JPH02199778A - Overcharge preventing element - Google Patents

Overcharge preventing element

Info

Publication number
JPH02199778A
JPH02199778A JP1018671A JP1867189A JPH02199778A JP H02199778 A JPH02199778 A JP H02199778A JP 1018671 A JP1018671 A JP 1018671A JP 1867189 A JP1867189 A JP 1867189A JP H02199778 A JPH02199778 A JP H02199778A
Authority
JP
Japan
Prior art keywords
battery
overcharge
voltage
electrode
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1018671A
Other languages
Japanese (ja)
Inventor
Tatsu Nagai
龍 長井
Hiroshi Hattori
浩 服部
Akira Kawakami
章 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP1018671A priority Critical patent/JPH02199778A/en
Publication of JPH02199778A publication Critical patent/JPH02199778A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To prevent the overcharge of a battery by forming one of a pair of facing electrodes by a high molecular material revealing conductivity by the doping of ions, and making the both electrodes into the electrically connected state. CONSTITUTION:A base electrode 6 bonded to a base electrode terminal plate 2 through a collector 5 consisting of stainless net, a counter electrode 7 consisting of a high molecular material revealing conductivity by the doping of ions which electrode is bonded to a counter electrode terminal plate 3, and a conductive separator provided between the both electrodes 6, 7 are mounted in the state dipped in an electrolyte in the inside of a case 1 of an overcharge preventing element D. Thus, by connecting the overcharge preventing element D in parallel to a battery, the voltage increase exceeding a charge terminating voltage regulated at the time of charging can be prevented in a secondary battery, and also the overcharge state by a reverse applied voltage exceeding an allowable value is prevented in a primary battery. Hence, the performance deterioration and battery breakdown accompanied by overcharge can be prevented without changing the constitution and structure of the battery itself.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、電池の過充電を防ぐために該電池に並列接
続させる素子、とくに二次電池の充電終止電圧を規定値
に維持するのに有用な過充電防止素子に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is useful for maintaining the end-of-charge voltage of a secondary battery at a specified value, an element connected in parallel to a battery to prevent overcharging of the battery, and particularly for maintaining the end-of-charge voltage of a secondary battery at a specified value. The present invention relates to an overcharge prevention element.

〔従来の技術〕[Conventional technology]

二次電池において電池性能を適正に保持する上で充電時
の終止電圧を厳守する必要があるが、実際の使用中には
事故や誤使用などによって高電圧が印加される機会が多
々あり、性能劣化を招くとともに、過剰反応に伴う発生
ガス圧で電池破壊を生じる危険がある。
In order to properly maintain battery performance in secondary batteries, it is necessary to strictly adhere to the final voltage during charging, but during actual use, there are many opportunities for high voltage to be applied due to accidents or misuse. In addition to causing deterioration, there is a risk of battery destruction due to the gas pressure generated due to excessive reaction.

従来、このような過充電に対処する手段として、たとえ
ばリチウム電池ではガス抜き用の安全弁や防爆装置を付
設したり、またニカド電池や鉛電池では正極側で発生し
たガスを負極側で吸収させてサイクル的な自己放電を生
じさせる構造が採用されている(文献不詳)。
Conventionally, measures to deal with such overcharging include installing safety valves and explosion-proof devices for degassing in lithium batteries, and absorbing gas generated on the positive electrode side in nickel-cadmium and lead-acid batteries on the negative electrode side. A structure that causes cyclical self-discharge is adopted (document unknown).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記手段では過充電による性能劣化に対
して充分な効果が得られない上、これらの作用がいずれ
も不可逆的なものであることから過充電の程度や頻度に
許容限界があり、また安全弁や防爆装置を付設すると電
池構成が複雑になって高コスト化する一方、発生ガスを
負極側で吸収させる場合は負極成分を正極成分に対して
大過剰とする必要があって電池が大型化するという問題
があった。
However, the above measures do not have a sufficient effect on performance deterioration due to overcharging, and since all of these effects are irreversible, there are limits to the degree and frequency of overcharging, and there are limits to the degree and frequency of overcharging. Attaching a battery or an explosion-proof device will complicate the battery configuration and increase costs. On the other hand, if the generated gas is absorbed on the negative electrode side, the negative electrode component must be in large excess of the positive electrode component, making the battery larger. There was a problem.

この発明は、上述の事情に鑑み、過充電による電池の性
能劣化を確実に防止でき、しかも電池自体には構成およ
び構造上の制約を与えない過充電防止素子を提供するこ
とを目的としている。
In view of the above-mentioned circumstances, it is an object of the present invention to provide an overcharge prevention element that can reliably prevent performance deterioration of a battery due to overcharging and does not impose any structural or structural restrictions on the battery itself.

〔課題を解決するための手段〕[Means to solve the problem]

この発明者らは、上記目的を達成するために鋭意検討を
重ねる過程で、ポリマー電池の電極材料となる高分子物
質に着目した。すなわち、有機高分子物質は一般に不導
体であるが、上記電極材料となる高分子物質のようにイ
オンのドーピングによって導電性を発現する性質を存す
るものがあり、上記ポリマー電池はこの導体領域でのド
ーピング量の変化に伴う電極電位の変化を利用している
In the course of intensive studies to achieve the above object, the inventors focused on polymeric substances that can be used as electrode materials for polymer batteries. In other words, organic polymeric substances are generally nonconducting, but some polymeric substances, such as those used as electrode materials, have the property of exhibiting conductivity through ion doping, and the polymer battery described above has the property of exhibiting conductivity in this conductive region. It utilizes changes in electrode potential due to changes in doping amount.

この発明者らは、このような高分子物質におけるイオン
のドーピング量変化による絶縁体と導電体との間の転換
が急激かつ可逆的になされることから、この性質を応用
して上記電圧値を境として回路の開閉を行う独立の素子
を構成できるとともに、この素子を電池と並列接続させ
て電池に許容値以上の電圧が印加された際に素子自身の
導通状態への転換によって電池の過充電を防止し得るこ
とを見い出し、この発明をなすに至った。
The inventors found that the transition between an insulator and a conductor occurs rapidly and reversibly due to changes in the amount of ion doping in such polymeric materials, and by applying this property, the above voltage value can be adjusted. It is possible to construct an independent element that opens and closes the circuit as a boundary, and when this element is connected in parallel with a battery, when a voltage exceeding the allowable value is applied to the battery, the element itself switches to a conductive state, thereby preventing overcharging of the battery. The inventors have discovered that this can be prevented, and have come up with this invention.

すなわち、この発明は、電解質を介在して対向配置した
一対の電極の一方がイオンのドーピングによって導電性
を発現する高分子物質からなり、かつ上記両電極が電気
的接続状態にあることを特徴とする過充電防止素子に関
する。
That is, the present invention is characterized in that one of a pair of electrodes arranged opposite to each other with an electrolyte interposed therebetween is made of a polymer material that exhibits conductivity by doping with ions, and the two electrodes are electrically connected. The present invention relates to an overcharge prevention element.

〔発明の構成・作用〕[Structure and operation of the invention]

この発明の過充電防止素子は、一方の電極を構成する前
記の高分子物質が一定の電圧値を境として絶縁体と導電
体の一方から他方へシャープに転換するため、両極間の
電位差が上記電圧値より大であるときに導通状態、小で
あるときに非導通状態となり、電気回路に組み込んだ場
合に上記電圧値を境に回路を開閉する鋭敏なスイッチン
グ作用を示す。そして、上記転換を生じる電圧は、高分
子物質の種類と他方の電極の構成材料とドーピングイオ
ンを供与する電解質の組み合わせによって固有の一定値
をとり、この組み合わせの変化によって任意に設定でき
る。
In the overcharge prevention element of the present invention, the above-mentioned polymeric substance constituting one electrode sharply switches from one of an insulator and a conductor to the other after a certain voltage value, so that the potential difference between the two electrodes is as described above. It becomes conductive when the voltage is greater than the voltage value, and becomes non-conductive when it is smaller than the voltage value. When incorporated into an electric circuit, it exhibits a sensitive switching action that opens and closes the circuit at the voltage value. The voltage that causes the above conversion takes a specific fixed value depending on the combination of the type of polymer substance, the constituent material of the other electrode, and the electrolyte that provides doping ions, and can be arbitrarily set by changing this combination.

したがって、この素子の上記転換電圧を二次電池の規定
される充電終止電圧にほぼ一致するように設定し、この
素子を並列に接続した形で二次電池の充電を行えば、電
池に印加される電圧が充電終止電圧よりも高(なった際
に素子が導通状態に転換し、電池電圧の許容値以上の上
昇を防止する過充電防止素子として機能する。
Therefore, if the conversion voltage of this element is set to almost match the end-of-charge voltage specified for the secondary battery, and the secondary battery is charged with this element connected in parallel, the voltage applied to the battery will be reduced. When the voltage becomes higher than the end-of-charge voltage, the element switches to a conductive state and functions as an overcharge prevention element that prevents the battery voltage from rising above the allowable value.

一方、−次電池においても事故や誤使用などの様々な要
因で許容値を越える逆印加電圧が加わって過充電状態と
なり性能劣化や破壊を生じることがあるが、この許容電
圧にほぼ一致する転換電圧に設定した過充電防止素子を
並列接続しておくことにより、前記同様に高い逆印加電
圧が印加された際に素子が導通状態となり、電池が過充
電状態となることを回避できる。
On the other hand, reverse applied voltage exceeding the allowable value may be applied to negative batteries due to various factors such as accidents or misuse, resulting in overcharging, resulting in performance deterioration or destruction. By connecting overcharge prevention elements set to a certain voltage in parallel, it is possible to prevent the elements from becoming conductive when a high reverse voltage is applied in the same way as described above, and thereby preventing the battery from becoming overcharged.

また、この過充電防止素子の導通状態と非導通状態の変
化は一方の電極を構成する高分子物質のイオンのドーピ
ング量変化に基づいた可逆的なものであることから、上
述の電池との接続状態で高電圧の印加される機会が度々
あっても、その都度に全く変わりなく過充電防止機能が
発揮される。
In addition, since the change between the conductive state and the non-conductive state of this overcharge prevention element is reversible based on the change in the amount of ion doping in the polymeric substance that constitutes one electrode, the connection with the battery described above is possible. Even if high voltage is frequently applied in the current state, the overcharge prevention function is maintained without any change each time.

このような過充電防止素子は、それ自体で独立した電子
部品として取扱えるが、二次電池の充電用機器や二次電
池および一次電池を使用する電気機器に組み込むことが
可能である。
Although such an overcharge prevention element can be handled as an independent electronic component by itself, it can be incorporated into a device for charging a secondary battery or an electric device using a secondary battery and a primary battery.

なお、電圧感応型のスイッチング素子としてツェナーダ
イオードが知られるが、電池のような低い電圧でスイッ
チング機能を果たすものがなく、かつ転換電圧を細かく
選択できないことから、電池用の過充電防止素子には不
適である。
Zener diodes are known as voltage-sensitive switching elements, but since they do not perform switching functions at low voltages like batteries, and the conversion voltage cannot be precisely selected, they are not used as overcharge prevention elements for batteries. Not suitable.

第1図はボタン型電池形態としたこの発明の過充電防止
素子りの構造例を示す。
FIG. 1 shows an example of the structure of the overcharge prevention element of the present invention in the form of a button-type battery.

図において、lは素子りのケースであり、ともに皿型を
なす基準極端子板2と対極端子板3とを向かい合わせ、
両者の周縁部を合成ゴムや合成樹脂などの弾性絶縁材料
からなる環状ガスケット4を介在して嵌合圧着すること
により、扁平な密閉容器を構成している。このケース1
の内部には、基準極端子板2にステンレスネットなどか
らなる集電体5を介して接合した基準極6と、対極端子
板3に接合したイオンのドーピングにより導電性を発現
する高分子物質からなる対極7と、両極6゜7間に介在
する導電性セパレータ8とが、電解液に浸漬された状態
で装填されている。
In the figure, l is an element case, in which a reference electrode terminal plate 2 and a counter electrode terminal plate 3, both of which are dish-shaped, are placed facing each other.
A flat airtight container is constructed by fitting and press-bonding the peripheral edges of both with an annular gasket 4 made of an elastic insulating material such as synthetic rubber or synthetic resin interposed therebetween. This case 1
Inside, there is a reference electrode 6 bonded to the reference electrode terminal plate 2 via a current collector 5 made of stainless steel net, etc., and a polymer material that develops conductivity by doping with ions bonded to the counter electrode terminal plate 3. A counter electrode 7 and a conductive separator 8 interposed between the two electrodes 6.7 are loaded in a state of being immersed in an electrolytic solution.

第2図は、この過充電防止素子りによって二次電池Cの
充電を行う場合の結線図であり、電池Cと素子りとが並
列接続した形で充電用電源Sの回路に接続されている。
Figure 2 is a wiring diagram when charging the secondary battery C using this overcharge prevention element, and the battery C and the element are connected in parallel to the circuit of the charging power source S. .

対極7を構成する高分子物質としては、イオンのドーピ
ングによって導電性を発現するものであればいずれも使
用可能である。その具体例としては、ポリアニリン、ポ
リアセチレン、ポリパラフェニレン、ポリチオフェン、
ポリピロールなどが挙げられる。そして、このような高
分子物質にて対極7を形成するには、これら高分子物質
の粉末を単独または結合剤との混合物として加圧成形し
たり、上記粉末をポリプロピレン不織布などの非導電性
基体に圧着するなどの適宜手段で所要の厚みおよび大き
さの成形体とすればよい。
As the polymer material constituting the counter electrode 7, any material can be used as long as it exhibits conductivity through ion doping. Specific examples include polyaniline, polyacetylene, polyparaphenylene, polythiophene,
Examples include polypyrrole. In order to form the counter electrode 7 using such polymeric substances, powders of these polymeric substances alone or as a mixture with a binder may be pressure-molded, or the powders may be molded onto a non-conductive substrate such as a non-woven polypropylene fabric. The molded body may be formed into a molded body having a desired thickness and size by an appropriate means such as pressure bonding.

基準極6の電極材料としては、導電性を有する各種金属
および合金、活性炭素繊維の如き炭素系導電物質、導電
性を有する金属酸化物および硫化物のアルカリ塩などの
安定した定電位を有する導電性材料が使用され、とくに
L i M o□の如きリチウムをインターカレートし
た各種の電極材料、金属リチウム、リチウム合金などの
リチウムを含む材料が好適である。
The electrode material for the reference electrode 6 is a conductive material with a stable constant potential, such as various conductive metals and alloys, carbon-based conductive substances such as activated carbon fibers, and alkali salts of conductive metal oxides and sulfides. In particular, various electrode materials in which lithium is intercalated such as LiMo□, materials containing lithium such as metallic lithium, and lithium alloys are suitable.

導電性セパレータ8としては、活性炭素繊維布の如き導
電性を有してかつ電解液を含浸保持できる多孔質シート
が使用される。
As the conductive separator 8, a porous sheet having conductivity and capable of impregnating and retaining an electrolytic solution, such as activated carbon fiber cloth, is used.

電解液としては、L i B F 4 % L i C
I Oa、LiBΦ4 (Φはフェニル基)、LiBF
4、LiAsF6などのリチウム塩をプロピオンカーボ
ネート、γ−ブチロラクトン、ジメトキシエタン、ジオ
キソランなどの非水系溶媒に溶解してなるリチウムイオ
ン伝導性電解液が好適であるが、リチウムイオンに限ら
ず前記高分子物質にドーピングして導電性を付与し得る
イオンを生じる種々の電解質を溶解した電解液も使用可
能である。また、このような電解液の代わりに同様のド
ーピングイオンを供与できる固体電解質も使用可能であ
る。
As the electrolyte, L i B F 4 % L i C
I Oa, LiBΦ4 (Φ is phenyl group), LiBF
4. A lithium ion conductive electrolytic solution prepared by dissolving a lithium salt such as LiAsF6 in a non-aqueous solvent such as propion carbonate, γ-butyrolactone, dimethoxyethane, dioxolane, etc. is preferable, but it is not limited to lithium ions and can be used with any of the above-mentioned polymeric substances. Electrolytes containing various electrolytes that produce ions that can be doped to impart conductivity can also be used. Moreover, instead of such an electrolytic solution, a solid electrolyte that can provide similar doping ions can also be used.

なお、基準極6の電極材料、対極7の高分子物質および
電解質のそれぞれの種類は、過充電防止の対象となる二
次電池の充電終止電圧または一次電池の許容電圧にほぼ
一致する前記転換電圧となるように選択、組み合わせす
べきことは言うまでもない。
Note that the electrode material of the reference electrode 6 and the polymer substance and electrolyte of the counter electrode 7 are selected so that the conversion voltage is approximately equal to the end-of-charge voltage of the secondary battery or the allowable voltage of the primary battery, which is the target of overcharging prevention. It goes without saying that they should be selected and combined so that

また、この発明の過充電防止素子は、前記の高分子物質
からなる電極と他方の電極とを電解質が介在した形で電
気的接続状態に維持できればよいことから、たとえば第
1図で例示した構成において、前記の基準極6として活
性炭素繊維などの電解液を保持し得る電極材料を用いる
ことによって、導電性セパレータ8を省略し、この基準
極6と対極7とが直接に接触する構造、あるいは逆に基
準極6を省略して基準極端子板2自体を電極とした構造
も採用可能である。
Further, since the overcharge prevention element of the present invention can maintain electrical connection between the electrode made of the polymeric substance and the other electrode with an electrolyte interposed therebetween, the overcharge prevention element of the present invention can be configured as illustrated in FIG. 1, for example. By using an electrode material capable of holding an electrolyte such as activated carbon fiber as the reference electrode 6, the conductive separator 8 is omitted and the reference electrode 6 and the counter electrode 7 are in direct contact with each other, or Conversely, it is also possible to adopt a structure in which the reference electrode 6 is omitted and the reference electrode terminal plate 2 itself is used as an electrode.

さらに、この発明の過充電防止素子は、第1図で例示し
たようなボタン型電池形態に限らず、対象となる電池の
種類や組み込みを行う機器の種類および装置構成に応じ
て様々な外形、構造、大きさに形成できる。
Furthermore, the overcharge prevention element of the present invention is not limited to the button type battery as illustrated in FIG. Can be formed into any structure and size.

〔発明の効果〕〔Effect of the invention〕

この発明の過充電防止素子によれば、これを電池と並列
に接続することにより、二次電池においては充電時に規
定される充電終止電圧以上の電圧上昇を阻止でき、また
−次電池においても許容値以上の逆印加電圧による過充
電状態となることが回避され、もってこれら電池自体の
構成および構造を改変することなく過充電に伴う性能劣
化や電池破壊を防止して寿命および安全性を向上させる
ことが可能となる。しかもこの過充電防止作用は、素子
の両極間の電位差による導通状態と非導通状態の可逆的
な転換に基づくものであるため、動作回数による作用低
下がほとんどなく、長期にわたって安定して確実に発揮
される。
According to the overcharge prevention element of the present invention, by connecting the overcharge prevention element in parallel with a battery, it is possible to prevent a voltage rise exceeding the end-of-charge voltage specified during charging in a secondary battery, and it is also permissible in a secondary battery. This prevents overcharging due to reverse applied voltage exceeding the specified value, thereby preventing performance deterioration and battery destruction due to overcharging and improving lifespan and safety without changing the configuration or structure of these batteries themselves. becomes possible. Moreover, this overcharge prevention effect is based on reversible switching between a conductive state and a non-conductive state due to the potential difference between the two electrodes of the element, so there is almost no decline in the effect due to the number of operations, and it is stable and reliable over a long period of time. be done.

また、この素子は、構造的に極めて簡素で小型化容易で
あり、それ自体を様々な形態の独立した電子部品に構成
できるとともに、充電用機器や電池を使用する各種電気
機器内に支障なく組み込み可能である。
In addition, this element is structurally extremely simple and easy to miniaturize, and can be configured into various forms of independent electronic components, as well as being easily integrated into charging equipment and various electrical devices that use batteries. It is possible.

〔実施例〕〔Example〕

以下、この発明を実施例によって具体的に説明する。 Hereinafter, the present invention will be specifically explained with reference to Examples.

実施例1 基準極として厚さ0.24tmのリチウム箔と厚さ0、
3 On+のアルミニウム箔とを圧着してなる直径7、
75 wのLi−Al圧着体、対極としてポリアニリン
粉末30IIvを加圧成形して得られた直径lOw、厚
さ0.3鶴のポリアニリン成形体、セパレータとして直
径9fl、厚さ0.2 **の活性炭素繊維からなるシ
ート、電解液として1モル濃度のLiBF、を含むプロ
ピレンカーボネート、をそれぞれ使用して第1図で示す
構造で直径1).6鶴、総厚2.Onのボタン型の過充
電防止素子D1を作製した。なお、基準極および対極の
端子板としてはステンレス板を使用した。
Example 1 Lithium foil with a thickness of 0.24 tm and a thickness of 0 as a reference electrode
3 Diameter 7 formed by crimping with On+ aluminum foil,
A 75W Li-Al crimped body, a polyaniline molded body with a diameter lOw and a thickness of 0.3T obtained by pressure molding polyaniline powder 30IIv as a counter electrode, and a separator with a diameter of 9Fl and a thickness of 0.2**. A sheet of activated carbon fiber and propylene carbonate containing 1 molar LiBF as an electrolyte were used to form a sheet with a diameter of 1) as shown in FIG. 6 cranes, total thickness 2. An ON button-type overcharge prevention element D1 was manufactured. Note that stainless steel plates were used as the terminal plates of the reference electrode and the counter electrode.

この素子り、について、両極間の印加電圧と素子両端間
の抵抗との関係を10t(zの交流によって測定したと
ころ、第3図の曲線D1で示す結果が得られた。この結
果から、この素子D1は、はぼ2.7vを境として高電
圧側で導通状態、低電圧側で非導通状態となり、上記電
圧値を動作点とする鋭敏なスイッチング機能を有するこ
とが判明した。
Regarding this element, when we measured the relationship between the voltage applied between both poles and the resistance between both ends of the element using an alternating current of 10t (z), we obtained the results shown by curve D1 in Figure 3. It has been found that the element D1 becomes conductive on the high voltage side and non-conductive on the low voltage side with a boundary of 2.7 V, and has a sensitive switching function with the above voltage value as the operating point.

ところで、たとえばL i A 12 / T i S
 z系のリチウム二次電池では充電終止電圧を2.7■
程度に維持することが好ましいとされている。したがっ
て、この二次電池の充電に際して素子り、を電池と並列
に接続しておくことにより、電池電圧は2゜7■以上に
上昇せず過充電が確実に防止されることになる。
By the way, for example, L i A 12 / T i S
For Z series lithium secondary batteries, the end-of-charge voltage is 2.7■
It is said that it is preferable to maintain it at a certain level. Therefore, when charging the secondary battery, by connecting the element in parallel with the battery, the battery voltage will not rise above 2°7cm, and overcharging will be reliably prevented.

実施例2 基準極としてM o O□にリチウムをインターカレー
トさせたL i M o O2からなる直径7.75m
Example 2 As a reference electrode, a diameter of 7.75 m is made of Li Mo O2 in which lithium is intercalated with Mo O□.
.

厚さ0.50mの薄板を使用するとともに、電解液とし
て1モル濃度のL i CIO<を含むプロピレンカー
ボネートを使用した以外は、実施例1と同様にしてボタ
ン型の過充電防止素子D2を作製した。
A button-shaped overcharge prevention element D2 was produced in the same manner as in Example 1, except that a thin plate with a thickness of 0.50 m was used and propylene carbonate containing 1 molar concentration of Li CIO was used as the electrolyte. did.

この素子Dtについて、実施例1と同様にして印加電圧
と抵抗との関係を測定したところ、第3図の曲線りえて
示す結果が得られた。この結果から、この素子D2は、
はぼ1.8Vを動作点とするスイッチング機能を示すこ
とが明らかであり、したがって、N i / Cd二次
電池やN i/M (H)二次電池などの充電終止電圧
を1.8■程度とする二次電池の過充電防止素子として
有用であることが判る。
Regarding this element Dt, the relationship between the applied voltage and the resistance was measured in the same manner as in Example 1, and the results shown by the curve in FIG. 3 were obtained. From this result, this element D2 is
It is clear that it exhibits a switching function with an operating point of 1.8V, and therefore the end-of-charge voltage of Ni/Cd secondary batteries, Ni/M(H) secondary batteries, etc. is 1.8V. It can be seen that the present invention is useful as an overcharge prevention element for secondary batteries of a certain level.

実施例3 基準極として厚さ0.24 mmのリチウム箔と厚さ0
、401mのインジウム箔とを圧着してなる直径7゜7
5mmのLi−In圧着体を使用するとともに、電解液
として1モル濃度のL i Cj! 04を含むT−ブ
チロラクトンを使用した以外は、実施例1と同様にして
ボタン型の過充電防止素子り、を作製した。
Example 3 Lithium foil with a thickness of 0.24 mm and a thickness of 0 as a reference electrode
, a diameter of 7゜7 made by crimping 401m of indium foil.
A 5 mm Li-In crimped body is used, and 1 molar concentration of Li Cj! is used as the electrolyte. A button-shaped overcharge prevention element was produced in the same manner as in Example 1, except that T-butyrolactone containing 04 was used.

この素子り、について、実施例1と同様にして印加電圧
と抵抗との関係を測定したところ、第3図の曲線D3で
示す結果が得られた。この結果から、この素子り、は、
はぼ2.1■を動作点とするスイッチング機能を有する
ことが明らかであり、したがって、たとえば鉛電池など
の充電終止電圧を2.1■程度とする二次電池の過充電
防止素子として有用であることが判る。
Regarding this device, the relationship between applied voltage and resistance was measured in the same manner as in Example 1, and the results shown by curve D3 in FIG. 3 were obtained. From this result, this element is
It is clear that it has a switching function with an operating point of 2.1■, and therefore it is useful as an overcharge prevention element for secondary batteries such as lead batteries whose end-of-charge voltage is about 2.1■. It turns out that there is something.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の過充電防止素子の構造例を示す縦断
面図、第2図は上記素子を用いた二次電池の充電時の結
線図、第3図はこの発明の実施例で得られた上記素子の
印加電圧と素子両端間の抵抗との相関特性図である。 D・・・過充電防止素子、6・・・基準極、7・・・対
極(高分子物質)、8・・・導電性セパレータ特許出願
人  日立マクセル株式会社
Fig. 1 is a vertical cross-sectional view showing an example of the structure of the overcharge prevention element of the present invention, Fig. 2 is a wiring diagram when charging a secondary battery using the above element, and Fig. 3 is a diagram showing a structure obtained in an embodiment of the invention. FIG. 3 is a correlation characteristic diagram between the applied voltage of the element and the resistance across the element. D: Overcharge prevention element, 6: Reference electrode, 7: Counter electrode (polymer material), 8: Conductive separator Patent applicant Hitachi Maxell, Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)電解質を介在して対向配置した一対の電極の一方
がイオンのドーピングによつて導電性を発現する高分子
物質からなり、かつ上記両電極が電気的接続状態にある
ことを特徴とする過充電防止素子。
(1) One of the pair of electrodes arranged opposite to each other with an electrolyte interposed therebetween is made of a polymer material that exhibits conductivity through ion doping, and the two electrodes are electrically connected. Overcharge prevention element.
JP1018671A 1989-01-27 1989-01-27 Overcharge preventing element Pending JPH02199778A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1018671A JPH02199778A (en) 1989-01-27 1989-01-27 Overcharge preventing element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1018671A JPH02199778A (en) 1989-01-27 1989-01-27 Overcharge preventing element

Publications (1)

Publication Number Publication Date
JPH02199778A true JPH02199778A (en) 1990-08-08

Family

ID=11978066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1018671A Pending JPH02199778A (en) 1989-01-27 1989-01-27 Overcharge preventing element

Country Status (1)

Country Link
JP (1) JPH02199778A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008135221A (en) * 2006-11-27 2008-06-12 Nissan Motor Co Ltd Secondary battery system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008135221A (en) * 2006-11-27 2008-06-12 Nissan Motor Co Ltd Secondary battery system

Similar Documents

Publication Publication Date Title
US6346345B2 (en) Electrode having PTC characteristic
EP1735858B1 (en) Battery safety device and battery having the same
KR20060035631A (en) Stacked-type lithium-ion rechargeable battery
KR20060111839A (en) Electrod assemblay with supercapacitor and li secondary battery comprising the same
CN101312244A (en) Electrode assembly and secondary battery using the electrode assembly
JP2006310033A (en) Storage battery
CN1186846C (en) Non-aqueous electrolyte secondary battery and mfg. method
JP2015088286A (en) Power storage device and power storage device control apparatus
KR100646520B1 (en) secondary battery and method for assembling the same
KR20200064752A (en) A positive electrode and an electrode assembly comprising the positive electrode
JP2016501429A (en) Electrochemical element and battery module with improved vibration resistance
US5066556A (en) Non-aqueous electrolyte secondary cell
KR101651988B1 (en) Cap assembly and secondary battery comprising the same
JPH02199769A (en) Battery with overcharge preventing function
JP2004087325A (en) Nonaqueous electrolytic solution battery
JP6035900B2 (en) All solid lithium ion secondary battery
WO2014175212A1 (en) Electricity storage device
JPH02199778A (en) Overcharge preventing element
KR101138482B1 (en) lithium ion capacitor
JPS63168964A (en) Thin-type cell and cassette cell using thin-type cell
JP2018500725A (en) Quick charger for battery
JPH042065A (en) Secondary battery with non-aqueous electrolyte and manufacture thereof
JPH11121040A (en) Lithium secondary battery
JPH11204096A (en) Non-aqueous electrolyte battery and non-aqueous electrolyte battery pack
JP2000040499A (en) Nonaqueous electrolyte secondary battery