JP2017027657A - Electrolytic solution for secondary battery and secondary battery - Google Patents

Electrolytic solution for secondary battery and secondary battery Download PDF

Info

Publication number
JP2017027657A
JP2017027657A JP2015141445A JP2015141445A JP2017027657A JP 2017027657 A JP2017027657 A JP 2017027657A JP 2015141445 A JP2015141445 A JP 2015141445A JP 2015141445 A JP2015141445 A JP 2015141445A JP 2017027657 A JP2017027657 A JP 2017027657A
Authority
JP
Japan
Prior art keywords
secondary battery
lithium
electrolyte
sulfur
electrolytic solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015141445A
Other languages
Japanese (ja)
Other versions
JP6633855B2 (en
Inventor
亮 面田
Akira Omoda
亮 面田
相原 雄一
Yuichi Aihara
雄一 相原
清太郎 伊藤
Seitaro Ito
清太郎 伊藤
好伸 山田
Yoshinobu Yamada
好伸 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Priority to JP2015141445A priority Critical patent/JP6633855B2/en
Priority to KR1020160003338A priority patent/KR20170009696A/en
Priority to US15/209,922 priority patent/US10186730B2/en
Publication of JP2017027657A publication Critical patent/JP2017027657A/en
Application granted granted Critical
Publication of JP6633855B2 publication Critical patent/JP6633855B2/en
Priority to KR1020240038775A priority patent/KR102681720B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Dispersion Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrolytic solution for a secondary battery, having sufficient lithium ion conductivity, high in electrochemical stability, and providing excellent battery performance, and a lithium sulfur secondary battery using the electrolytic solution.SOLUTION: An organic solution of a sulfide-based solid electrolyte that exhibits lithium ion conductivity is employed as an electrolytic solution 5, the sulfide-based solid electrolyte being soluble into an organic solvent at a high concentration.SELECTED DRAWING: Figure 4

Description

本発明は、リチウム硫黄二次電池における電解液、及び該電解液を用いたリチウム硫黄二次電池に関するものである。   The present invention relates to an electrolytic solution in a lithium sulfur secondary battery and a lithium sulfur secondary battery using the electrolytic solution.

次世代の高容量二次電池の1つとしてリチウム硫黄二次電池が提案されている。これは、一般的なリチウムイオン二次電池の正極活物質の理論容量は180mAh/g程度であるのに対し、硫黄活物質の理論容量は1675mAh/gと極めて大きいことによる。このため、リチウム硫黄二次電池用の正極材料等の開発が盛んに行われ、種々の報告がなされている(例えば、特許文献1,2参照)。   A lithium-sulfur secondary battery has been proposed as one of the next generation high capacity secondary batteries. This is because the theoretical capacity of the positive electrode active material of a general lithium ion secondary battery is about 180 mAh / g, whereas the theoretical capacity of the sulfur active material is as extremely large as 1675 mAh / g. For this reason, positive electrode materials for lithium-sulfur secondary batteries have been actively developed, and various reports have been made (for example, see Patent Documents 1 and 2).

国際公開第2012/070184号パンフレットInternational Publication No. 2012/070184 Pamphlet 米国特許公開第2011/0052998A1号US Patent Publication No. 2011 / 0052998A1

ところで、このようなリチウム硫黄二次電池においては、十分な電池特性が得られる電解液についても、さらなる改良が求められている。   By the way, in such a lithium-sulfur secondary battery, further improvement is demanded for an electrolytic solution capable of obtaining sufficient battery characteristics.

すなわち、本発明は、十分なリチウムイオン伝導性が得られるとともに、電気化学的な安定性が高く、優れた電池性能をもたらす二次電池用の電解液を提供することを目的とする。また、このような電解液を用いたリチウム硫黄二次電池を提供することを目的とする。   That is, an object of the present invention is to provide an electrolytic solution for a secondary battery that can provide sufficient lithium ion conductivity, has high electrochemical stability, and provides excellent battery performance. It is another object of the present invention to provide a lithium-sulfur secondary battery using such an electrolytic solution.

上記の目的を達成するために、本発明では、リチウムイオン伝導性を示す硫化物系固体電解質のうち高濃度で有機溶媒に溶解し得るものを見出し、このようなリチウムイオン伝導性を示す硫化物系固体電解質の有機溶液を二次電池用電解液として適用するようにした。   In order to achieve the above object, the present invention finds a sulfide-based solid electrolyte exhibiting lithium ion conductivity that can be dissolved in an organic solvent at a high concentration, and sulfide exhibiting such lithium ion conductivity. An organic solution of a system solid electrolyte was applied as an electrolyte for a secondary battery.

すなわち、ここに開示する二次電池用電解液は、有機溶媒に、リチウムイオン伝導性を示し、且つ、一般式Liで表される固体電解質の少なくとも一部が溶解した二次電池用電解液(式中、aは3<a<5であり、bは1<b<3であり、且つcは6<c<8である。)であることを特徴とする。 That is, the electrolytic solution for a secondary battery disclosed herein, the organic solvent, shows the lithium ion conductivity, and the secondary of the general formula Li a P b at least a portion of the solid electrolyte represented by S c was dissolved The battery electrolyte is characterized in that a is 3 <a <5, b is 1 <b <3, and c is 6 <c <8.

一般に、リチウムイオン伝導性を示す無機固体電解質は、全固体リチウム二次電池の電解質層等として用いられる。これは、このような無機固体電解質が、固体状態においてリチウムイオンの高い伝導性を示す性質を有するとともに、耐熱性や電気化学的な安定性が高い等の理由による。そして、このようなリチウムイオン伝導性を示す固体電解質は、一般に有機溶媒には殆ど溶解しないことが知られている。   In general, an inorganic solid electrolyte exhibiting lithium ion conductivity is used as an electrolyte layer or the like of an all-solid lithium secondary battery. This is because such an inorganic solid electrolyte has the property of showing high conductivity of lithium ions in the solid state and has high heat resistance and high electrochemical stability. It is known that such a solid electrolyte exhibiting lithium ion conductivity is generally hardly dissolved in an organic solvent.

ここで、本発明者らは、鋭意研究の結果、リチウムイオン伝導性を示す固体電解質のうちの一部のものは、有機溶媒に対して十分な溶解性を示すことを見出した。そして、このようなリチウムイオン伝導性を示す固体電解質を有機溶媒に溶解させた有機溶液が、リチウムイオン二次電池用の電解質として用いられる一般的なリチウム塩に匹敵する、高いリチウムイオン伝導性を示すことをさらに見出した。   Here, as a result of intensive studies, the present inventors have found that some of the solid electrolytes exhibiting lithium ion conductivity exhibit sufficient solubility in organic solvents. An organic solution obtained by dissolving a solid electrolyte exhibiting lithium ion conductivity in an organic solvent has high lithium ion conductivity comparable to a general lithium salt used as an electrolyte for a lithium ion secondary battery. I found more to show.

従って、本発明によれば、十分なリチウムイオン伝導性を有するとともに、電気化学的な安定性が高く、優れた電池性能をもたらす二次電池用の電解液を提供することができる。   Therefore, according to the present invention, it is possible to provide an electrolytic solution for a secondary battery that has sufficient lithium ion conductivity, high electrochemical stability, and excellent battery performance.

このようなリチウムイオン伝導性を示す固体電解質は、一般式Liで表されるものであり、前記aは3<a<5であり、前記bは1<b<3であり、且つ前記cは6<c<8である。そして、好ましい態様では、前記リチウムイオン伝導性を示す固体電解質の少なくとも一部は、Liの組成を有する。これにより、有機溶媒への十分な溶解性が得られ、電池性能が向上する。 Such a solid electrolyte exhibiting lithium ion conductivity is represented by the general formula Li a P b S c, where a is 3 <a <5 and b is 1 <b <3. And c is 6 <c <8. In a preferred embodiment, at least a part of the solid electrolyte exhibiting lithium ion conductivity has a composition of Li 4 P 2 S 7 . Thereby, sufficient solubility in an organic solvent is obtained, and battery performance is improved.

また、好ましい態様では、本発明に係る二次電池用電解液のリチウムイオン伝導率は1×10−6S/cm以上である。これにより、電池性能が向上する。 In a preferred embodiment, the lithium ion conductivity of the secondary battery electrolyte according to the present invention is 1 × 10 −6 S / cm or more. Thereby, battery performance improves.

また、このような二次電池用電解液は、ポリマー等を含んだゲル状であってもよい。これにより、ハンドリング性が向上する。   Further, such a secondary battery electrolyte may be in the form of a gel containing a polymer or the like. Thereby, handling property improves.

好ましい態様では、前記二次電池用電解液は、リチウムイオンを吸蔵及び放出する材料を含む負極と、硫黄を正極活物質とする正極と、前記負極と前記正極との間に配置されたセパレータと、前記負極と前記正極との間に満たされた電解液とを備えたリチウム硫黄二次電池の前記電解液として好適に用いることができる。これにより、優れた電池性能を有するリチウム硫黄二次電池をもたらすことができる。   In a preferred embodiment, the secondary battery electrolyte includes a negative electrode including a material that absorbs and releases lithium ions, a positive electrode that uses sulfur as a positive electrode active material, and a separator that is disposed between the negative electrode and the positive electrode. It can be suitably used as the electrolytic solution of a lithium-sulfur secondary battery comprising an electrolytic solution filled between the negative electrode and the positive electrode. Thereby, the lithium sulfur secondary battery which has the outstanding battery performance can be brought about.

なお、特に好ましい態様では、前記有機溶媒はテトラヒドロフランである。これにより、リチウムイオン伝導性を示す固体電解質の十分な溶解性が得られる。   In a particularly preferred embodiment, the organic solvent is tetrahydrofuran. Thereby, sufficient solubility of the solid electrolyte which shows lithium ion conductivity is obtained.

また、特に好ましい態様では、前記二次電池用電解液は添加剤を含む。これにより、電池性能を効果的に向上させることができる。   In a particularly preferred embodiment, the secondary battery electrolyte contains an additive. Thereby, battery performance can be improved effectively.

以上述べたように、本発明によると、十分なリチウムイオン伝導性を有するとともに、電気化学的な安定性が高く、優れた電池性能をもたらす二次電池用の電解液を提供することができる。また、このような電解液を用いることにより、優れた電池性能を有するリチウム硫黄二次電池をもたらすことができる。   As described above, according to the present invention, it is possible to provide an electrolytic solution for a secondary battery that has sufficient lithium ion conductivity, high electrochemical stability, and excellent battery performance. Moreover, the use of such an electrolytic solution can provide a lithium-sulfur secondary battery having excellent battery performance.

図1は、本発明の一実施形態におけるリチウム硫黄二次電池の概略構成を示す断面図である。FIG. 1 is a cross-sectional view showing a schematic configuration of a lithium-sulfur secondary battery according to an embodiment of the present invention. 図2は、実施例1のLiのラマンスペクトルを示す図である。FIG. 2 is a diagram showing the Raman spectrum of Li 4 P 2 S 7 in Example 1. 図3は、実施例1に係るリチウム硫黄二次電池の充放電プロファイルを示す図である。FIG. 3 is a diagram showing a charge / discharge profile of the lithium-sulfur secondary battery according to Example 1. 図4は、実施例1及び比較例1〜3に係るリチウム硫黄二次電池の初回放電プロファイルを示す図である。FIG. 4 is a diagram illustrating initial discharge profiles of lithium-sulfur secondary batteries according to Example 1 and Comparative Examples 1 to 3. 図5は、実施例1及び比較例1〜3の電解質のイオン伝導率を示す図である。FIG. 5 is a graph showing the ionic conductivity of the electrolytes of Example 1 and Comparative Examples 1 to 3.

以下、本発明の実施形態を図面に基づいて詳細に説明する。以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものでは全くない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The following description of the preferred embodiments is merely exemplary in nature and is in no way intended to limit the invention, its application, or its application.

<リチウム硫黄二次電池の構成>
図1に示すように、一実施形態に係るリチウム硫黄二次電池1は、硫黄を正極活物質とする正極2と、リチウムイオンを吸蔵及び放出する材料を含む負極3と、正極2と負極3との間に配置されたセパレータ4と、正極2と負極3との間に満たされ、リチウムイオン伝導性を持つ電解液5とを備える。
<Configuration of lithium-sulfur secondary battery>
As shown in FIG. 1, a lithium-sulfur secondary battery 1 according to an embodiment includes a positive electrode 2 using sulfur as a positive electrode active material, a negative electrode 3 containing a material that absorbs and releases lithium ions, and a positive electrode 2 and a negative electrode 3. And an electrolyte 5 filled between the positive electrode 2 and the negative electrode 3 and having lithium ion conductivity.

正極2は、例えば正極活物質と導電材と結着材とを混合し、適当な溶剤を加えてペースト状の正極材としたものを、集電体の表面に塗布乾燥し、必要に応じて電極密度を高めるべく圧縮して形成してもよい。正極活物質は、硫黄を含むものである。硫黄はどのような形態で含まれていてもよいが、単体硫黄及び金属硫化物の少なくともいずれか一方であることが好ましい。なお、金属硫化物は金属多硫化物を含む。正極活物質として単体硫黄を用いる場合は、硫黄の少なくとも一部は、上述の正極材への硫黄の分散性向上の観点から、界面活性剤、高分子系顔料、シリコーン系樹脂等の表面処理剤を含む有機成分で修飾されていてもよい。この場合、硫黄中の有機成分の濃度は0.01質量%以上10質量%以下であることが好ましい。   The positive electrode 2 is prepared by, for example, mixing a positive electrode active material, a conductive material, and a binder, adding a suitable solvent to form a paste-like positive electrode material, applying and drying on the surface of the current collector, and if necessary You may compress and form in order to raise an electrode density. The positive electrode active material contains sulfur. Sulfur may be contained in any form, but is preferably at least one of elemental sulfur and metal sulfide. The metal sulfide includes a metal polysulfide. When elemental sulfur is used as the positive electrode active material, at least a part of the sulfur is a surface treatment agent such as a surfactant, a polymer pigment, or a silicone resin from the viewpoint of improving the dispersibility of sulfur in the positive electrode material. It may be modified with an organic component containing In this case, the concentration of the organic component in the sulfur is preferably 0.01% by mass or more and 10% by mass or less.

負極3は、例えばリチウムイオン二次電池やリチウム硫黄二次電池の負極として一般的なものを用いることができる。具体的には、負極3の材料として、例えば、Li、LiとAlもしくはIn等との合金、又は、リチウムイオンをドープしたSi、SiO、Sn、SnOもしくはカーボン材等を用いることができる。 As the negative electrode 3, for example, a general negative electrode of a lithium ion secondary battery or a lithium sulfur secondary battery can be used. Specifically, as the material of the negative electrode 3, for example, an alloy of Li, Li and Al or In, or Si, SiO, Sn, SnO 2 or a carbon material doped with lithium ions can be used.

セパレータ4は、電解液5中において正極2と負極3との間を絶縁させるものであり、リチウムイオン二次電池やリチウム硫黄二次電池のセパレータとして公知のものを用いることができる。例えば、セパレータ4は、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレンなどの合成樹脂製の多孔質膜、あるいは、セラミック製の多孔質膜により構成され、これらの2種以上の多孔質膜を積層した構造を有するものであってもよい。これらの中で、ポリオレフィン製の多孔質膜は短絡防止効果に優れているだけでなく、シャットダウン効果(過大電流が流れた時に空孔が閉鎖し、電流を閉鎖する効果)による電池の安全性向上を図ることができるので好ましい。   The separator 4 insulates between the positive electrode 2 and the negative electrode 3 in the electrolyte solution 5, and a well-known thing can be used as a separator of a lithium ion secondary battery or a lithium sulfur secondary battery. For example, the separator 4 is composed of a porous film made of synthetic resin such as polytetrafluoroethylene, polypropylene, or polyethylene, or a porous film made of ceramic, and has a structure in which these two or more kinds of porous films are laminated. You may have. Among these, the porous film made of polyolefin not only has an excellent short-circuit prevention effect, but also improves the safety of the battery by the shutdown effect (the effect of closing the vacancies and closing the current when an excessive current flows). This is preferable.

電解液5は、図1に示すように、正極2とセパレータ4との間、セパレータ4内部、及びセパレータ4と負極3との間に満たされており、有機溶媒にリチウムイオン伝導性を示す固体電解質の少なくとも一部が溶解したものである。   As shown in FIG. 1, the electrolyte 5 is filled between the positive electrode 2 and the separator 4, inside the separator 4, and between the separator 4 and the negative electrode 3, and is a solid that exhibits lithium ion conductivity in an organic solvent. At least a part of the electrolyte is dissolved.

リチウムイオン伝導性を示す固体電解質としては、有機溶媒への溶解性及び電池性能向上の観点から、一般式Liで表されるものである。ここで、前記aは3<a<5であり、前記bは1<b<3であり、且つ前記cは6<c<8である。また、リチウムイオン伝導性を示す固体電解質の少なくとも一部が、Liの組成を有することが特に好ましい。 As the solid electrolytes having lithium ion conductivity, in which from the viewpoint of solubility and battery performance improvement in an organic solvent, represented by the general formula Li a P b S c. Here, a is 3 <a <5, b is 1 <b <3, and c is 6 <c <8. Moreover, it is particularly preferable that at least a part of the solid electrolyte exhibiting lithium ion conductivity has a composition of Li 4 P 2 S 7 .

有機溶媒としては、例えば、テトラヒドロフラン、グライム、ジグライム、トリグライム、テトラグライムなどのエーテル系有機溶媒、ジエチルカーボネート、プロピレンカーボネートなどのエステル系溶媒のうちから選択された少なくとも1種、又は、これらのうちから選択された少なくとも1種(例えばグライム、ジグライムもしくはテトラグライム)に粘度調整のためのジオキソランを混合したものを用いることができる。特に好ましくは、有機溶媒はテトラヒドロフランである。   As the organic solvent, for example, at least one selected from ether organic solvents such as tetrahydrofuran, glyme, diglyme, triglyme and tetraglyme, and ester solvents such as diethyl carbonate and propylene carbonate, or from these A mixture of dioxolane for viscosity adjustment with at least one selected (for example, glyme, diglyme or tetraglyme) can be used. Particularly preferably, the organic solvent is tetrahydrofuran.

電解液5中の固体電解質の濃度は、電池性能向上の観点から、好ましくは0.005M以上、より好ましくは0.01M以上、特に好ましくは0.03M以上である。   The concentration of the solid electrolyte in the electrolytic solution 5 is preferably 0.005M or more, more preferably 0.01M or more, and particularly preferably 0.03M or more from the viewpoint of improving battery performance.

また、電解液5のリチウムイオン伝導率は、電池性能向上の観点から、好ましくは1×10−7S/cm以上、より好ましくは5×10−7S/cm以上、特に好ましくは1×10−6S/cm以上である。 Further, the lithium ion conductivity of the electrolytic solution 5 is preferably 1 × 10 −7 S / cm or more, more preferably 5 × 10 −7 S / cm or more, particularly preferably 1 × 10 from the viewpoint of improving battery performance. -6 S / cm or more.

また、このような電解液5は、液状であってもよいし、ポリマー等を含んだゲル状であってもよい。ゲル状の電解液を用いる場合に含有させるポリマーとしては、例えば、ポリエチレンオキシド(PEO)、ポリアクリロニトリル(PAN)、ポリフッ化ビリニデン(PVDF)、およびポリメチルメタクリレート(PMMA)等が挙げられる。   Further, such an electrolytic solution 5 may be in a liquid form or a gel containing a polymer or the like. Examples of the polymer to be contained when using the gel electrolyte include polyethylene oxide (PEO), polyacrylonitrile (PAN), poly (vinylidene fluoride) (PVDF), and polymethyl methacrylate (PMMA).

また、電解液5は、二次電池の充放電特性や安全性向上の観点から、追加の添加剤を含んでもよい。添加剤としては、金属Li負極表面に被覆膜を形成しシャトル現象を防止する、LiNO等の添加剤や、覆膜形成、安全性向上、耐久性向上といった目的で、例えば、フッ化物イオン(F)、塩化物イオン(Cl)、臭化物イオン(Br)、及びヨウ化物イオン(I)のうち少なくとも一種以上のハロゲン化物イオンを含有するアルカリ金属塩、アルカリ土類金属塩、アンモニウム塩等の無機系添加剤が挙げられる。また、同様の目的の有機系添加剤も挙げられる。これらの添加剤は、単独で用いても複数を組み合わせて用いてもよい。添加剤の濃度は、好ましくは0.01wt%以上である。 Moreover, the electrolyte solution 5 may contain an additional additive from a viewpoint of the charging / discharging characteristic and safety | security improvement of a secondary battery. Examples of the additive include an additive such as LiNO 3 that forms a coating film on the surface of the metal Li negative electrode to prevent the shuttle phenomenon, and for the purpose of forming a coating film, improving safety, and improving durability, for example, fluoride ion An alkali metal salt, an alkaline earth metal salt containing at least one or more halide ions among (F ), chloride ions (Cl ), bromide ions (Br ), and iodide ions (I ), Examples thereof include inorganic additives such as ammonium salts. Moreover, the organic additive of the same objective is also mentioned. These additives may be used alone or in combination. The concentration of the additive is preferably 0.01 wt% or more.

このような電解液5は、十分なリチウムイオン伝導性を有するとともに、電気化学的な安定性が高い。従って、このような電解液5を用いることにより、優れた電池性能を有するリチウム硫黄二次電池を提供することができる。   Such an electrolytic solution 5 has sufficient lithium ion conductivity and high electrochemical stability. Therefore, a lithium-sulfur secondary battery having excellent battery performance can be provided by using such an electrolytic solution 5.

<リチウム硫黄二次電池の作動機構>
以上の構成を有するリチウム硫黄二次電池1は、負極3を金属リチウムで構成した場合、以下の機構により作動する。すなわち、放電時には、負極3の金属リチウムが下記式(1)により酸化され、Liが電解液5中に放出される。
Li → Li + e・・・(1)
放出されたLiは、セパレータ4を介して正極2側に移動し、下記式(2)に示す還元反応により、正極2のS等の硫黄活物質と反応して、放電生成物LiSを生じる。そして、リチウム硫黄二次電池1の外部へと電流を取り出すことができる。
16Li + S + 16e → 8LiS・・・(2)
一方、充電時には、正極2において放電生成物であるLiS等が、上記式(2)の逆反応により酸化され、電解液5中にLiが放出される。Liはセパレータ4を介して負極3側に移動し、負極界面でLiが上記式(1)の逆反応により還元される。
<Operating mechanism of lithium-sulfur secondary battery>
The lithium-sulfur secondary battery 1 having the above configuration operates by the following mechanism when the negative electrode 3 is made of metallic lithium. That is, at the time of discharging, metallic lithium of the negative electrode 3 is oxidized by the following formula (1), and Li + is released into the electrolytic solution 5.
Li → Li + + e (1)
The released Li + moves to the positive electrode 2 side through the separator 4 and reacts with a sulfur active material such as S 8 of the positive electrode 2 by the reduction reaction shown in the following formula (2), thereby causing the discharge product Li 2. S is produced. And an electric current can be taken out of the lithium sulfur secondary battery 1 outside.
16Li ++ S 8 + 16e → 8Li 2 S (2)
On the other hand, at the time of charging, Li 2 S or the like that is a discharge product in the positive electrode 2 is oxidized by the reverse reaction of the above formula (2), and Li + is released into the electrolytic solution 5. Li + moves to the negative electrode 3 side via the separator 4, and Li + is reduced by the reverse reaction of the above formula (1) at the negative electrode interface.

次に、具体的に実施した実施例について説明する。   Next, specific examples will be described.

[実施例1]
<Liの調製>
実施例1において、リチウムイオン伝導性を示す固体電解質としてLiを使用した。Liは、次の手法で合成した。原料であるLiS(Alfa製 99.9%)を0.439gとP(Aldrich製 99.9%)1.061gを秤量し、66.6mol%と33.4mol%となるようにした。LiSとPをAr雰囲気下で45mlのジルコニア容器に入れ、直径10mmのジルコニアビーズを7個、直径3mmのジルコニアビーズを10個加え密閉し、380rpmで40時間、ボールミリング処理(Frich P−7)を行い、Liを1.5g得た。図2に示すように、得られた試料はラマン分光測定を行い、波数403cm−1にP 4−の構造に由来するピークがあることから、Liが得られたことを確認した。
[Example 1]
<Preparation of Li 4 P 2 S 7 >
In Example 1, Li 4 P 2 S 7 was used as a solid electrolyte exhibiting lithium ion conductivity. Li 4 P 2 S 7 was synthesized by the following method. 0.439 g of Li 2 S (Alfa 99.9%) and 1.061 g of P 2 S 5 (99.9% Aldrich), which are raw materials, are weighed to be 66.6 mol% and 33.4 mol%. I made it. Li 2 S and P 2 S 5 were placed in a 45 ml zirconia container under an Ar atmosphere, and 7 zirconia beads having a diameter of 10 mm and 10 zirconia beads having a diameter of 3 mm were added and sealed, followed by ball milling at 380 rpm for 40 hours ( Frich P-7) was performed to obtain 1.5 g of Li 4 P 2 S 7 . As shown in FIG. 2, the obtained sample was subjected to Raman spectroscopic measurement, and there was a peak derived from the structure of P 2 S 7 4- at a wave number of 403 cm −1, and thus Li 4 P 2 S 7 was obtained. It was confirmed.

<Liのイオン伝導率について>
Liの固体状態でのイオン伝導率をテフロン(登録商標)セル方式(グローブボックス内)の電気化学インピーダンス測定により測定した。すなわち、固体電解質(Li)200mgを4t荷重で1分間プレスして直径13mmのペレットに成型した。次に、厚み0.1mmのインジウム(In)箔を直径13mmで打ち抜き上記電解質ペレットの両面に張り付けた。そして、バネで一定の圧力を付与できるテフロン(登録商標)製のセル(両面から金属板を介して電極を取り出せる)にセットした。その後、テフロン(登録商標)セルの外部をラミネートフィルムで包み真空パック状態とし、電気化学インピーダンス測定を行った。得られたLiのイオン伝導率は、25℃において、6.47×10−5S/cmであった。
<Ion conductivity of Li 4 P 2 S 7 >
The ionic conductivity of Li 4 P 2 S 7 in the solid state was measured by electrochemical impedance measurement using a Teflon (registered trademark) cell system (in a glove box). That is, 200 mg of a solid electrolyte (Li 4 P 2 S 7 ) was pressed for 1 minute at a load of 4 t and molded into a pellet having a diameter of 13 mm. Next, an indium (In) foil having a thickness of 0.1 mm was punched out with a diameter of 13 mm and attached to both surfaces of the electrolyte pellet. And it set to the cell made from Teflon (trademark) which can provide a fixed pressure with a spring (The electrode can be taken out via a metal plate from both surfaces). Thereafter, the outside of the Teflon (registered trademark) cell was wrapped with a laminate film to form a vacuum pack, and electrochemical impedance measurement was performed. The ionic conductivity of the obtained Li 4 P 2 S 7 was 6.47 × 10 −5 S / cm at 25 ° C.

<Liの溶解性について>
有機溶媒としてのテトラヒドロフラン(THF)へのLiの溶解性について、他のリチウムイオン伝導性固体電解質、すなわちLiPS及びLiの溶解性と比較した。結果を表1に示す。
<Solubility of Li 4 P 2 S 7 >
The solubility of Li 4 P 2 S 7 in tetrahydrofuran (THF) as an organic solvent was compared with the solubility of other lithium ion conductive solid electrolytes, namely Li 3 PS 4 and Li 4 P 2 S 6 . The results are shown in Table 1.

Figure 2017027657
Figure 2017027657

表1に示すように、LiPS及びLiについては、THFに対する溶解性をほとんど示さないことが判った。一方、Liについては、THFへの溶解性を示すことが判った。 As shown in Table 1, it was found that Li 3 PS 4 and Li 4 P 2 S 6 showed almost no solubility in THF. On the other hand, it was found that Li 4 P 2 S 7 exhibits solubility in THF.

<コイン電池サンプルの作製>
1%有機成分を修飾した硫黄(Sulfax PS 鶴見化学工業製)を5.0g、分子量300万のポリエチレンオキシド(PEO)を0.56g、直径2mmのジルコニアビーズ30gを秤量しポリ容器に入れ撹拌し、アセトニトリル20gを加えてさらに撹拌した後、90rpmで12時間ボールミリングし、黄色の粘調なスラリーを作製した。ジルコニアビーズをメッシュで除去し、スラリーを離型剤の塗布されたPETフィルム上で製膜し、乾燥することで硫黄の自立シートを作製した。作製したシートを直径14mmの円形としたカーボン電極と同型に成形し、硫黄フィルムを電極表面に圧着し、加熱することで硫黄/カーボン正極を作製した。硫黄導入後のPEOフィルムは電極表面から剥離し、硫黄が8〜10mg/cm導入された正極を用いて電池実験に供した。負極として直径15mm、厚さ400μmのLi−Al合金箔(Alの濃度が20vol%)を用い、セパレータとしてセルガード♯2400(セルガード社製)を用いた。電解液としては、0.08Mとなるように調整したLi/THF電解液を150μL使用した。公知の方法によりこれらの材料を用いてCR2032型のコイン電池サンプルを作製した。
<Production of coin battery sample>
5.0 g of sulfur (Sulfax PS Tsurumi Chemical Co., Ltd.) modified with 1% organic components, 0.56 g of polyethylene oxide (PEO) with a molecular weight of 3 million, and 30 g of zirconia beads with a diameter of 2 mm are weighed in a plastic container and stirred. Then, 20 g of acetonitrile was added and further stirred, and then ball milled at 90 rpm for 12 hours to prepare a yellow viscous slurry. Zirconia beads were removed with a mesh, a slurry was formed on a PET film coated with a release agent, and dried to prepare a self-supporting sheet of sulfur. The produced sheet was formed into the same shape as a circular carbon electrode having a diameter of 14 mm, a sulfur film was pressure-bonded to the electrode surface, and heated to produce a sulfur / carbon positive electrode. The PEO film after the introduction of sulfur was peeled off from the electrode surface and subjected to a battery experiment using a positive electrode into which 8 to 10 mg / cm 2 of sulfur was introduced. A Li—Al alloy foil (Al concentration of 20 vol%) having a diameter of 15 mm and a thickness of 400 μm was used as the negative electrode, and Celgard # 2400 (manufactured by Celgard) was used as the separator. As the electrolytic solution, 150 μL of Li 4 P 2 S 7 / THF electrolytic solution adjusted to be 0.08M was used. A CR2032-type coin battery sample was prepared using these materials by a known method.

[比較例1]
実施例1のLiをLiBFに変更した以外は同様の手法でコイン電池サンプルを作製した。
[Comparative Example 1]
A coin battery sample was produced in the same manner except that Li 4 P 2 S 7 in Example 1 was changed to LiBF 4 .

[比較例2]
実施例1のLiをLiPFに変更した以外は同様の手法でコイン電池サンプルを作製した。
[Comparative Example 2]
A coin battery sample was produced in the same manner except that Li 4 P 2 S 7 of Example 1 was changed to LiPF 6 .

[比較例3]
実施例1のLiをリチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)に変更した以外は同様の手法でコイン電池サンプルを作製した。
[Comparative Example 3]
A coin battery sample was prepared in the same manner except that Li 4 P 2 S 7 of Example 1 was changed to lithium bis (trifluoromethanesulfonyl) imide (LiTFSI).

<リチウム硫黄二次電池の充放電特性評価>
実施例1及び比較例1〜3のコイン電池サンプルについて、リチウム硫黄二次電池の特性を評価した。結果を図3、図4及び表2に示す。
<Evaluation of charge / discharge characteristics of lithium-sulfur secondary battery>
About the coin battery sample of Example 1 and Comparative Examples 1-3, the characteristic of the lithium sulfur secondary battery was evaluated. The results are shown in FIGS. 3 and 4 and Table 2.

Figure 2017027657
Figure 2017027657

測定は、0.77mA(0.50mA/cm)の定電流で充放電を行い、カット電圧は放電1.5Vと充電2.37Vとした。 The measurement was performed by charging and discharging at a constant current of 0.77 mA (0.50 mA / cm 2 ), and the cut voltage was set to discharge 1.5V and charge 2.37V.

図3に示すように、実施例1のコイン電池サンプルは、充放電容量が700mAh/gを超える高い容量での充放電が可能であった。   As shown in FIG. 3, the coin battery sample of Example 1 was able to be charged / discharged at a high capacity with a charge / discharge capacity exceeding 700 mAh / g.

また、図4及び表2に示すように、比較例1〜3は実施例1での初回放電容量に比べ明らかに低い容量となっており、リチウム硫黄二次電池におけるLi電解液の優位性が示された。 Further, as shown in FIG. 4 and Table 2, Comparative Examples 1 to 3 have clearly lower capacities than the initial discharge capacity in Example 1, and Li 4 P 2 S 7 electrolysis in a lithium sulfur secondary battery. The superiority of the liquid was shown.

<電解液のイオン伝導率測定>
実施例1で用いたLi/THF電解液および比較例1〜3で用いたLi電解質塩/THF電解液のイオン伝導率を測定し比較した。内部にSUS電極が両極に備えられたガラスセルを使用し、そこに0.08Mとなるよう調整したそれぞれの電解液を約5ml加え、交流インピーダンス測定をすることでイオン伝導率を測定した。なお、イオン伝導率は0.1規定のKCl水溶液で同様の実験でセル定数を求めて算出した。結果を図5及び表2に示す。
<Measurement of ionic conductivity of electrolyte>
The ionic conductivity of the Li 4 P 2 S 7 / THF electrolyte used in Example 1 and the Li electrolyte salt / THF electrolyte used in Comparative Examples 1 to 3 were measured and compared. Using a glass cell having SUS electrodes on both electrodes inside, about 5 ml of each electrolyte adjusted to 0.08 M was added thereto, and the ionic conductivity was measured by measuring the AC impedance. The ionic conductivity was calculated by obtaining the cell constant in the same experiment with a 0.1 N KCl aqueous solution. The results are shown in FIG.

図5及び表2に示すように、実施例1で用いたLi/THF電解液は、比較例1,2のLiBF,LiPFを含む電解液と比較して、より高いイオン伝導率を示すとともに、比較例3のLiTFSIを含む電解液と比較して、低いイオン伝導率を示すことが判った。 As shown in FIG. 5 and Table 2, the Li 4 P 2 S 7 / THF electrolyte used in Example 1 is higher than the electrolyte containing LiBF 4 and LiPF 6 in Comparative Examples 1 and 2. It was found that the ionic conductivity was exhibited and a low ionic conductivity was exhibited as compared with the electrolytic solution containing LiTFSI of Comparative Example 3.

<まとめ>
以上の結果より、実施例1におけるLi/THF電解液は、リチウムイオン二次電池用の電解質として用いられる一般的なリチウム塩に匹敵する、高いイオン伝導率を示すとともに、優れた電池性能をもたらすことが判った。なお、比較例3のLiTFSIを含む電解液は、実施例1におけるLi/THF電解液に比べ、イオン伝導率では優れているものの、リチウム硫黄二次電池の初回放電容量という点では劣っており、実施例1のLi/THF電解液が二次電池用電解液として有用であることが示された。
<Summary>
From the above results, the Li 4 P 2 S 7 / THF electrolyte in Example 1 exhibits high ionic conductivity comparable to a general lithium salt used as an electrolyte for a lithium ion secondary battery, and is excellent. It has been found to bring about battery performance. In addition, although the electrolyte solution containing LiTFSI of Comparative Example 3 is superior in ionic conductivity to the Li 4 P 2 S 7 / THF electrolyte solution in Example 1, it is the initial discharge capacity of the lithium-sulfur secondary battery. It was shown that the Li 4 P 2 S 7 / THF electrolyte of Example 1 is useful as an electrolyte for a secondary battery.

本発明は、十分なリチウムイオン伝導性を有するとともに、電気化学的な安定性が高く、優れた電池性能をもたらす二次電池用の電解液、及びこのような電解液を用いたリチウム硫黄二次電池を提供することができるので、極めて有用である。   The present invention provides an electrolyte solution for a secondary battery having sufficient lithium ion conductivity, high electrochemical stability, and excellent battery performance, and a lithium-sulfur secondary battery using such an electrolyte solution. Since a battery can be provided, it is extremely useful.

1 リチウム硫黄二次電池
2 正極
3 負極
4 セパレータ
5 電解液(二次電池用電解液)
DESCRIPTION OF SYMBOLS 1 Lithium sulfur secondary battery 2 Positive electrode 3 Negative electrode 4 Separator 5 Electrolytic solution (electrolytic solution for secondary batteries)

Claims (7)

有機溶媒に、リチウムイオン伝導性を示し、且つ、一般式Liで表される固体電解質の少なくとも一部が溶解した二次電池用電解液。
(式中、aは3<a<5であり、bは1<b<3であり、且つcは6<c<8である。)
In an organic solvent, it shows the lithium ion conductivity, and the general formula Li a P b S solid electrolyte at least partially dissolved liquid electrolyte for a secondary battery represented c. In
(Wherein a is 3 <a <5, b is 1 <b <3, and c is 6 <c <8).
前記固体電解質の少なくとも一部は、Liの組成を有する
ことを特徴とする、請求項1に記載の二次電池用電解液。
2. The electrolyte for a secondary battery according to claim 1, wherein at least a part of the solid electrolyte has a composition of Li 4 P 2 S 7 .
リチウムイオン伝導率が1×10−6S/cm以上である
ことを特徴とする、請求項1又は請求項2に記載の二次電池用電解液。
The electrolyte solution for a secondary battery according to claim 1 or 2, wherein the lithium ion conductivity is 1 x 10-6 S / cm or more.
ゲル状であることを特徴とする、請求項1〜3のいずれか1項に記載の二次電池用電解液。   The electrolyte solution for a secondary battery according to any one of claims 1 to 3, wherein the electrolyte solution is in a gel form. リチウムイオンを吸蔵及び放出する材料を含む負極と、硫黄を正極活物質とする正極と、前記負極と前記正極との間に配置されたセパレータと、前記負極と前記正極との間に満たされた電解液とを備えたリチウム硫黄二次電池であって、
前記電解液は、請求項1〜4のいずれか1項に記載された二次電池用電解液である
ことを特徴とするリチウム硫黄二次電池。
Filled between the negative electrode containing a material that absorbs and releases lithium ions, a positive electrode using sulfur as a positive electrode active material, a separator disposed between the negative electrode and the positive electrode, and the negative electrode and the positive electrode A lithium-sulfur secondary battery comprising an electrolyte solution,
The said electrolyte solution is the electrolyte solution for secondary batteries described in any one of Claims 1-4, The lithium sulfur secondary battery characterized by the above-mentioned.
前記有機溶媒はテトラヒドロフランである
ことを特徴とする、請求項5に記載のリチウム硫黄二次電池。
The lithium-sulfur secondary battery according to claim 5, wherein the organic solvent is tetrahydrofuran.
前記二次電池用電解液は添加剤を含む
ことを特徴とする、請求項5又は請求項6に記載のリチウム硫黄二次電池。
The lithium-sulfur secondary battery according to claim 5, wherein the electrolyte for a secondary battery includes an additive.
JP2015141445A 2015-07-15 2015-07-15 Electrolyte for secondary batteries and secondary batteries Expired - Fee Related JP6633855B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015141445A JP6633855B2 (en) 2015-07-15 2015-07-15 Electrolyte for secondary batteries and secondary batteries
KR1020160003338A KR20170009696A (en) 2015-07-15 2016-01-11 Electrolytes for secondary battery, and secondary battery
US15/209,922 US10186730B2 (en) 2015-07-15 2016-07-14 Electrolyte solution for secondary battery and secondary battery
KR1020240038775A KR102681720B1 (en) 2015-07-15 2024-03-20 Electrolytes for secondary battery, and secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015141445A JP6633855B2 (en) 2015-07-15 2015-07-15 Electrolyte for secondary batteries and secondary batteries

Publications (2)

Publication Number Publication Date
JP2017027657A true JP2017027657A (en) 2017-02-02
JP6633855B2 JP6633855B2 (en) 2020-01-22

Family

ID=57946664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015141445A Expired - Fee Related JP6633855B2 (en) 2015-07-15 2015-07-15 Electrolyte for secondary batteries and secondary batteries

Country Status (2)

Country Link
JP (1) JP6633855B2 (en)
KR (1) KR20170009696A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109088101A (en) * 2018-09-21 2018-12-25 中南大学 A kind of electrolyte and its application

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010113820A (en) * 2008-11-04 2010-05-20 Idemitsu Kosan Co Ltd Lithium ion conductive solid electrolyte composition and battery using it
JP2014127388A (en) * 2012-12-27 2014-07-07 Toyota Motor Corp Sulfide solid electrolyte material, lithium solid battery and method for producing sulfide solid electrolyte material
WO2015046314A1 (en) * 2013-09-25 2015-04-02 富士フイルム株式会社 Solid electrolyte composition, electrode sheet for batteries using same and all-solid-state secondary battery
JP2015072773A (en) * 2013-10-02 2015-04-16 三星電子株式会社Samsung Electronics Co.,Ltd. Sulfide solid electrolyte and method for producing sulfide solid electrolyte

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010113820A (en) * 2008-11-04 2010-05-20 Idemitsu Kosan Co Ltd Lithium ion conductive solid electrolyte composition and battery using it
JP2014127388A (en) * 2012-12-27 2014-07-07 Toyota Motor Corp Sulfide solid electrolyte material, lithium solid battery and method for producing sulfide solid electrolyte material
WO2015046314A1 (en) * 2013-09-25 2015-04-02 富士フイルム株式会社 Solid electrolyte composition, electrode sheet for batteries using same and all-solid-state secondary battery
JP2015072773A (en) * 2013-10-02 2015-04-16 三星電子株式会社Samsung Electronics Co.,Ltd. Sulfide solid electrolyte and method for producing sulfide solid electrolyte

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109088101A (en) * 2018-09-21 2018-12-25 中南大学 A kind of electrolyte and its application
CN109088101B (en) * 2018-09-21 2020-10-02 中南大学 Electrolyte and application thereof

Also Published As

Publication number Publication date
JP6633855B2 (en) 2020-01-22
KR20170009696A (en) 2017-01-25

Similar Documents

Publication Publication Date Title
JP7139264B2 (en) Solid ion-conducting polymer materials and applications
US20210288313A1 (en) High capacity polymer cathode and high energy density rechargeable cell comprising the cathode
Kim et al. Metallic anodes for next generation secondary batteries
KR101699140B1 (en) Alkali metal-sulfur secondary cell
JP6004506B2 (en) Alkali metal-sulfur secondary battery
KR20230165830A (en) Electrochemical cell with solid ion-conducting polymer material
US9023518B2 (en) Lithium—sulfur battery with performance enhanced additives
JP2022105177A (en) Electrochemical battery with solid ion conductive polymer material
JPWO2018193628A1 (en) Polymer electrolyte composition and polymer secondary battery
US10326130B2 (en) Use of novel compounds as negative electrode active material in a sodium-ion battery
CN105938889A (en) Battery cell, battery module, battery group and device comprising battery group
JP2014007117A (en) Li BASED SECONDARY BATTERY
JP2014022334A (en) Electrolyte for nonaqueous electricity storage device
EP3171449B1 (en) Lithium air battery comprising a polymer electrolyte
JPWO2018193627A1 (en) Polymer electrolyte composition and polymer secondary battery
US20180301745A1 (en) Lithium batteries, anodes, and methods of anode fabrication
US10608245B2 (en) Molybdenum-based electrode materials for rechargeable calcium batteries
EP3982442A1 (en) Electrolyte solution, lithium-sulfur secondary battery, and module
JP5645154B2 (en) Lithium ion secondary battery
JP6633855B2 (en) Electrolyte for secondary batteries and secondary batteries
JP2020518091A (en) Polymer electrolyte composition and polymer secondary battery
KR20180111322A (en) Preparing method for electrode for lithium secondary battery, electrode for lithium secondary battery, and lithium secondary battery comprising the same
JP6881570B2 (en) Polymer electrolyte composition and polymer secondary battery
KR102601217B1 (en) Electrolyte for alkali metal air battery and alkali metal air battery comprising the same
JP2020107601A (en) Lithium cobalt oxide positive electrode active material and secondary battery using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191213

R150 Certificate of patent or registration of utility model

Ref document number: 6633855

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees