JP2680570B2 - Rechargeable battery - Google Patents

Rechargeable battery

Info

Publication number
JP2680570B2
JP2680570B2 JP61250370A JP25037086A JP2680570B2 JP 2680570 B2 JP2680570 B2 JP 2680570B2 JP 61250370 A JP61250370 A JP 61250370A JP 25037086 A JP25037086 A JP 25037086A JP 2680570 B2 JP2680570 B2 JP 2680570B2
Authority
JP
Japan
Prior art keywords
battery
electrode
electrolytic solution
separator
polypyrrole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61250370A
Other languages
Japanese (ja)
Other versions
JPS63105479A (en
Inventor
修弘 古川
晃治 西尾
正久 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP61250370A priority Critical patent/JP2680570B2/en
Publication of JPS63105479A publication Critical patent/JPS63105479A/en
Application granted granted Critical
Publication of JP2680570B2 publication Critical patent/JP2680570B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【発明の詳細な説明】 <産業上の利用分野> この発明は、導電性ポリマーを電極に用いた二次電池
に関するものである。 <従来の技術> 近年、例えば特開昭56−136469号にみられるように、
導電性ポリマーを電極に用いた二次電池が提案されてい
る。 この二次電池の電極に使用される導電性ポリマーは、
通常は導電性は僅かであるが、各種のドーパントをドー
ピング、アンドーピングすることが可能であり、ドーピ
ングにより導電性が飛躍的に上昇する。そして、ClO4 -
やBF4 -などのアニオンをドーピングした導電性ポリマー
は正極材料として、またLi+やNa+などのカチオンをドー
ピングした導電性ポリマーは負極材料として各々使用さ
れ、ドーピング及びアンドーピングを電気化学的に可逆
的に行なうことによって充放電可能な電池が構成され
る。 この様な導電性ポリマーは、一般に、酸化剤による化
学的重合、あるいは電解重合などによって作られ、例え
ばポリアセチレン,ポリピロール,ポリチオフェン,ポ
リアニリン,ポリパラフェニレン等が従来から知られて
いる。そしてこのポリマーが粉状で得られる場合は電極
形状に応じた形状に加圧成形して、またフィルム状の場
合はそのまま電極寸法に打抜いたり、あるいは粉砕して
粉状とする等して使用されている。これらの導電性ポリ
マーを使用した電池は、軽量で高エネルギー密度である
ばかりか無公害であるといった特長のある電池として期
待されている。 ところで、この種の二次電池では、上記のように電極
反応がアニオンあるいはカチオンの導電性ポリマーへの
ドーピング,アンドーピングであるため、電池内におけ
る電解液量が重要であり、電池性能を高めるためには電
解液の容量が導電性ポリマーの容量と少なくとも同程度
なければならない。このため、この電池を構成する場
合、電解液保液機能をもつ構成材を電池内に配したり、
あるいは電池内に遊離の電解液が存在しうる空間を設け
る等の必要があり、そのために電池内の導電性ポリマー
の量が制限され、結果として、電池容量の低下を招くと
いう欠点がある。この傾向は電池が小形になる程大きく
なり、特に薄形電池では顕著となって十分な電池容量が
得られない。 上記欠点に対処するための従来技術としては、例えば
特開昭60−20476号公報にみられるように、上記の導電
性ポリマーとして例えばポリアセチレンを使用する場合
において、正負極間に設けるセパレータとして、ガラス
繊維布のような電解液保液機能と隔膜(絶縁)機能とを
併せもつものを用いるようにした技術がある。 <発明が解決しようとする問題点> しかしながら、上記の従来技術にあっても必要量の電
解液を電池内に収納するためにはセパレータであるガラ
ス繊維布を相当量用いなければならず、電池内の空間の
かなりの部分をこのガラス繊維布が占めてしまうので、
上記欠点は十分には解消されず電池容量増大の度合は僅
かである。 また、特に薄形電池にあっては正負極間にこのような
体積の大きなセパレータを設けることは電池容量が低下
するばかりか、正負極間距離の増大による内部抵抗増大
を招き、電池の充放電特性に悪影響を与えてしまうとい
う問題もある。 更に、この種の電池において例えばリチウムなどのア
ルカリ金属を負極に用いて電池を構成した場合、充放電
サイクルの進行に伴ってデンドライトが負極から正極に
向かって生じるが、上記のように正負極間に体積の大き
なセパレータを設け、このセパレータに大量の電解液を
保持させた場合には上記デンドライトの成長が著しく、
またこのデンドライトによる内部短絡が起こり易くなる
結果、充放電容量の低下が大きく、また充放電が早期サ
イクルで不可能になって電池のサイクル特性の低下が著
しいという問題もある。 <問題点を解決するための手段> この発明の二次電池は、電解液保液率が0.7cc/cc以上
のポリピロール電極を正極あるいは負極の少なくとも一
方の電極として用いる二次電池であって、実質的に保液
性を有しない絶縁性薄膜材を正負極間にセパレータとし
て設けてなることを要旨とする。 <作 用> 導電性ポリマーとしてポリピロールを用いて電極を構
成した場合、その電極における電解液保液率は0.7cc/cc
以上に達する。この保液率は上記のガラス繊維布あるい
は一般に保液材に用いられるポリプロピレン不織布など
の保液率と同等あるいはそれ以上である。よって、上記
のようにポリピロールからなる電極を用いる電池におい
ては、ポリピロール電極自体に必要量の電解液保液がで
きるようになるので、電極間に電解液保液材を配した
り、あるいは遊離の電解液を設けたりする等の必要はな
くなり、従来これらが占めていた空間にもポリピロール
を収納できるようになる結果、電池内のポリピロールの
量が増加し、電池容量の増大を図ることができる。 そして、セパレータとして上記のような薄膜材を設け
るようにしたので、内部抵抗増大による性能低下も抑え
られるし、更に、必要以上の電解液を電池内に保持して
いないので、負極にアルカリ金属を用いた場合でもデン
ドライトが非常に生じにくくなり、デンドライトによる
内部短絡はほとんど皆無となるので、このデンドライト
に起因する特性低下が抑制される。 尚、ポリアセチレンの場合はそれ自体に電解液保液性
がないので、ポリアセチレンを電極に用いた電池では電
解液保液材を配したり、遊離の電解液を設ける等の構造
が必須となる。 <実施例> 過塩素酸リチウムを0.2M溶解したプロピレンカーボネ
ート溶液中にピロール0.2Mを加え、電解重合法によって
ポリピロールを重合した。得られたフィルム状のポリピ
ロールを電極から剥がした後に粉砕してポリピロール粉
末を得、このポリピロール粉末を円板状に加圧成形して
正極を作製した。この正極の電解液含液率を測定した
所、0.7cc/ccであった。 この正極に、負極としてリチウム金属を組合せ、また
電解液としてはプロピレンカーボネートに過塩素酸リチ
ウムを2M溶解したものを用いて、第1図に示す構造の電
池(本発明電池A)を作った。この図において1は正
極、2は負極、3はセパレータ、4は正極缶、5は負極
缶である。また、セパレータ3としては、ポリプロピレ
ンやポリエチレンなどのオレフィン系樹脂でできた微孔
性多孔膜を用いた。このセパレータ3は電解液保液材と
しての機能を殆んどもたない薄膜の絶縁材である。 一方、ポリピロール粉末の使用量を減少させて電極厚
みを薄くした正極を用い、また隔膜を兼ねた厚みのある
電解液保液材からなるセパレータを用いた以外は上記と
同じ構成並びに大きさの電池(比較電池B)を作った。
この電池は第2図に示した構造であり、同図において6
は正極、8はセパレータである。 また、チーグラナッタ触媒によってアセチレンを重合
して作製したポリアセチレン粉末を用い、このポリアセ
チレン粉末を加圧成形して正極を作った。この正極を使
用した以外は本発明電池Aと同じ構造で比較電池Cを、
更にこの正極の他は比較電池Bと同じ構造の比較電池D
を夫々作製した。 これらの電池A〜Dについて、1mAの電流で10時間充
電を行ない、また1mAの電流で電池電圧が2.5Vになるま
で放電するという充放電試験を行ない、各電池における
電池電圧(V)の充放電容量(mAh)に対する変化を調
べた。結果は第3図に示した。この図において実線は充
電時の、また点線は放電時の電圧変化である。 第3図から明らかなように、本発明電池Aでは充電電
圧が低く抑えられて10mAh以上の充電ができると共に、
放電電圧が長期にわたって高く維持されて9.5mAh以上の
放電が可能であり、充放電効率が高くて電池容量が大き
いことがわかる。これに対して比較電池B〜Dはいずれ
も6mAh充電されるまでに電圧が5.0V以上に立ち上がって
充電不能となってしまい、また放電容量も5.0mAh以下で
あった。 ポリアセチレンを正極に用いた電池C,Dを比較した場
合、電池Cは3mAhまでしか充電できないのに対して電池
Dは4mAhまで充電が可能であり、また放電性能も電池D
の方が良い。この理由としては次のことが考えられる。
つまり、ポリアセチレンを電極に用いた電池では、電池
Dのように電解液保液機能をもつ構成材を用いないと充
放電に必要な電解液量を電池内に収納することができ
ず、十分な電池容量が得られない。そして電池Dではこ
のような構成材を設けているために電解液量が多くて容
量が正極支配となり、電池Cより性能が良い。また電池
Cではこのような構成材がないので、電解液量が少な
く、容量が電解液支配となって性能が悪いのである。ま
た、電池Cでは電解液量が少ないために内部抵抗が電池
Dより高く、このことが両電池の性能の差にあらわれて
いる。このように、ポリアセチレンのように含液性の悪
い導電性ポリマーを用いた場合は電解液保液材を用いる
等の構成としなければ十分な特性が得られないのであ
る。 また、ポリピロールを正極に用いた電極A,Bを比較し
た場合、電池Bでは6mAhまで充電した時点で電池電圧が
5.0V以上になって充電不能になり、また放電容量は5mAh
であるのに対して、電池Aは前記のように充電電圧が低
くて充電中の電圧の立ち上がりもなく、また放電電圧が
高くて放電容量も格段に大きい。電池Aが電池Bに較べ
て充電電圧が低くまた放電電圧が高いのは、電池Aにお
いてはセパレータとして保液性をもたない絶縁性の薄膜
材を用いているため、極間距離が電池Bに較べて短く、
このために内部抵抗が小さいためと考えられる。また、
電池Aの放電容量が電池Bに較べて大きいのは、正極中
に存在するポリピロールの量が電池Aの方が多いことに
よることは明らかである。 <発明の効果> 以上のように、この発明の二次電池によれば、電極間
に電解液保液材を配したりあるいは遊離の電解液を設け
たりする等の必要がなくなり、その分電池内における導
電性ポリマー量の増大ができるので、この種の電池にお
ける電池容量の増大を図れるという効果を奏する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial field of application> The present invention relates to a secondary battery using a conductive polymer as an electrode. <Prior Art> In recent years, for example, as seen in JP-A-56-136469,
A secondary battery using a conductive polymer as an electrode has been proposed. The conductive polymer used for the electrode of this secondary battery is
Usually, the conductivity is low, but various dopants can be doped and undoped, and the conductivity dramatically increases by the doping. Then, ClO 4 -
And BF 4 - as the anion doped conductive polymer cathode material such as, also Li + and Na + cations doped conductive polymers such as are respectively used as the anode material, the doping and undoping electrochemically A rechargeable battery is constructed by performing reversibly. Such a conductive polymer is generally produced by chemical polymerization with an oxidizing agent or electrolytic polymerization. For example, polyacetylene, polypyrrole, polythiophene, polyaniline, polyparaphenylene and the like have been known. When this polymer is obtained in powder form, it is pressure-molded into a shape corresponding to the electrode shape, and when it is in film form, it is punched to the electrode size as it is, or it is crushed into a powder form for use. Has been done. Batteries using these conductive polymers are expected as batteries having features such as light weight, high energy density and no pollution. By the way, in this type of secondary battery, since the electrode reaction is doping or undoping of the anion or cation into the conductive polymer as described above, the amount of the electrolytic solution in the battery is important, and in order to improve the battery performance. Therefore, the capacity of the electrolytic solution must be at least about the same as the capacity of the conductive polymer. For this reason, when constructing this battery, a component having an electrolyte solution retaining function is placed in the battery,
Alternatively, it is necessary to provide a space in the battery in which a free electrolytic solution may exist, which limits the amount of the conductive polymer in the battery, resulting in a decrease in battery capacity. This tendency becomes larger as the battery becomes smaller, and it becomes remarkable especially in a thin battery, and a sufficient battery capacity cannot be obtained. As a conventional technique for dealing with the above drawbacks, for example, as seen in JP-A-60-20476, when using, for example, polyacetylene as the conductive polymer, as a separator provided between the positive and negative electrodes, glass, There is a technique in which a material having both a liquid retaining function and a diaphragm (insulating) function such as a fiber cloth is used. <Problems to be Solved by the Invention> However, even in the above conventional technique, a considerable amount of glass fiber cloth as a separator must be used in order to store a necessary amount of electrolytic solution in the battery. Since this fiberglass cloth occupies a large part of the inner space,
The above-mentioned drawbacks are not fully eliminated, and the increase in battery capacity is slight. Further, especially in a thin battery, providing a separator having such a large volume between the positive and negative electrodes not only lowers the battery capacity, but also increases the internal resistance due to the increase in the distance between the positive and negative electrodes, resulting in battery charge / discharge. There is also a problem that the characteristics are adversely affected. Further, in this type of battery, when a battery is constructed by using an alkali metal such as lithium for the negative electrode, dendrite is generated from the negative electrode to the positive electrode as the charge / discharge cycle progresses. In the case of providing a large volume separator, and when a large amount of electrolytic solution is held in this separator, the growth of the dendrite is remarkable,
Further, as a result of the internal short circuit easily caused by the dendrite, there is a problem that the charge / discharge capacity is largely reduced, and charge / discharge becomes impossible in an early cycle, and the cycle characteristics of the battery are significantly deteriorated. <Means for Solving Problems> A secondary battery of the present invention is a secondary battery using a polypyrrole electrode having an electrolyte retention rate of 0.7 cc / cc or more as at least one of a positive electrode and a negative electrode, It is a gist to provide an insulating thin film material having substantially no liquid retaining property as a separator between the positive and negative electrodes. <Operation> When an electrode is constructed using polypyrrole as the conductive polymer, the electrolyte retention rate at that electrode is 0.7cc / cc.
Reach more. This liquid retention rate is equal to or higher than the liquid retention rate of the above-mentioned glass fiber cloth or polypropylene nonwoven fabric generally used as a liquid retention material. Therefore, in the battery using the electrode made of polypyrrole as described above, the polypyrrole electrode itself can hold a necessary amount of the electrolytic solution, so that an electrolytic solution holding material is provided between the electrodes, or It is not necessary to provide an electrolytic solution or the like, and the polypyrrole can be stored in the space conventionally occupied by these. As a result, the amount of polypyrrole in the battery is increased, and the battery capacity can be increased. Since the thin film material as described above is provided as the separator, performance deterioration due to an increase in internal resistance can be suppressed, and moreover, since the electrolytic solution is not held in the battery more than necessary, an alkaline metal is used for the negative electrode. Even when used, dendrites are very unlikely to occur, and internal short circuits due to dendrites are almost eliminated, so that the characteristic deterioration due to the dendrites is suppressed. In the case of polyacetylene, since it has no electrolyte solution retaining property by itself, in a battery using polyacetylene as an electrode, a structure such as disposing an electrolyte solution retaining material or providing a free electrolyte solution is essential. <Example> Pyrrole 0.2M was added to a propylene carbonate solution in which lithium perchlorate 0.2M was dissolved, and polypyrrole was polymerized by an electrolytic polymerization method. The obtained film-shaped polypyrrole was peeled off from the electrode and then pulverized to obtain polypyrrole powder, and the polypyrrole powder was pressure-molded into a disc shape to prepare a positive electrode. The electrolytic solution content of the positive electrode was measured and found to be 0.7 cc / cc. A battery having the structure shown in FIG. 1 (Battery A of the present invention) was prepared by using this positive electrode in combination with lithium metal as the negative electrode and using, as the electrolytic solution, 2 M of lithium perchlorate dissolved in propylene carbonate. In this figure, 1 is a positive electrode, 2 is a negative electrode, 3 is a separator, 4 is a positive electrode can, and 5 is a negative electrode can. As the separator 3, a microporous membrane made of olefin resin such as polypropylene or polyethylene was used. The separator 3 is a thin film insulating material that has almost no function as a liquid electrolyte retaining material. On the other hand, a battery having the same configuration and size as described above except that a positive electrode having a reduced electrode thickness by reducing the amount of polypyrrole powder used and a separator made of a thick electrolyte solution retaining material that also serves as a diaphragm are used. (Comparative battery B) was made.
This battery has the structure shown in FIG.
Is a positive electrode and 8 is a separator. Further, a polyacetylene powder produced by polymerizing acetylene with a Ziegler-Natta catalyst was used, and this polyacetylene powder was pressure-molded to produce a positive electrode. Comparative battery C having the same structure as battery A of the present invention, except that this positive electrode was used,
Comparative battery D having the same structure as comparative battery B except for this positive electrode.
Were made respectively. These batteries A to D were charged at a current of 1 mA for 10 hours and discharged at a current of 1 mA until the battery voltage reached 2.5 V. A charging / discharging test was carried out to charge the battery voltage (V) of each battery. The change with respect to the discharge capacity (mAh) was investigated. The results are shown in Fig. 3. In this figure, the solid line shows the voltage change during charging, and the dotted line shows the voltage change during discharging. As is apparent from FIG. 3, in the battery A of the present invention, the charging voltage is suppressed to a low level and charging of 10 mAh or more is possible.
It can be seen that the discharge voltage is maintained high for a long period of time and discharge of 9.5 mAh or more is possible, the charge / discharge efficiency is high and the battery capacity is large. On the other hand, in each of Comparative batteries B to D, the voltage rose to 5.0 V or more before charging was impossible for 6 mAh, and the discharge capacity was 5.0 mAh or less. When comparing the batteries C and D using polyacetylene as the positive electrode, the battery C can be charged up to 3 mAh, whereas the battery D can be charged up to 4 mAh, and the discharge performance is also the battery D.
Is better. The following can be considered as the reason for this.
That is, in a battery using polyacetylene as an electrode, the amount of the electrolytic solution required for charging / discharging cannot be stored in the battery unless a component having an electrolytic solution retaining function like the battery D is used. The battery capacity cannot be obtained. Since the battery D is provided with such components, the amount of electrolyte is large and the capacity is dominated by the positive electrode, and the performance is better than that of the battery C. In addition, since the battery C does not have such a component, the amount of the electrolytic solution is small, and the capacity is governed by the electrolytic solution, resulting in poor performance. In addition, the internal resistance of the battery C is higher than that of the battery D because the amount of the electrolytic solution is small, which is reflected in the difference in performance between the two batteries. As described above, when a conductive polymer having a poor liquid content such as polyacetylene is used, sufficient characteristics cannot be obtained unless the electrolyte retaining material is used. Further, when comparing the electrodes A and B using polypyrrole as the positive electrode, the battery voltage at the time of charging to 6 mAh in the battery B is
It becomes 5.0V or more and charging becomes impossible, and the discharge capacity is 5mAh
On the other hand, as described above, the battery A has a low charging voltage and no rise in voltage during charging, and has a high discharging voltage and a significantly large discharging capacity. Battery A has a lower charge voltage and a higher discharge voltage than Battery B because battery A uses an insulating thin film material that does not retain liquid as a separator. Shorter than
It is considered that this is because the internal resistance is small. Also,
It is clear that the discharge capacity of the battery A is larger than that of the battery B because the amount of polypyrrole present in the positive electrode is larger in the battery A. <Effects of the Invention> As described above, according to the secondary battery of the present invention, it is not necessary to dispose an electrolytic solution retaining material between electrodes or to provide a free electrolytic solution, and the battery can be used accordingly. Since it is possible to increase the amount of the conductive polymer in the battery, it is possible to increase the battery capacity in this type of battery.

【図面の簡単な説明】 第1,2図は実施例の電池などの構造を示した断面図、第
3図はこれらの電池の充放電特性を示したグラフであ
る。 1,6……正極、2……負極、3,8……セパレータ。
BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1 and 2 are cross-sectional views showing the structures of batteries and the like of Examples, and FIG. 3 is a graph showing the charge and discharge characteristics of these batteries. 1,6 …… Positive electrode, 2 …… Negative electrode, 3,8 …… Separator.

Claims (1)

(57)【特許請求の範囲】 1.電解液保液率が0.7cc/cc以上のポリピロール電極を
正極あるいは負極の少なくとも一方の電極として用いる
二次電池であって、実質的に保液性を有しない絶縁性薄
膜材を正負極間にセパレータとして設けてなることを特
徴とする二次電池。 2.前記絶縁性薄膜材がポリプロピレンやポリエチレン
などのオレフィン系樹脂からなる微孔性多孔膜であるこ
とを特徴とする特許請求の範囲第1項記載の二次電池。
(57) [Claims] A secondary battery using a polypyrrole electrode having an electrolyte retention rate of 0.7 cc / cc or more as at least one of a positive electrode and a negative electrode, and an insulating thin film material having substantially no liquid retention property between the positive and negative electrodes. A secondary battery provided as a separator. 2. The secondary battery according to claim 1, wherein the insulating thin film material is a microporous film made of an olefin resin such as polypropylene or polyethylene.
JP61250370A 1986-10-20 1986-10-20 Rechargeable battery Expired - Fee Related JP2680570B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61250370A JP2680570B2 (en) 1986-10-20 1986-10-20 Rechargeable battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61250370A JP2680570B2 (en) 1986-10-20 1986-10-20 Rechargeable battery

Publications (2)

Publication Number Publication Date
JPS63105479A JPS63105479A (en) 1988-05-10
JP2680570B2 true JP2680570B2 (en) 1997-11-19

Family

ID=17206911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61250370A Expired - Fee Related JP2680570B2 (en) 1986-10-20 1986-10-20 Rechargeable battery

Country Status (1)

Country Link
JP (1) JP2680570B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2688502B2 (en) * 1988-09-07 1997-12-10 株式会社リコー Thin battery manufacturing method
JP2630483B2 (en) * 1990-03-19 1997-07-16 富士写真フイルム株式会社 Novel electron conductive polymer and conductive material using the same
WO2015170594A1 (en) * 2014-05-08 2015-11-12 帝人株式会社 Separator for non-aqueous secondary batteries and method for producing same, and non-aqueous secondary battery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62170149A (en) * 1986-01-21 1987-07-27 Toyota Motor Corp Electrode for plastic battery
JPH0622126B2 (en) * 1986-09-12 1994-03-23 三洋電機株式会社 Secondary battery

Also Published As

Publication number Publication date
JPS63105479A (en) 1988-05-10

Similar Documents

Publication Publication Date Title
US9318771B2 (en) Electrolyte for electrochemical device, method for preparing the electrolyte and electrochemical device including the electrolyte
KR100281589B1 (en) Blended Polymer Gel Electrolytes
US6377030B1 (en) Method of charging secondary battery by varying current or voltage at an inflection point in a storage region before full charge and device therefor
EP0262846A2 (en) Nonaqueous battery with special separator
US20210280908A1 (en) Composite electrolyte membrane and all-solid-state battery comprising the composite electrolyte membrane
AU2020264696B2 (en) Rechargeable battery cell
US4421834A (en) Liquid cathode cells with a glass fiber separator
US5015547A (en) Lithium secondary cell
US20190386309A1 (en) Electrode and secondary battery using radical polymer
Yata et al. Studies of porous polyacenic semiconductors toward application III. Characteristics of practical batteries employing polyacenic semiconductive materials as electrodes
JP2680570B2 (en) Rechargeable battery
US6617077B1 (en) Polymer electrolyte battery and method of fabricating the same
KR100281828B1 (en) A hybrid type super rechargeable battery with lithium secondary batteries and super capacitors and its fabricating method
JPH08124597A (en) Solid electrolytic secondary cell
JPS6168870A (en) Secondary battery
JPH02199769A (en) Battery with overcharge preventing function
JP7462165B2 (en) Non-aqueous electrolyte secondary battery
JPH04289658A (en) Nonaqueous electrolyte secondary battery
JPH06290794A (en) Nonaqueous electrolytic battery
US20210098784A1 (en) Method and system for silicon dominant lithium-ion cells with controlled lithiation of silicon
JPS62150657A (en) Secondary cell
JP3144929B2 (en) Non-aqueous electrolyte secondary battery
KR940005752B1 (en) Secondary electric cell of chemistry high polymers
Oyama et al. LITHIUM/DISULFIDE BATTERY: AN IMPROVEMENT IN DISCHARGE RATE CAPABILITY
JPH081813B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees