAh/gであった。
Comparative Example 6
<Manufacture of batteries>
A battery was fabricated in the same manner as in Example 8 using the solid electrolyte (lithium ion conductive material) obtained in Production Example 1 which was not treated by adding a solvent and drying. The resulting initial charge-discharge performance of the battery, 140 mAh / g at charge 0.2 mA / cm 2, was 100 mAh / g at a discharge 0.2 mA / cm 2.

本発明の組成物は、固体二次電池の固体電解質層及び電極に用いることができる。このような固体二次電池は、携帯情報端末、携帯電子機器、家庭用小型電力貯蔵装置、モーターを電力源とする自動二輪車、電気自動車、ハイブリッド電気自動車等の電池として用いることができる。   The composition of the present invention can be used for a solid electrolyte layer and an electrode of a solid secondary battery. Such a solid secondary battery can be used as a battery for a portable information terminal, a portable electronic device, a small electric power storage device for home use, a motorcycle using a motor as a power source, an electric vehicle, a hybrid electric vehicle, or the like.

全固体二次電池の構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure of an all-solid-state secondary battery.

符号の説明Explanation of symbols

1 全固体二次電池
10 正極
20 固体電解質層
30 負極
40,42 集電体
DESCRIPTION OF SYMBOLS 1 All-solid-state secondary battery 10 Positive electrode 20 Solid electrolyte layer 30 Negative electrode 40,42 Current collector

Claims (6)

りん、ケイ素、ゲルマニウム、ほう素から選ばれた少なくとも1種類以上の元素、リチウム及び硫黄からなるリチウムイオン伝導性固体電解質と、
下記式(1)で表される炭酸エステル化合物、下記式(2)で表されるエーテル化合物、下記式(3)で表されるニトリル化合物から選ばれた1種類以上の化合物とを含むことを特徴とする組成物。
−O−C(=O)−O−R (1)
(式(1)中、R、Rはそれぞれ炭素数2以上の基である。)
−O−R−O−R (2)
(式(2)中、R、Rはそれぞれ炭素数2以上の基であり、Rは炭素数1以上の基である。)
−CN (3)
(式(3)中、Rは炭素数2以上の基である。)
A lithium ion conductive solid electrolyte comprising at least one element selected from phosphorus, silicon, germanium, and boron, lithium and sulfur;
1 or more types of compounds chosen from the carbonate compound represented by following formula (1), the ether compound represented by following formula (2), and the nitrile compound represented by following formula (3). A featured composition.
R 1 —O—C (═O) —O—R 2 (1)
(In Formula (1), R 1 and R 2 are each a group having 2 or more carbon atoms.)
R 3 -O-R 4 -O- R 5 (2)
(In Formula (2), R 3 and R 5 are each a group having 2 or more carbon atoms, and R 4 is a group having 1 or more carbon atoms.)
R 6 -CN (3)
(In Formula (3), R 6 is a group having 2 or more carbon atoms.)
さらに高分子化合物を含むことを特徴とする請求項1に記載の組成物。   The composition according to claim 1, further comprising a polymer compound. さらにリチウム電解質塩を含むことを特徴とする請求項1又は2に記載の組成物。   The composition according to claim 1 or 2, further comprising a lithium electrolyte salt. 請求項1〜3のいずれか一項に記載の組成物を用いて製造した固体電解質シート。   The solid electrolyte sheet manufactured using the composition as described in any one of Claims 1-3. 請求項4に記載の固体電解質シートを用いたことを特徴とするリチウム電池。   A lithium battery using the solid electrolyte sheet according to claim 4. 請求項5に記載のリチウム電池を備えたことを特徴とする装置。   An apparatus comprising the lithium battery according to claim 5.
JP2008282974A 2008-11-04 2008-11-04 Lithium ion conductive solid electrolyte composition and battery using the same Active JP5580979B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008282974A JP5580979B2 (en) 2008-11-04 2008-11-04 Lithium ion conductive solid electrolyte composition and battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008282974A JP5580979B2 (en) 2008-11-04 2008-11-04 Lithium ion conductive solid electrolyte composition and battery using the same

Publications (2)

Publication Number Publication Date
JP2010113820A true JP2010113820A (en) 2010-05-20
JP5580979B2 JP5580979B2 (en) 2014-08-27

Family

ID=42302247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008282974A Active JP5580979B2 (en) 2008-11-04 2008-11-04 Lithium ion conductive solid electrolyte composition and battery using the same

Country Status (1)

Country Link
JP (1) JP5580979B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012028231A (en) * 2010-07-26 2012-02-09 Samsung Electronics Co Ltd Solid lithium ion secondary battery
JP2012041207A (en) * 2010-08-13 2012-03-01 Idemitsu Kosan Co Ltd Solid electrolyte glass and method of producing the same
JP2012134133A (en) * 2010-12-02 2012-07-12 Idemitsu Kosan Co Ltd Solid electrolyte of fine particle, composition containing solid electrolyte of fine particle, electrode layer and electrolyte layer formed of the same and lithium-ion battery
JP2012212652A (en) * 2011-03-18 2012-11-01 Toyota Motor Corp Slurry, method for forming solid electrolyte layer, method for forming electrode active material layer, and method for manufacturing all-solid battery
WO2015046313A1 (en) * 2013-09-25 2015-04-02 富士フイルム株式会社 Solid electrolyte composition, binder for all-solid-state secondary batteries, and electrode sheet for batteries and all-solid-state secondary battery each using said solid electrolyte composition
WO2015046314A1 (en) * 2013-09-25 2015-04-02 富士フイルム株式会社 Solid electrolyte composition, electrode sheet for batteries using same and all-solid-state secondary battery
WO2015046312A1 (en) * 2013-09-25 2015-04-02 富士フイルム株式会社 Solid electrolyte composition, electrode sheet for batteries, method for producing electrode sheet for batteries, all-solid-state secondary battery, and method for manufacturing all-solid-state secondary battery
WO2016190304A1 (en) * 2015-05-28 2016-12-01 富士フイルム株式会社 Solid electrolyte composition, mixture, composite gel, all-solid secondary cell electrode sheet, all-solid secondary cell, and method for manufacturing solid electrolyte composition, composite gel, all-solid secondary cell electrode sheet, and all-solid secondary cell
JP2017027657A (en) * 2015-07-15 2017-02-02 三星電子株式会社Samsung Electronics Co.,Ltd. Electrolytic solution for secondary battery and secondary battery
WO2018168505A1 (en) * 2017-03-14 2018-09-20 富士フイルム株式会社 Solid electrolyte composition, solid electrolyte-containing sheet, all-solid-state secondary battery, method for producing solid electrolyte composition, method for producing solid electrolyte-containing sheet, and method for producing all-solid-state secondary battery
WO2019054191A1 (en) 2017-09-14 2019-03-21 富士フイルム株式会社 Solid electrolyte composition, method for producing same, storage method and kit, solid electrolyte-containing sheet, storage method and kit therefor, and all-solid secondary battery
CN111416151A (en) * 2020-03-20 2020-07-14 宁德新能源科技有限公司 Electrolyte solution, electrochemical device, and electronic device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1092445A (en) * 1996-09-19 1998-04-10 Kaageo P-Shingu Res Lab:Kk Whole solid type lithium battery
JPH1173993A (en) * 1997-06-10 1999-03-16 Samsung Display Devices Co Ltd Glass-polymer complex electrolyte, its manufacture, and battery
JP2000138073A (en) * 1998-10-30 2000-05-16 Kyocera Corp Entire solid lithium secondary battery
JP2001155777A (en) * 1999-11-26 2001-06-08 Kyocera Corp Lithium battery
JP2001357879A (en) * 2000-06-12 2001-12-26 Sony Corp Electrolyte and battery using it
JP2002373643A (en) * 2001-06-14 2002-12-26 Matsushita Electric Ind Co Ltd Lithium secondary battery
JP2003059492A (en) * 2001-08-17 2003-02-28 Matsushita Electric Ind Co Ltd Lithium secondary battery and its manufacturing method
WO2006018921A1 (en) * 2004-08-18 2006-02-23 Central Research Institute Of Electric Power Industry Organic electrolyte battery, and process for producing positive electrode sheet for use therein
JP2010033876A (en) * 2008-07-29 2010-02-12 Idemitsu Kosan Co Ltd Polymer-coated solid electrolyte and all-solid secondary battery using the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1092445A (en) * 1996-09-19 1998-04-10 Kaageo P-Shingu Res Lab:Kk Whole solid type lithium battery
JPH1173993A (en) * 1997-06-10 1999-03-16 Samsung Display Devices Co Ltd Glass-polymer complex electrolyte, its manufacture, and battery
JP2000138073A (en) * 1998-10-30 2000-05-16 Kyocera Corp Entire solid lithium secondary battery
JP2001155777A (en) * 1999-11-26 2001-06-08 Kyocera Corp Lithium battery
JP2001357879A (en) * 2000-06-12 2001-12-26 Sony Corp Electrolyte and battery using it
JP2002373643A (en) * 2001-06-14 2002-12-26 Matsushita Electric Ind Co Ltd Lithium secondary battery
JP2003059492A (en) * 2001-08-17 2003-02-28 Matsushita Electric Ind Co Ltd Lithium secondary battery and its manufacturing method
WO2006018921A1 (en) * 2004-08-18 2006-02-23 Central Research Institute Of Electric Power Industry Organic electrolyte battery, and process for producing positive electrode sheet for use therein
JP2010033876A (en) * 2008-07-29 2010-02-12 Idemitsu Kosan Co Ltd Polymer-coated solid electrolyte and all-solid secondary battery using the same

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012028231A (en) * 2010-07-26 2012-02-09 Samsung Electronics Co Ltd Solid lithium ion secondary battery
JP2012041207A (en) * 2010-08-13 2012-03-01 Idemitsu Kosan Co Ltd Solid electrolyte glass and method of producing the same
JP2012134133A (en) * 2010-12-02 2012-07-12 Idemitsu Kosan Co Ltd Solid electrolyte of fine particle, composition containing solid electrolyte of fine particle, electrode layer and electrolyte layer formed of the same and lithium-ion battery
JP2012212652A (en) * 2011-03-18 2012-11-01 Toyota Motor Corp Slurry, method for forming solid electrolyte layer, method for forming electrode active material layer, and method for manufacturing all-solid battery
US9236158B2 (en) 2011-03-18 2016-01-12 Toyota Jidosha Kabushiki Kaisha Slurry, production method for solid electrolyte layer, production method for electrode active material layer, and production method for all-solid-state battery
WO2015046313A1 (en) * 2013-09-25 2015-04-02 富士フイルム株式会社 Solid electrolyte composition, binder for all-solid-state secondary batteries, and electrode sheet for batteries and all-solid-state secondary battery each using said solid electrolyte composition
WO2015046314A1 (en) * 2013-09-25 2015-04-02 富士フイルム株式会社 Solid electrolyte composition, electrode sheet for batteries using same and all-solid-state secondary battery
WO2015046312A1 (en) * 2013-09-25 2015-04-02 富士フイルム株式会社 Solid electrolyte composition, electrode sheet for batteries, method for producing electrode sheet for batteries, all-solid-state secondary battery, and method for manufacturing all-solid-state secondary battery
US11440986B2 (en) 2013-09-25 2022-09-13 Fujifilm Corporation Solid electrolyte composition, binder for all-solid-state secondary batteries, and electrode sheet for batteries and all-solid-state secondary battery each using said solid electrolyte
US10654963B2 (en) 2013-09-25 2020-05-19 Fujifilm Corporation Solid electrolyte composition, binder for all-solid-state secondary batteries, and electrode sheet for batteries and all-solid-state secondary battery each using said solid electrolyte composition
JPWO2016190304A1 (en) * 2015-05-28 2017-12-28 富士フイルム株式会社 Solid electrolyte composition, mixture, composite gel, electrode sheet for all solid state secondary battery and all solid state secondary battery, and solid electrolyte composition, composite gel, electrode sheet for all solid state secondary battery and all solid state secondary battery Production method
CN107615551A (en) * 2015-05-28 2018-01-19 富士胶片株式会社 Solid electrolyte composition, mixture, Composite gel, solid state secondary battery electrode slice and solid state secondary battery and solid electrolyte composition, Composite gel, the manufacture method of solid state secondary battery electrode slice and solid state secondary battery
WO2016190304A1 (en) * 2015-05-28 2016-12-01 富士フイルム株式会社 Solid electrolyte composition, mixture, composite gel, all-solid secondary cell electrode sheet, all-solid secondary cell, and method for manufacturing solid electrolyte composition, composite gel, all-solid secondary cell electrode sheet, and all-solid secondary cell
JP2017027657A (en) * 2015-07-15 2017-02-02 三星電子株式会社Samsung Electronics Co.,Ltd. Electrolytic solution for secondary battery and secondary battery
WO2018168505A1 (en) * 2017-03-14 2018-09-20 富士フイルム株式会社 Solid electrolyte composition, solid electrolyte-containing sheet, all-solid-state secondary battery, method for producing solid electrolyte composition, method for producing solid electrolyte-containing sheet, and method for producing all-solid-state secondary battery
JPWO2018168505A1 (en) * 2017-03-14 2019-12-12 富士フイルム株式会社 SOLID ELECTROLYTE COMPOSITION, SOLID ELECTROLYTE-CONTAINING SHEET AND ALL-SOLID SECONDARY BATTERY, AND METHOD FOR PRODUCING SOLID ELECTROLYTE COMPOSITION, SOLID ELECTROLYTE-CONTAINING SHEET AND ALL-SOLID SECONDARY BATTERY
WO2019054191A1 (en) 2017-09-14 2019-03-21 富士フイルム株式会社 Solid electrolyte composition, method for producing same, storage method and kit, solid electrolyte-containing sheet, storage method and kit therefor, and all-solid secondary battery
KR20200036918A (en) 2017-09-14 2020-04-07 후지필름 가부시키가이샤 Solid electrolyte composition, manufacturing method, storage method and kit, solid electrolyte-containing sheet, storage method and kit, and all-solid-state secondary battery
KR20220132024A (en) 2017-09-14 2022-09-29 후지필름 가부시키가이샤 Solid electrolyte composition, method for producing same, storage method and kit, solid electrolyte-containing sheet, storage method and kit therefor, and all-solid secondary battery
US11621436B2 (en) 2017-09-14 2023-04-04 Fujifilm Corporation Solid electrolyte composition, manufacturing method thereof, storage method thereof, kit thereof, solid electrolyte-containing sheet, storage method thereof, kit thereof, and all-solid state secondary battery
CN111416151A (en) * 2020-03-20 2020-07-14 宁德新能源科技有限公司 Electrolyte solution, electrochemical device, and electronic device

Also Published As

Publication number Publication date
JP5580979B2 (en) 2014-08-27

Similar Documents

Publication Publication Date Title
JP5580979B2 (en) Lithium ion conductive solid electrolyte composition and battery using the same
Zhang et al. Polymer electrolytes for high energy density ternary cathode material-based lithium batteries
JP6721669B2 (en) Solid electrolyte composition, electrode sheet for all solid state secondary battery and all solid state secondary battery, and electrode sheet for all solid state secondary battery and method for manufacturing all solid state secondary battery
KR102469213B1 (en) Electrolyte for non-aqueous electrolyte battery and non-aqueous electrolyte battery using the same
KR101747864B1 (en) Composite electrolyte, and lithium battery comprising electrolyte
JP5368711B2 (en) Solid electrolyte membrane, positive electrode membrane, or negative electrode membrane for all solid lithium secondary battery, method for producing the same, and all solid lithium secondary battery
JP6607959B2 (en) Electrode material, electrode sheet for all-solid-state secondary battery, all-solid-state secondary battery, electrode sheet for all-solid-state secondary battery, and method for producing all-solid-state secondary battery
CN103700820B (en) A kind of lithium ion selenium battery with long service life
CN104078708B (en) Pre-doping agent, electrical storage device and its manufacture method using the pre-doping agent
WO2018168505A1 (en) Solid electrolyte composition, solid electrolyte-containing sheet, all-solid-state secondary battery, method for producing solid electrolyte composition, method for producing solid electrolyte-containing sheet, and method for producing all-solid-state secondary battery
EP1150373A1 (en) Non-aqueous electrochemical device
KR101382502B1 (en) Active material for battery, and battery
KR20200020220A (en) A binder solution for all solid state battery, electrode slurry comprising the same and a method of preparing all solid state battery using the same
WO2017199821A1 (en) Solid electrolyte composition, solid electrolyte-containing sheet, all-solid-state secondary battery, method for producing solid electrolyte-containing sheet, and method for producing all-solid-state secondary battery
WO2019111983A1 (en) Electrolyte solution for nonaqueous electrolyte batteries, and nonaqueous electrolyte battery using same
WO2014168327A1 (en) Anode for lithium secondary battery, method for manufacturing same, and lithium secondary battery including same
JP2008103285A (en) All solid bipolar battery
JP2017147173A (en) Solid electrolyte composition, sheet for all-solid type secondary battery, all-solid type secondary battery, and methods for manufacturing sheet for all-solid type secondary battery and all-solid type secondary battery
KR102364811B1 (en) Solid polymer electrolyte and Li ion battery comprising the same
KR20070059717A (en) Manufacturing method of negative active material for lithium secondary battery and lithium secondary battery comprising the same
TWI464931B (en) Lithium ion battery
JP2012160415A (en) Electrode material for secondary battery, electrode, and secondary battery
JP6623083B2 (en) Solid electrolyte composition, sheet for all-solid secondary battery and all-solid-state secondary battery using the same, and method for producing them
JP3929303B2 (en) Lithium secondary battery
KR101994878B1 (en) Positive electrode for solid lithium ion secondary battery, and solid lithium ion secondary battery comprising the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131217

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20140212

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20140217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140708

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140714

R150 Certificate of patent or registration of utility model

Ref document number: 5580979

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150