KR100281828B1 - A hybrid type super rechargeable battery with lithium secondary batteries and super capacitors and its fabricating method - Google Patents

A hybrid type super rechargeable battery with lithium secondary batteries and super capacitors and its fabricating method Download PDF

Info

Publication number
KR100281828B1
KR100281828B1 KR1019990001183A KR19990001183A KR100281828B1 KR 100281828 B1 KR100281828 B1 KR 100281828B1 KR 1019990001183 A KR1019990001183 A KR 1019990001183A KR 19990001183 A KR19990001183 A KR 19990001183A KR 100281828 B1 KR100281828 B1 KR 100281828B1
Authority
KR
South Korea
Prior art keywords
secondary battery
lithium
solution
battery
carbonate
Prior art date
Application number
KR1019990001183A
Other languages
Korean (ko)
Other versions
KR20000050974A (en
Inventor
윤경석
조병원
조원일
김형선
김운석
이병호
Original Assignee
박호군
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박호군, 한국과학기술연구원 filed Critical 박호군
Priority to KR1019990001183A priority Critical patent/KR100281828B1/en
Publication of KR20000050974A publication Critical patent/KR20000050974A/en
Application granted granted Critical
Publication of KR100281828B1 publication Critical patent/KR100281828B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M10/4264Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing with capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M14/00Electrochemical current or voltage generators not provided for in groups H01M6/00 - H01M12/00; Manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 에너지밀도가 높으나 동력밀도와 싸이클 수명 특성이 다소 저조한 리튬이차전지 특성과 에너지밀도는 낮으나 출력밀도와 싸이클 수명 특성이 우수한 슈퍼캐패시터 특성을 결합하여 일체화한 새로운 개념의 하이브리드형 슈퍼 이차전지 제조방법에 관한 것으로, 본 발명에 의한 하이브리드형 슈퍼 이차전지는 에너지 밀도와 동력밀도가 높고 싸이클 수명이 긴 장점을 가지고 있다. 또한 본 발명에서는 이용 분야에 따라서 하이브리드형 슈퍼이차전지의 구성을 달리하여 펄스전원용에 적합하도록 하였다.The present invention is a hybrid super secondary battery manufacturing of a new concept incorporating a lithium secondary battery characteristics of high energy density but somewhat poor power density and cycle life characteristics and supercapacitor characteristics of low energy density but excellent output density and cycle life characteristics. The method relates to a hybrid super secondary battery according to the present invention has the advantages of high energy density, high power density and long cycle life. In addition, according to the present invention, the configuration of the hybrid type super secondary battery is changed to be suitable for the pulse power supply.

Description

리튬이차전지와 슈퍼캐패시터 특성을 결합하여 일체형화한 하이브리드형 슈퍼이차전지{A HYBRID TYPE SUPER RECHARGEABLE BATTERY WITH LITHIUM SECONDARY BATTERIES AND SUPER CAPACITORS AND ITS FABRICATING METHOD}HYBRID TYPE SUPER RECHARGEABLE BATTERY WITH LITHIUM SECONDARY BATTERIES AND SUPER CAPACITORS AND ITS FABRICATING METHOD}

본 발명은 리튬이차전지 특성과 슈퍼캐패시터 특성을 결합하여 일체형화한 새로운 개념의 하이브리드형 슈퍼이차전지 및 그의 제조방법에 관한 것이다.The present invention relates to a novel super hybrid hybrid type secondary battery and a method for manufacturing the same, which are integrated by combining lithium secondary battery characteristics and supercapacitor characteristics.

종래의 리튬이차전지는 에너지밀도(120 Wh/kg 이상)는 높으나, 동력밀도(200-250 W/kg 정도)와 싸이클 수명 특성(500회 정도)이 다소 저조한 단점을 나타내고 있다. 상온형 리튬이차전지는 일본의 소니사에서 처음 개발하여 현재 전세계적으로 상용화된 리튬이온전지와 수년 내에 상용화가 기대되는 리튬고분자전지가 있다.The conventional lithium secondary battery has a high energy density (120 Wh / kg or more), but has a weak power density (about 200-250 W / kg) and cycle life characteristics (about 500 times). The room temperature type lithium secondary battery is first developed by Sony of Japan and is currently commercialized worldwide in lithium ion battery and lithium polymer battery which is expected to be commercialized within a few years.

리튬이온전지는 분리막으로 PE(polyethylene) 또는 PP(polypropylene) 분리막을 사용하는 것으로 이 분리막이 유기용매전해질을 함침하여 전류를 흘려주는 것이며, 전극과 분리막을 롤식으로 말아서 원통형 및 사각형 통에 넣어 제조한다.(D. Linden, Handbook of Batteries, McGRAW-HILL INC., New York(1995)).Lithium-ion battery uses PE (polyethylene) or PP (polypropylene) separator as separator to impregnate organic solvent electrolyte to flow current, and roll and roll electrode and separator into cylindrical and square cylinders. (D. Linden, Handbook of Batteries, McGRAW-HILL INC., New York (1995)).

리튬고분자전지는 분리막과 전해질의 두 가지 기능을 동시에 가지고 있는 고체고분자전해질을 사용하는 것으로 전지 모양의 자유로운 설계가 가능하고 에너지밀도를 높게 하며, 제조 공정이 간단하다는 장점이 있으나, 고체고분자전해질의 이온전도도가 유기용매전해질에 비해 다소 낮기 때문에 고율방전특성 및 저온특성이 불량한 단점을 나타내고 있다. 근래에 K. M. Abraham 등의 미합중국 특허 제 5,219,679 호 및 D. L. Chau 등의 미합중국 특허 제 5,240,790 호에 기재된 폴리아크릴로니트릴 (PAN)계 고체고분자전해질과 A. S. Gozdz 등의 미합중국 특허 제 5,296,319 호 및 5,460,904 호에 기재된 폴리비닐리덴디플루오라이드 (PVdF)계 고체고분자전해질의 개발로 상온에서 이온전도도가 10-3S/cm 이상이 되어 리튬고분자전지가 상용화 단계에 다다르고 있으나, 이온전도도가 10-2S/cm 이상인 유기용매전해질에 비하여 낮기 때문에 현재 상용화되어 널리 사용되고 있는 리튬이온전지에 비하여 고율방전특성 및 저온특성이 불량한 단점이 있다.Lithium polymer battery uses solid polymer electrolyte which has two functions of membrane and electrolyte at the same time. It has the advantage of free design of battery shape, high energy density, and simple manufacturing process. However, ion of solid polymer electrolyte Since the conductivity is slightly lower than that of the organic solvent, high rate discharge characteristics and low temperature characteristics are disadvantageous. Recently, polyacrylonitrile (PAN) -based solid polymer electrolytes described in US Pat. Nos. 5,219,679 to KM Abraham et al. And US Pat. Nos. 5,240,790 to DL Chau et al. And polyols described in US Pat. Nos. 5,296,319 and 5,460,904 to AS Gozdz et al. Due to the development of vinylidene difluoride (PVdF) -based solid polymer electrolyte, the ion conductivity is 10 -3 S / cm or more at room temperature, and the lithium polymer battery has reached the commercialization stage, but the ion conductivity is 10 -2 S / cm or more. Since it is lower than the organic solvent electrolyte, there is a disadvantage that the high rate discharge characteristics and low temperature characteristics are poor compared to the lithium ion battery which is commercialized and widely used at present.

이에 반하여 슈퍼캐패시터는 근래 많은 연구가 이루어지고 있는 분야로 S. Passerini와 C.J. Farahmandi 등에 의해 발표된 Proceedings of the Symposium on Electrochemical Capacitors, 95-29, 86, 187(1996)에 기재된 바와 같이 동력밀도가 1 KW/kg 이상으로 매우 높고, 싸이클 수명이 100,000회 이상인 장점이 있으나 에너지밀도가 최대 5 Wh/kg 정도로 리튬이온 전지에 비해 매우 낮기 때문에 이용분야에 많은 제약을 받고 있다.On the other hand, supercapacitors have recently been studied in S. Passerini and C.J. As described in the Proceedings of the Symposium on Electrochemical Capacitors, 95-29, 86, 187 (1996), published by Farahmandi et al., The power density is very high, over 1 KW / kg, and the cycle life is over 100,000 cycles. Is very low compared to a lithium ion battery at a maximum of about 5 Wh / kg has a lot of restrictions in the application field.

근래에 J.R. Miller에 의해 발표된 Proceedings of the Symposium on Electrochmical Capacitors, 95-29, 86, 246(1996)에 기재된 바와 같이 이차전지와 캐패시터를 병렬로 연결하여 펄스방전특성을 전산모사방법으로 연구하였을 때 고율방전특성이 향상됨을 알 수 있다. 또한 J.G. Keimel의 미합중국 특허 제 5,591,212 호 및 C. Pascual 등의 미합중국 특허 제 5,710,504 호에 기재된 바와 같이 1차 전지 혹은 2차 전지와 캐패시터를 연결하여 전지에 과부하가 걸리는 것을 방지하고 고율특성을 향상시켰는데, 여기서는 전지와 캐패시터가 각각 독립되어 제조된 것을 전자 회로를 부착하여 사용하는 것으로 전지와 캐패시터가 일체형화 되지 못하고 두 가지 모두를 사용함으로 인하여 사용상에 불편함이 따르고 커지게 되는 단점이 있다. 특히 근래에 더욱 문제시되는 전지의 경박 단소화 추세에도 역행하는 일이 되며, 사용자에게도 부피와 무게가 중요시되지 않는 용도분야를 제외하고는 사용이 불가능한 매우 불편한 시스템이다.Recently J.R. As described in Miller, Proceedings of the Symposium on Electrochmical Capacitors, 95-29, 86, 246 (1996), high-rate discharge characteristics were investigated when the pulse discharge characteristics were studied by computer simulation method by connecting secondary batteries and capacitors in parallel. It can be seen that this is improved. Also J.G. As described in Keimel, U.S. Patent No. 5,591,212, and C. Pascual et al., U.S. Patent No. 5,710,504, a primary or secondary battery and a capacitor were connected to prevent the battery from being overloaded and improved high rate characteristics. Since the battery and the capacitor are manufactured independently of each other by attaching an electronic circuit, the battery and the capacitor may not be integrated, and both of them may cause inconvenience and increase in use. In particular, in recent years, even more problematic in the light and shortening trend of the battery, which is a very uncomfortable system that can not be used except in the application field where volume and weight are not important to the user.

본 발명은 상술한 바와 같은 리튬이차전지와 슈퍼캐패시터의 장점을 모두 살리고 단점을 보완하기 위하여 이 두 전지의 특성을 결합하여 일체형화된 새로운 개념의 하이브리드형 슈퍼 이차전지를 제조하는 방법에 관한 것이다.The present invention relates to a method of manufacturing a hybrid super-secondary battery of a new concept integrated by combining the characteristics of the two batteries in order to take advantage of all the advantages of the lithium secondary battery and the supercapacitor as described above and to compensate for the disadvantages.

도 1a 및 1b는 본 발명에 따른 하이브리드형 슈퍼이차전지의 구성도로, 도 1a는 리튬이차전지와 슈퍼캐패시터를 따로 적층식으로 제조하고 절연막으로 분리한 상태로 넣어 제조된 4단자의 하이브리드형 슈퍼이차전지의 구성도이고, 도 1b는 리튬이차전지용 활물질과 슈퍼캐패시터용 활물질을 혼합하여 전극을 제조하고 이들을 적층하여 제조된 2단자의 하이브리드형 슈퍼이차전지의 구성도이다.Figure 1a and 1b is a configuration diagram of a hybrid type super secondary battery according to the present invention, Figure 1a is a lithium secondary battery and a supercapacitor separately manufactured by stacking and separated into an insulating film 4-terminal hybrid super secondary manufactured 1B is a block diagram of a hybrid 2-second hybrid type super secondary battery manufactured by mixing an electrode for a lithium secondary battery active material and a supercapacitor active material to produce an electrode and stacking them.

도 2는 본 발명의 하이브리드형 슈퍼이차전지와 비교예의 전지에 대한 고율 펄스방전 특성시험 결과를 나타낸 그래프이다.2 is a graph showing the results of a high rate pulse discharge characteristic test for the hybrid type super secondary battery of the present invention and the battery of the comparative example.

도 3은 본 발명의 하이브리드형 슈퍼이차전지와 비교예의 전지에 대한 저온특성시험 결과를 나타낸 그래프이다.Figure 3 is a graph showing the low temperature characteristics test results for the hybrid type super secondary battery of the present invention and the battery of the comparative example.

도 4는 본 발명의 하이브리드형 슈퍼이차전지와 비교예의 전지에 대한 전극용량 및 수명시험 결과를 나타낸 그래프이다.Figure 4 is a graph showing the electrode capacity and life test results for the hybrid type super secondary battery of the present invention and the battery of the comparative example.

본 발명에 따르면, 양극/분리막 또는 고체고분자전해질/음극/분리막 또는 고체고분자전해질/양극의 순서로 적층하여 리튬이온전지 또는 리튬고분자전지를 제조하고, 그 위에 절연성 고분자막을 형성하여 전기적 절연을 완벽하게 한 다음, 양극/분리막/음극/분리막/양극의 순서로 적층한 슈퍼캐패시터를 제조하고, 리튬이차전지와 슈퍼캐패시터를 한꺼번에 전지케이스에 삽입하여 일체형화된 4단자의 전지 및 그의 제조방법을 제공한다.According to the present invention, a lithium ion battery or a lithium polymer battery is manufactured by stacking in order of an anode / separation membrane or a solid polymer electrolyte / cathode / separation membrane or a solid polymer electrolyte / anode, and an insulating polymer film is formed thereon to completely insulate electrical insulation. Next, a supercapacitor stacked in the order of anode / separator / cathode / separator / anode is manufactured, and a lithium secondary battery and a supercapacitor are inserted into a battery case at once to provide an integrated 4-terminal battery and a method of manufacturing the same. .

또한, 본 발명에 따르면, 리튬이차전지용 활물질과 슈퍼캐패시터용 활물질을 혼합한 것을 활물질로 하여 일체화된 전극을 제조하여 양극/분리막 혹은 고체고분자 전해질/음극/분리막 혹은 고체고분자 전해질/양극의 순서로 적층한 2단자의 전지 및 그의 제조방법을 제공한다.In addition, according to the present invention, an integrated electrode is manufactured by mixing an active material for a lithium secondary battery and an active material for a supercapacitor as an active material, and stacked in the order of a cathode / separation membrane or a solid polymer electrolyte / cathode / separation membrane or a solid polymer electrolyte / anode. A two-terminal battery and a method of manufacturing the same are provided.

본 발명은 리튬이차전지와 슈퍼캐패시터의 특성을 결합하여 일체형화된 하이브리드형 슈퍼이차전지 및 그의 제조방법에 관한 것이다.The present invention relates to a hybrid type super secondary battery integrated with the characteristics of a lithium secondary battery and a supercapacitor and a method of manufacturing the same.

본 발명의 리튬이차전지는 적층 형태의 리튬이온전지 또는 리튬고분자전지로 구성되는데, 리튬이온전지는 리튬이온전지용 양극/분리막/음극/분리막/양극의 순서로 여러 층을 적층한 후 단자를 용접하고 리튬이차전지용 유기용매 전해질을 주입하여 제조한다. 리튬고분자전지는 리튬고분자전지용 양극/고체고분자전해질/음극/고체고분자전해질/양극의 순서로 여러 층을 적층한 후 단자를 용접하고 리튬이차전지용 유기용매 전해질을 약간 주입하거나 주입하지 않고 제조한다.Lithium secondary battery of the present invention is composed of a lithium ion battery or a lithium polymer battery of the laminated form, the lithium ion battery is laminated a plurality of layers in the order of the anode / separator / cathode / separator / anode for lithium ion battery and then welding the terminals It is prepared by injecting an organic solvent electrolyte for a lithium secondary battery. Lithium polymer batteries are manufactured by stacking several layers in the order of positive electrode / solid polymer electrolyte / cathode / solid polymer electrolyte / anode for lithium polymer battery, welding terminals, and without injecting or injecting organic solvent electrolyte for lithium secondary battery.

양극 활물질로는 LiCoO2, LiMn2O4, LiNiO2, V6O13또는 V2O5등을 사용할 수 있고, 음극 활물질로는 흑연, 코크스, 하드카본, 주석산화물과 이들을 리튬화시킨 것, 리튬 금속 및 리튬합금 등을 사용할 수 있다. 분리막으로는 PE (polyethylene), PP (polypropylene) 또는 PE/PP 이중층 등의 다공성 고분자막을 사용할 수 있으며, 고체고분자전해질은 폴리에틸렌옥사이드 (PEO)계, 폴리에틸렌글리콜 (PEG)계, 폴리아크릴로니트릴 (PAN)계, 폴리비닐리덴디플루오라이드 (PVdF)계 또는 이들의 고분자블렌드인 기지고분자와, 리튬염이 용해된 EC (ethylene carbonate) - DMC (dimethyl carbonate) 용액, 리튬염이 용해된 EC (ethylene carbonate) - EMC (enthyl methyl carbonate) 용액 또는 리튬염이 용해된 EC (ethylene carbonate) - DEC (diethyl carbonate) 용액에, MA (methyl acetate), MP (methyl propionate), EA (enthyl acetate) 또는 EP (ethyl propionate)가 첨가되거나 첨가되는 않은 용액으로 이루어지는 것을 사용할 수 있다. 여기서, 상기 리튬염은 LiPF6, LiClO4, LiCF3SO3또는 LiBF4인 것이 바람직하다. 유기용매전해질은 리튬이차전지에서 흔히 사용되는 리튬염이 용해된 EC (ethylene carbonate) - DMC (dimethyl carbonate) 용액, 리튬염이 용해된 EC (ethylene carbonate) - EMC (enthyl methyl carbonate) 용액 또는 리튬염이 용해된 EC (ethylene carbonate) - DEC (diethyl carbonate) 용액에, MA (methyl acetate), MP (methyl propionate), EA (enthyl acetate) 또는 EP (ethyl propionate)가 첨가되거나 첨가되는 않은 용액으로 이루어지는 것을 사용할 수 있고, 여기서, 상기 리튬염은 LiPF6, LiClO4, LiCF3SO3또는 LiBF4인 것이 바람직하다. 예를 들면, 1M LiPF6가 용해된 EC (ethylene carbonate) - DMC (dimethyl carbonate), EC(ethylene carbonate) - DEC (diethyl carbonate), EC (ethylene carbonate) - EMC (ethyl methyl carbonate) 등의 용액을 사용한다.LiCoO 2 , LiMn 2 O 4 , LiNiO 2 , V 6 O 13, V 2 O 5, etc. may be used as the positive electrode active material. As the negative electrode active material, graphite, coke, hard carbon, tin oxide and those lithiated thereof, Lithium metal, lithium alloy, etc. can be used. As the separator, a porous polymer membrane such as PE (polyethylene), PP (polypropylene) or PE / PP bilayer can be used, and the solid polymer electrolyte is polyethylene oxide (PEO), polyethylene glycol (PEG), and polyacrylonitrile (PAN). ), Polyvinylidene difluoride (PVdF) system, or a polymer blend thereof, an EC (ethylene carbonate)-DMC (dimethyl carbonate) solution in which lithium salt is dissolved, EC (ethylene carbonate) in which lithium salt is dissolved )-EMC (enthyl methyl carbonate) solution or lithium salt dissolved EC (ethylene carbonate)-DEC (diethyl carbonate) solution, MA (methyl acetate), MP (methyl propionate), EA (enthyl acetate) or EP (ethyl propionate) may be used which consists of a solution with or without addition of propionate). Here, the lithium salt is preferably LiPF 6 , LiClO 4 , LiCF 3 SO 3 or LiBF 4 . The organic solvent electrolyte is EC (ethylene carbonate)-DMC (dimethyl carbonate) solution in which lithium salt is commonly used in lithium secondary battery, EC (ethylene carbonate)-EMC (enthyl methyl carbonate) solution or lithium salt in which lithium salt is dissolved To this dissolved EC (ethylene carbonate)-DEC (diethyl carbonate) solution, MA (methyl acetate), MP (methyl propionate), EA (enthyl acetate) or EP (ethyl propionate) is added or not added. It may be used, wherein the lithium salt is preferably LiPF 6 , LiClO 4 , LiCF 3 SO 3 or LiBF 4 . For example, a solution of ethylene carbonate (EC)-dimethyl carbonate (DMC), ethylene carbonate (EC)-diethyl carbonate (DEC), ethylene carbonate (EC)-ethyl methyl carbonate (EMC) in which 1M LiPF 6 is dissolved use.

리튬이차전지와 슈퍼캐패시터는 단락이 되지 않고 또한 누설전류가 흐르지 않도록 기공이 없고 절연성이 있는 PET막과 같은 고분자막으로 분리한다.The lithium secondary battery and the supercapacitor are separated into a polymer film such as a PET film having no pores and insulation so that there is no short circuit and no leakage current flows.

고분자막 위에 슈퍼캐패시터를 만드는데 슈퍼캐패시터는 슈퍼캐패시터용 양극/분리막/음극/양극의 순서로 여러 층을 적층한 후 단자를 용접하고 슈퍼캐패시터용 유기 용매전해질이나 알칼리 수용액을 주입하여 제조한다. 양극과 음극의 활물질은 동일하며, 사용하는 물질로는 표면적이 매우 큰 활성 탄소, 카본 파이버 등의 카본 물질과, 이들 물질 위에 RuO2, MoO2또는 V2O5등의 나노크기의 입자를 피복한 것을 사용한다. 또한 폴리아닐린 (PAn-polyaniline), 폴리피롤 (PPy-polypyrrole) 등의 전도성 고분자를 사용할 수도 있다. 분리막으로는 리튬이온전지에서 사용되는 PE, PP 등과 같은 분리막이나 리튬고분자전지용 고체고분자전해질을 사용할 수 있다. 유기용매전해질은 리튬트리플레이트 (LiCF3SO3) 또는 리튬퍼클로레이트 (LiCiO4)와 같은 리튬염이 용해된 프로필렌카보네이트 (PC), 테트라에틸암모늄 테트라플루오로보레이트 (TEABF4)가 용해된 프로필렌카보네이트 또는 테트라에틸암모늄 메틸설포네이트 (TEAMS)가 용해된 설포란/아세토니트릴 (Sulfolan/Acetonitrile) 용액 등을 사용하며, 알칼리 수용액으로는 KOH, LiOH, NaOH, H2SO4, HCl 또는 NaCl 용액 등을 사용한다.The supercapacitor is made on the polymer membrane, and the supercapacitor is manufactured by stacking several layers in the order of the anode / separation membrane / cathode / anode for the supercapacitor, welding the terminals, and injecting an organic solvent electrolyte or an aqueous alkali solution for the supercapacitor. The active material of the positive electrode and the negative electrode is the same, and the material to be used is a carbon material such as activated carbon or carbon fiber having a very large surface area, and nano-sized particles such as RuO 2 , MoO 2 or V 2 O 5 coated on these materials. Use one. In addition, conductive polymers such as polyaniline (PAn-polyaniline) and polypyrrole (PPy-polypyrrole) may be used. As the separator, a separator such as PE or PP used in a lithium ion battery or a solid polymer electrolyte for a lithium polymer battery may be used. The organic solvent electrolyte is propylene carbonate (PC) in which lithium salts such as lithium triplate (LiCF 3 SO 3 ) or lithium perchlorate (LiCiO 4 ) are dissolved, propylene carbonate in which tetraethylammonium tetrafluoroborate (TEABF 4 ) is dissolved, or Sulfolan / Acetonitrile solution in which tetraethylammonium methylsulfonate (TEAMS) is dissolved is used, and as aqueous alkali solution, KOH, LiOH, NaOH, H 2 SO 4 , HCl or NaCl solution is used. do.

슈퍼캐패시터는 에너지밀도는 낮으나 출력밀도가 매우 높기 때문에 리튬이차전지와 병렬로 연결하여 사용하면 높은 출력을 요구할 때는 슈퍼캐패시터에 저장되어 있는 전기량이 방출되고, 낮은 출력을 요구할 때는 리튬이차전지에 저장되어 있는 전기량으로 흐르게 하고, 또한 이때 슈퍼캐패시터는 충전을 하게 된다. 슈퍼캐패시터는 충·방전이 빠른 시간 내에 이루어지기 때문에 디지털 펄스 전원용으로 사용할 수 있다. 전지의 단자는 리튬이차전지의 양극, 음극 단자 2개와 슈퍼캐패시터의 양극, 음극 단자 2개의 총 4개 단자로 이루어지게 하며, 사용되는 기기의 사용전류 패턴에 따라 같은 극성의 단자끼리 병렬로 연결하여 사용하는 방법과 전자제어회로와 함께 단자를 연결하여 사용하는 방법이 있다.Supercapacitors have a low energy density but very high output density, so when they are connected in parallel with lithium secondary batteries, the amount of electricity stored in the supercapacitor is released when a high output is required, and they are stored in the lithium secondary battery when a low output is required. The supercapacitor is charged. Supercapacitors can be used for digital pulse power supply because they can be charged and discharged quickly. The terminals of the battery consist of four terminals: two positive and negative terminals of the lithium secondary battery, two positive and negative terminals of the supercapacitor, and the terminals of the same polarity are connected in parallel according to the current pattern of the equipment used. There is a method of using and connecting a terminal with an electronic control circuit.

또한, 본 발명에 따르면, 리튬이차전지용 활물질과 슈퍼캐패시터용 활물질을 혼합한 것을 활물질로 하여 일체화된 전극을 제조하여 양극/분리막 또는 고체고분자전해질/음극/분리막 또는 고체고분자전해질/양극의 순서로 적층한 2 단자의 일체형화된 전지를 제조할 수 있다.In addition, according to the present invention, an integrated electrode is prepared by mixing an active material for a lithium secondary battery and an active material for a supercapacitor as an active material, and stacked in the order of a cathode / separation membrane or a solid polymer electrolyte / cathode / separation membrane or a solid polymer electrolyte / anode. One terminal integrated battery can be manufactured.

리튬이차전지용 활물질과 슈퍼캐패시터용 활물질을 혼합한 것을 활물질로 하여 일체형화된 전극을 제조하여 하이브리드형 슈퍼이차전지를 구성하는데 있어서 제일 중요한 것은 활물질의 선정인데, 여러 종류의 활물질이 있지만 그 중 가능성이 높은 것이 전도성 고분자이다. 전도성 고분자는 캐패시터 특성과 리튬이차전지 특성을 나타내는 물질로 이러한 물질로 전지를 구성하면 슈퍼캐패시터와 리튬이차전지 특성이 나타나게 된다. 그러나 아직까지 전도성 고분자 자체만으로는 상용화 수준의 전지가 등장하고 있지 않다. 따라서 본 발명은 전도성 고분자 자체만으로 상용화가 어려우므로 양극으로는 리튬이차전지용 양극 활물질과 폴리아닐린 (PAn), 폴리피롤 (PPy), 폴리아세틸렌 (PA), 폴리티오펜 (PTh), 폴리파라페닐렌 (PPP) 등의 전도성 고분자를 혼합한 것을 양극 활물질로 하거나 전도성 고분자와 슈퍼캐패시터용 활성 탄소, 카본 파이버 등의 활물질을 혼합한 것을 양극 활물질로 하여 양극을 제조하고, 음극으로는 리튬이차전지용 음극 활물질로 음극을 제조하여, 리튬이온전지용 분리막이나 리튬고분자전지용 고체고분자전해질로 양극과 음극을 분리하고 유기용매전해질을 주입하여 전지를 구성함으로써 슈퍼캐패시터와 리튬이차전지의 두 가지 특성을 함께 나타내는 2 단자의 하이브리드형 슈퍼이차전지를 제조할 수 있다.The most important thing in constructing a hybrid super secondary battery by manufacturing an integrated electrode using a mixture of an active material for a lithium secondary battery and an active material for a supercapacitor as an active material is the selection of the active material. Higher is a conductive polymer. The conductive polymer is a material showing the characteristics of the capacitor and the lithium secondary battery. When the battery is composed of these materials, the characteristics of the supercapacitor and the lithium secondary battery appear. However, the battery of the commercialization level has not yet appeared only by the conductive polymer itself. Therefore, since the present invention is difficult to commercialize only the conductive polymer itself, the cathode active material for a lithium secondary battery, polyaniline (PAn), polypyrrole (PPy), polyacetylene (PA), polythiophene (PTh), polyparaphenylene (PPP) The positive electrode is prepared by mixing a conductive polymer such as) as a positive electrode active material or a mixture of a conductive polymer and an active material such as activated carbon and carbon fiber for a supercapacitor as a positive electrode active material, and a negative electrode as a negative electrode active material for a lithium secondary battery. To prepare a battery by separating a positive electrode and a negative electrode with a lithium ion battery separator or a solid polymer electrolyte for a lithium polymer battery, and injecting an organic solvent electrolyte to form a hybrid battery having two characteristics of a supercapacitor and a lithium secondary battery. A super secondary battery can be manufactured.

이하 본 발명을 후술하는 실시예에 의해 구체적으로 설명하나 이는 본 발명의 예시에 불과할 뿐 본 발명이 이에 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to the following Examples, which are only illustrative of the present invention, but the present invention is not limited thereto.

실시예 1Example 1

리튬이온전지는 종래의 방법대로 제조하였는데, 구체적으로 살펴보면 카본 음극은 Gr. (graphite) 6g, AB (acetylene black) 0.3 g, PVdF 0.4g의 조성을 4g NMP (N-methyl-2-pyrrolidinone) 및 4g 아세톤에 혼합한 후 꿀과 같은 정도의 점도가 얻어졌을 때 구리 박판 위에 닥터 블레이드 방법으로 캐스팅하여 상온과 80℃에서 12시간 건조시킨 후 1 kg/cm2의 압력으로 압연하여 전극을 얻었다. LiCoO2양극은 LiCoO25.7g, AB 0.6g, PVdF 0.4g의 조성을 4g NMP 및 4g 아세톤에 혼합한 후 꿀과 같은 정도의 점도가 얻어졌을 때 알루미늄 박판 위에 닥터 블레이드 방법으로 캐스팅하여 상온과 80℃에서 12시간 건조시킨 후 1 kg/cm2의 압력으로 압연하여 전극을 얻었다. 리튬 이온전지는 카본음극, PP 분리막, LiCoO2양극으로 구성하고 1M LiPF6가 용해된 EC-EMC용액을 주입하여 제조하였다. 리튬이온전지를 제조한 후 PET막으로 완전한 용액차단 및 전기절연을 한 후, 그 위에 유기전해질계 슈퍼캐패시터를 제조하였다. 유기전해질계 슈퍼캐패시터의 제조방법을 구체적으로 살펴보면, 활물질인 Ketjen Black - 600JD (일본 구레아사 제품)에 결합제인 PTFE (polytetrafluoroethylene)를 10% 첨가하고 용매인 에탄올을 가하여 3시간 정도 혼합하였다. 혼합 후 24시간 동안 진공 건조하여 용매를 휘발시키고 건조된 전극재료를 알루미늄 망에 올려놓고 1kg/cm2의 압력으로 압연하여 활성탄소전극을 제조하였다. 이 전극을 양극과 음극으로 하고 그 사이에 PP 분리막을 넣고 1M LiClO4가 용해되어 있는 PC용액을 주입하여 슈퍼캐패시터를 제조하였다. 이들 리튬이온전지와 슈퍼캐패시터를 동일한 포장지에 넣고 진공 밀봉하여 하이브리드형 슈퍼이차전지를 제조하였다. 이때 전극단자는 리튬이온전지에서 두 개의 단자, 슈퍼캐패시터에서 음·양극 각각 2단자씩, 모두 합하여 4단자가 나오게 된다. 전지의 충방전 시험은 C/2 정전류, 4.2 V 정전압으로 충전하고 1C 방전율로 방전하는 충방전법으로 수행하여 양극을 기준으로 한 전극 용량 및 싸이클 수명을 조사하였다.The lithium ion battery was manufactured according to a conventional method. Specifically, the carbon anode is Gr. (Graphite) 6g, AB (acetylene black) 0.3g, PVdF 0.4g composition is mixed with 4g NMP (N-methyl-2-pyrrolidinone) and 4g acetone, when the viscosity of honey is obtained doctor on a copper sheet Cast by the blade method and dried at room temperature and 80 ℃ for 12 hours, and then rolled at a pressure of 1 kg / cm 2 to obtain an electrode. LiCoO 2 anode was mixed with 4g NMP and 4g acetone with 5.7g of LiCoO 2 , 0.6g of AB and 0.4g of PVdF, and then cast on a thin sheet of aluminum by a doctor blade method when the viscosity was obtained as honey. After drying for 12 hours at 1 kg / cm 2 to obtain a electrode by rolling. The lithium ion battery was prepared by incorporating a carbon cathode, a PP separator, and a LiCoO 2 anode and injecting an EC-EMC solution in which 1M LiPF 6 was dissolved. After the lithium ion battery was prepared, complete solution blocking and electrical insulation were performed with a PET film, and then an organic electrolyte supercapacitor was prepared thereon. Looking at the manufacturing method of the organic electrolyte supercapacitor in detail, 10% PTFE (polytetrafluoroethylene) as a binder was added to Ketjen Black-600JD (manufactured by Kurea Co., Ltd.) as an active material, and ethanol, a solvent, was added and mixed for about 3 hours. After mixing, the solvent was evaporated under vacuum for 24 hours, and the dried electrode material was placed on an aluminum mesh and rolled at a pressure of 1 kg / cm 2 to prepare an activated carbon electrode. This electrode was used as a positive electrode and a negative electrode, and a PP separator was inserted therebetween, and a supercapacitor was prepared by injecting a PC solution in which 1M LiClO 4 was dissolved. The lithium ion battery and the supercapacitor were put in the same package and vacuum sealed to prepare a hybrid super secondary battery. At this time, the electrode terminal comes out of two terminals in a lithium ion battery, and two terminals of a negative electrode and a positive electrode in a supercapacitor, respectively, and four terminals come out. The charge / discharge test of the battery was carried out by a charge / discharge method of charging with a C / 2 constant current, 4.2 V constant voltage and discharging at a 1C discharge rate to investigate electrode capacity and cycle life based on the positive electrode.

실시예 2Example 2

리튬고분자전지는 종래의 방법대로 제조하였는데, 구체적으로 살펴보면 카본음극은 Gr. (graphite) 6g, AB (acetylene black) 0.3g, PAN계 젤형 고체고분자전해질 3.7 g, EC-DMC용액 10g의 조성을 혼합한 후 꿀과 같은 정도의 점도가 얻어졌을 때 구리박판 위에 닥터 블레이드 방법으로 캐스팅하여 상온에서 24시간 건조시킨 후 1 kg/cm2의 압력으로 압연하여 전극을 얻었다. LiCoO2양극은 LiCoO25.7g, AB 0.6g, PAN계 젤형 고체고분자전해질 3.7g, EC-DMC 용액 10g의 조성을 혼합한 후 꿀과 같은 정도의 점도가 얻어졌을 때 알루미늄 박판 위에 닥터 블레이드 방법으로 캐스팅하여 상온에서 24시간 건조시킨 후 1 kg/cm2의 압력으로 압연하여 전극을 얻었다. 리튬고분자전지는 카본음극, PAN계 젤형 고체고분자 전해질, LiCoO2양극으로 구성하여 제조하였다. 리튬고분자전지를 제조한 후 PET막으로 완전한 용액차단 및 전기절연을 한 후, 그 위에 유기전해질계 슈퍼캐패시터를 제조하였다. 유기전해질계 슈퍼캐패시터의 제조방법을 구체적으로 살펴보면, 활물질인 Ketjen Black - 600JD (일본 구레아사 제품)에 결합제인 PTFE(polytetrafluoroethylene)를 10% 첨가하고 용매인 에탄올을 가하여 3시간 정도 혼합하였다. 혼합 후 24시간 동안 진공 건조하여 용매를 휘발시키고 건조된 전극재료를 알루미늄 망에 올려놓고 1 kg/cm2의 압력으로 압연하여 활성탄소전극을 제조하였다. 이 전극을 양극과 음극으로 하고 그 사이에 PAN계 젤형 고체고분자 전해질을 넣고 1M LiClO4가 용해되어 있는 PC 용액을 주입하여 슈퍼캐패시터를 제조하였다. 이들 리튬고분자전지와 슈퍼캐패시터를 동일한 포장지에 넣고 진공밀봉하여 하이브리드형 슈퍼이차전지를 제조하였다. 이때 전극단자는 리튬고분자전지에서 두 개의 단자, 슈퍼캐패시터에서 음·양극 각각 2단자씩, 모두 합하여 4단자가 나오게 된다. 전지의 충방전시험은 C/2 정전류, 4.2 V 정전압으로 충전하고 1C 방전율로 방전하는 충방전법으로 수행하여 양극을 기준으로 한 전극용량 및 싸이클 수명을 조사하였다.The lithium polymer battery was manufactured according to a conventional method. Specifically, the carbon cathode is Gr. (Graphite) 6g, AB (acetylene black) 0.3g, PAN gel solid polymer electrolyte 3.7g, EC-DMC solution 10g of the composition was mixed with a doctor blade method on the copper foil when the same viscosity as honey obtained After drying at room temperature for 24 hours, the resultant was rolled at a pressure of 1 kg / cm 2 to obtain an electrode. The LiCoO 2 anode was mixed with a composition of 5.7 g of LiCoO 2 , 0.6 g of AB, 3.7 g of PAN gel solid polymer electrolyte, and 10 g of EC-DMC solution, and then cast on a thin sheet of aluminum by a doctor blade method when a viscosity was obtained. After drying at room temperature for 24 hours, the resultant was rolled at a pressure of 1 kg / cm 2 to obtain an electrode. The lithium polymer battery was prepared by configuring a carbon anode, a PAN gel solid polymer electrolyte, and a LiCoO 2 cathode. After the lithium polymer battery was prepared, complete solution blocking and electrical insulation were performed using a PET film, and then an organic electrolyte supercapacitor was prepared thereon. Looking at the manufacturing method of the organic electrolyte supercapacitor in detail, 10% of PTFE (polytetrafluoroethylene) binder was added to Ketjen Black-600JD (manufactured by Kurea, Japan) as an active material, and ethanol, a solvent, was added and mixed for about 3 hours. After mixing for 24 hours, the solvent was evaporated under vacuum to mix, and the dried electrode material was placed on an aluminum mesh and rolled at a pressure of 1 kg / cm 2 to prepare an activated carbon electrode. The electrode was used as a positive electrode and a negative electrode, and a PAN gel-type solid polymer electrolyte was placed therebetween, and a supercapacitor was prepared by injecting a PC solution in which 1M LiClO 4 was dissolved. The lithium polymer battery and the supercapacitor were put in the same package and vacuum sealed to prepare a hybrid type super secondary battery. At this time, the electrode terminal comes out of two terminals of the lithium polymer battery, and two terminals of the negative and positive electrodes of the supercapacitor, and the four terminals come out. The charge / discharge test of the battery was carried out by the charge / discharge method of charging with a C / 2 constant current, 4.2 V constant voltage and discharging at a 1C discharge rate to investigate electrode capacity and cycle life based on the positive electrode.

실시예 3Example 3

리튬고분자전지는 종래의 방법대로 제조하였는데, 구체적으로 살펴보면 카본음극은 Gr.(graphite) 6g, AB(acetylene black) 0.3g, PAN계 젤형 고체고분자 전해질 3.7g, EC-DMC 용액 10g 조성을 혼합한 후 꿀과 같은 정도의 점도가 얻어졌을 때 구리박판 위에 닥터 블레이드 방법으로 캐스팅하여 상온에서 24시간 건조시킨 후 1 kg/cm2의 압력으로 압연하여 전극을 얻었다. LiCoO2양극은 LiCoO25.7g, AB 0.6g, PAN계 젤형 고체고분자전해질 3.7g , EC-DMC용액 10g의 조성을 혼합한 후 꿀과 같은 정도의 점도가 얻어졌을 때 알루미늄 박판 위에 닥터 블레이드 방법으로 캐스팅하여 상온에서 24시간 건조시킨 후 1 kg/cm2의 압력으로 압연하여 전극을 얻었다. 리튬고분자전지는 카본음극, PAN계 젤형 고체고분자전해질, LiCoO2양극으로 구성하여 제조하였다. 리튬고분자전지를 제조한 후 PET막으로 완전한 용액차단 및 전기절연을 한 후, 그 위에 수용액계 슈퍼캐패시터를 제조하였다. 수용액계 슈퍼캐패시터의 제조방법을 구체적으로 살펴보면, 활물질인 Ketjen Black - 600JD (일본 구레아사 제품)에 결합제인 PTFE (polytetrafluoroethylene)를 10% 첨가하고 용매인 에탄올을 가하여 3시간 정도 혼합하였다. 혼합 후 24시간 동안 진공 건조하여 용매를 휘발시키고 건조된 전극재료를 알루미늄 망에 올려놓고 1 kg/cm2의 압력으로 압연하여 활성탄소전극을 제조하였다. 이 전극을 양극과 음극으로 하고 그 사이에 수용액을 PP 분리막을 넣고 6M KOH 용액을 주입하여 단전지를 제조하고, 단전지 사이를 PET 절연막으로 분리하여 4개의 단전지를 직렬로 연결하여 슈퍼캐패시터를 제조하였다. 이들 리튬고분자전지와 슈퍼캐패시터를 동일한 포장지에 넣고 진공밀봉하여 하이브리드형 슈퍼이차전지를 제조하였다. 이때 전극단자는 리튬고분자전지에서 두 개의 단자, 슈퍼캐패시터에서 음·양극 각각 2단자씩, 모두 합하여 4단자가 나오게 된다. 전지의 충방전시험은 C/2 정전류, 4.2V 정전압으로 충전하고 1C 방전율로 방전하는 충방전법으로 수행하여 양극을 기준으로 한 전극용량 및 싸이클 수명을 조사하였다.The lithium polymer battery was manufactured according to a conventional method. Specifically, the carbon cathode was mixed with 6 g of Gr. (Graphite), 0.3 g of AB (acetylene black), 3.7 g of PAN gel solid polymer electrolyte, and 10 g of EC-DMC solution. When the same viscosity as honey was obtained, it was cast on a copper foil by a doctor blade method, dried at room temperature for 24 hours, and then rolled at a pressure of 1 kg / cm 2 to obtain an electrode. LiCoO 2 anode was mixed with LiCoO 2 5.7g, AB 0.6g, PAN gel solid polymer electrolyte, 3.7g, EC-DMC solution 10g, and then cast on the aluminum sheet by the doctor blade method when the viscosity was obtained as honey. After drying at room temperature for 24 hours, the resultant was rolled at a pressure of 1 kg / cm 2 to obtain an electrode. The lithium polymer battery was prepared by forming a carbon anode, a PAN gel solid polymer electrolyte, and a LiCoO 2 cathode. After the lithium polymer battery was prepared, complete solution blocking and electrical insulation were performed using a PET film, and then an aqueous supercapacitor was prepared thereon. Looking at the manufacturing method of an aqueous supercapacitor in detail, 10% PTFE (polytetrafluoroethylene) as a binder was added to Ketjen Black-600JD (manufactured by Kurea, Japan) as an active material, and ethanol as a solvent was added and mixed for about 3 hours. After mixing for 24 hours, the solvent was evaporated under vacuum to mix, and the dried electrode material was placed on an aluminum mesh and rolled at a pressure of 1 kg / cm 2 to prepare an activated carbon electrode. The electrode was used as a positive electrode and a negative electrode, and an aqueous solution was placed in a PP separator, and a 6 M KOH solution was injected thereinto to prepare a single cell, and the single cell was separated by a PET insulating film to connect four single cells in series to prepare a supercapacitor. . The lithium polymer battery and the supercapacitor were put in the same package and vacuum sealed to prepare a hybrid type super secondary battery. At this time, the electrode terminal comes out of two terminals of the lithium polymer battery, and two terminals of the negative and positive electrodes of the supercapacitor, and the four terminals come out. The charge / discharge test of the battery was carried out by the charge / discharge method of charging with a C / 2 constant current and 4.2V constant voltage and discharging at a 1C discharge rate to investigate electrode capacity and cycle life based on the positive electrode.

실시예 4Example 4

리튬이온전지의 양극활물질로 LiCoO2와 전도성 고분자를 혼합하여 리튬이온전지 형태의 하이브리드형 슈퍼이차전지를 제조하였다. 카본음극은 종래의 방법대로 Gr. (graphite) 6g, AB (acetylene black) 0.3g, PVdF 0.4g의 조성을 4g NMP (N-methyl-2-pyrrolidinone) 및 4g 아세톤에 혼합한 후 꿀과 같은 정도의 점도가 얻어졌을 때 구리 박판 위에 닥터 블레이드 방법으로 캐스팅하여 상온과 80℃에서 12시간 건조시킨 후 1 kg/cm2의 압력으로 압연하여 전극을 얻었다. 양극은 LiCoO24.6g, 폴리피롤 전도성고분자(PPy) 1.2g, AB 0.5g, PVdF 0.4g의 조성을 4g NMP 및 4g 아세톤에 혼합한 후 꿀과 같은 정도의 점도가 얻어졌을 때 알루미늄 박판 위에 닥터 블레이드 방법으로 캐스팅하여 상온과 80℃에서 12시간 건조시킨후 1 kg/cm2의 압력을 압연하여 전극을 얻었다. 하이브리드형 슈퍼이차전지는 카본음극, PP 분리막, LiCoO2+ PPy 양극으로 구성하고 1M LiPF6가 용해된 EC-EMC용액을 주입하여 제조하였다. 전지의 충방전 시험은 C/2 정전류, 4.2V 정전압으로 충전하고 1C 방전율로 방전하는 충방전법으로 수행하여 양극을 기준으로 한 전극 용량 및 싸이클 수명을 조사하였다.As a cathode active material of a lithium ion battery, LiCoO 2 and a conductive polymer were mixed to prepare a hybrid super secondary battery in the form of a lithium ion battery. The carbon cathode is Gr. (Graphite) 6g, AB (acetylene black) 0.3g, PVdF 0.4g composition is mixed with 4g NMP (N-methyl-2-pyrrolidinone) and 4g acetone and when the viscosity of honey is obtained doctor on a copper sheet Cast by the blade method and dried at room temperature and 80 ℃ for 12 hours, and then rolled at a pressure of 1 kg / cm 2 to obtain an electrode. The anode was mixed with a composition of 4.6 g of LiCoO 2 , 1.2 g of polypyrrole conductive polymer (PPy), 0.5 g of AB, and 0.4 g of PVdF in 4 g NMP and 4 g acetone, and then the doctor blade method on the aluminum sheet when the viscosity was obtained as honey. After casting to dry at room temperature and 80 ℃ for 12 hours, a pressure of 1 kg / cm 2 was rolled to obtain an electrode. The hybrid super secondary battery was prepared by incorporating a carbon cathode, a PP separator, a LiCoO 2 + PPy anode, and injecting an EC-EMC solution in which 1M LiPF 6 was dissolved. The charge / discharge test of the battery was carried out by a charge / discharge method of charging at a C / 2 constant current, 4.2V constant voltage and discharging at a 1C discharge rate to investigate electrode capacity and cycle life based on the positive electrode.

실시예 5Example 5

리튬고분자전지의 양극활물질로 LiCoO2와 전도성 고분자를 혼합하여 리튬고분자전지 형태의 하이브리드형 슈퍼이차전지를 제조하였다. 카본음극은 종래의 방법대로 Gr. (graphite) 6g, AB (acetylene black) 0.3g, PAN계 젤형 고체고분자 전해질 3.7g, EC-DMC 용액 10g의 조성을 혼합한 후 꿀과 같은 정도의 점도가 얻어졌을 때 구리박판 위에 닥터 블레이드 방법으로 캐스팅하여 상온에서 24시간 건조시킨 후 1 kg/cm2의 압력으로 압연하여 전극을 얻었다. 양극은 LiCoO24.6g, 폴리피롤 전도성고분자(PPy) 1.2g, AB 0.5g, PAN계 젤형 고체고분자 전해질 3.7g, EC-DMC 용액 10g의 조성을 혼합한 후 꿀과 같은 정도의 점도가 얻어졌을 때 알루미늄 박판 위에 닥터 블레이드 방법으로 캐스팅하여 상온에서 24시간 건조시킨 후 1 kg/cm2의 압력으로 압연하여 전극을 얻었다. 하이브리드형 슈퍼이차전지는 카본음극, PAN계 젤형 고체고분자 전해질, LiCoO2+ PPy 양극으로 구성하여 제조하였다. 전지의 충방전시험은 C/2 정전류, 4.2 V 정전압으로 충전하고 1C 방전율로 방전하는 충방전법으로 수행하여 양극을 기준으로 한 전극용량 및 싸이클수명을 조사하였다.As a cathode active material of a lithium polymer battery, LiCoO 2 and a conductive polymer were mixed to prepare a hybrid super secondary battery in the form of a lithium polymer battery. The carbon cathode is Gr. (graphite) 6g, AB (acetylene black) 0.3g, PAN gel solid polymer electrolyte 3.7g, EC-DMC solution 10g of the composition was mixed with a doctor blade method on the copper foil when the same viscosity as honey obtained After drying at room temperature for 24 hours, the resultant was rolled at a pressure of 1 kg / cm 2 to obtain an electrode. The anode was mixed with 4.6 g of LiCoO 2 , 1.2 g of polypyrrole conductive polymer (PPy), 0.5 g of AB, 3.7 g of PAN gel solid polymer electrolyte, and 10 g of EC-DMC solution. Casting on a thin plate by a doctor blade method, dried at room temperature for 24 hours and then rolled at a pressure of 1 kg / cm 2 to obtain an electrode. The hybrid super secondary battery was manufactured by configuring a carbon cathode, a PAN gel solid polymer electrolyte, and a LiCoO 2 + PPy anode. The charge / discharge test of the battery was carried out by the charge / discharge method of charging with a C / 2 constant current, 4.2 V constant voltage and discharging at a 1C discharge rate to investigate electrode capacity and cycle life based on the positive electrode.

실시예 6Example 6

리튬고분자전지의 음극을 Li 금속으로 하고 양극 활물질은 LiCoO2와 전도성고분자를 혼합한 것을 사용하여 리튬고분자전지 형태의 하이브리드형 슈퍼이차전지를 제조하였다. 양극은 LiCoO24.6g, 폴리피롤 전도성고분자(PPy) 1.2g, AB 0.5g, PAN계 젤형 고체고분자 전해질 3.7g, EC-DMC 용액 10g의 조성을 혼합한 후 꿀과 같은 정도의 점도가 얻어졌을 때 알루미늄 박판 위에 닥터 블레이드 방법으로 캐스팅하여 상온에서 24시간 건조시킨 후 1 kg/cm2의 압력으로 압연하여 전극을 얻었다. 하이브리드형 슈퍼이차전지는 Li음극, PAN계 젤형 고체고분자전해질, LiCoO2+ PPy 양극으로 구성하여 제조하였다. 전지의 충방전시험은 C/2 정전류, 4.2 정전압으로 충전하고 1C방전율로 방전하는 충방전법으로 수행하여 양극을 기준으로 한 전극용량 및 싸이클수명을 조사하였다.A lithium super polymer battery of a lithium polymer battery was manufactured by using Li metal as a negative electrode of a lithium polymer battery and a positive electrode active material mixed with LiCoO 2 and a conductive polymer. The anode was mixed with 4.6 g of LiCoO 2 , 1.2 g of polypyrrole conductive polymer (PPy), 0.5 g of AB, 3.7 g of PAN gel solid polymer electrolyte, and 10 g of EC-DMC solution. Casting on a thin plate by a doctor blade method, dried at room temperature for 24 hours and then rolled at a pressure of 1 kg / cm 2 to obtain an electrode. The hybrid super secondary battery was manufactured by configuring a Li cathode, a PAN gel solid polymer electrolyte, and a LiCoO 2 + PPy anode. The charge / discharge test of the battery was carried out by the charge / discharge method of charging at a C / 2 constant current and 4.2 constant voltage and discharging at a 1C discharge rate.

비교예 1Comparative Example 1

리튬이온전지(LIB)는 종래의 방법대로 제조하였는데, 구체적으로 살펴보면 카본음극은 Gr (graphite) 6 g, AB (acerylene black) 0.3 g, PVdF 0.4 g의 조성을 4 g NMP(N-emthyl-2-pyrrolidinone) 및 4 g 아세톤에 혼합한 후 꿀과 같은 정도의 점도가 얻어졌을 때 구리박판 위에 닥터블레이드 방법으로 캐스팅하여 상온과 80℃ 12시간 건조시킨 후 1 kg/cm2의 압력으로 압연하여 전극을 얻었다. LiCoO2, 5.7g, AB 0.6g, PVdF 0.4g의 조성을 4g NMP 및 4g 아세톤에 혼합한 후 꿀과 같은 정도의 점도가 얻어졌을 때 알루미늄 박판 위에 압연 닥터 블래이드 방법으로 캐스팅하여 상온과 80℃에서 12시간 건조시킨 후 1 kg/cm2의 압력으로 압연하여 용해된 EC-EMC 용액을 주입하여 제조하였다. 전지의 충방전시험은 C/2 정전류, 4.2 V 정전압으로 충전하고 1C 방전율로 방전하는 제조하였다. 전지의 충방전 시험은 C/2 정전류, 4.2 V 정전압으로 충전하고 1C 방전율로 충방전법으로 수행하여 양극을 기준으로 한 전극용량 및 사이클수명을 조사하였다.Lithium-ion battery (LIB) was manufactured according to a conventional method. Specifically, the carbon cathode was composed of 6 g of Gr (graphite), 0.3 g of AB (acerylene black), and 0.4 g of PVdF, and 4 g of NMP (N-emthyl-2-). After mixing with pyrrolidinone) and 4 g acetone, when the same viscosity as honey was obtained, casting was carried out by a doctor blade method on a copper foil, dried at room temperature and 80 ° C for 12 hours, and then rolled at a pressure of 1 kg / cm 2 . Got it. After mixing LiCoO 2 , 5.7g, AB 0.6g, and PVdF 0.4g in 4g NMP and 4g acetone, when the viscosity was obtained as honey, it was cast on rolled aluminum blade on the aluminum sheet by the doctor blade method. It was prepared by injecting dissolved EC-EMC solution by rolling at a pressure of 1 kg / cm 2 after drying for a time. The charge / discharge test of the battery was prepared by charging with a C / 2 constant current, 4.2 V constant voltage and discharging at a 1 C discharge rate. The charge / discharge test of the battery was carried out by charging with a C / 2 constant current, 4.2 V constant voltage and charging and discharging at 1C discharge rate to investigate the electrode capacity and cycle life based on the positive electrode.

비교예 2Comparative Example 2

리튬고분자전지는 종래의 방법대로 제조하였는데, 구체적으로 살펴보면 카본음극은 Gr. (graphite) 6g, AB (acetylene black) 0.3, PAN계 고체고분자 전해질 3.7g, EC-EMC 용액 10g의 조성을 혼합한 후 꿀과 같은 정도의 점도가 얻어졌을 때 구리박판 위에 닥터 블레이드 방법으로 캐스팅하여 상온에서 24시간 건조시킨 후 1 kg/cm2의 압력으로 압연하여 전극을 얻었다. LiCoO2양극은 LiCoO25.7g, AB 0.6g PAN계 젤형 고체고분자전해질 3.7g, EC-DMC 용액 10 g의 조성을 혼합한 후 굴과 같은 정도의 점도가 얻어졌을 때 알루미늄 박판 위에 닥터 블레이드 방법으로 캐스팅하여 상온에서 24시간 건조시킨 후 1 kg/cm2의 압력으로 압연하여 전극을 얻었다. 리튬고분자전지는 카본음극, PAN계 젤형 고체고분자 전해질, LiCoO2양극으로 구성하여 제조하였다. 전지의 충방전시험은 C/2 정전류, 4.2 V정전압으로 충방하고 1C 방전율로 방전하는 충방전법으로 수행하여 양극을 기준으로 한 전극용량 및 싸이클수명을 조사하였다.The lithium polymer battery was manufactured according to a conventional method. Specifically, the carbon cathode is Gr. (graphite) 6g, AB (acetylene black) 0.3, PAN-based solid polymer electrolyte 3.7g, EC-EMC solution 10g of the composition was mixed, when the viscosity of the honey is obtained by casting on a copper foil by a doctor blade method at room temperature After drying for 24 hours at 1 kg / cm 2 to obtain a electrode by rolling. The LiCoO 2 anode was mixed with a composition of 5.7 g of LiCoO 2 , 3.7 g of AB 0.6g PAN gel solid polymer electrolyte, and 10 g of EC-DMC solution, and then cast on a thin sheet of aluminum by a doctor blade method when the viscosity was obtained. After drying at room temperature for 24 hours, the resultant was rolled at a pressure of 1 kg / cm 2 to obtain an electrode. The lithium polymer battery was prepared by configuring a carbon anode, a PAN gel solid polymer electrolyte, and a LiCoO 2 cathode. The charge / discharge test of the battery was carried out by the charge / discharge method of charging with a C / 2 constant current and 4.2 V constant voltage and discharging at a 1 C discharge rate. The electrode capacity and cycle life based on the positive electrode were investigated.

실시예 7Example 7

실시예 1, 2, 4 및 5에 따라 제조한 하이브리드형 슈퍼이차전지와 비교예 1,2에 따라 제조한 리튬이차전지의 고율 펄스방전특성을 C/2정전류, 4,2 V 정전압으로 충전하고, 10C 10 ms, 0C 90 ms (평균 1C 방전율)로 방전하는 충방전법으로 10C 방전시의 전압을 측정하여 도 2에 표시하였다. 도 2의 그래프로부터, 본 발명의 실시에에 따라 제조된 하이브리드형 슈퍼이차전지의 고율 펄스방전특성(3.0V까지 44분)이 비교예에 따라 제조된 리튬이차전지의 고율 펄스방전 특성(3.0V까지 12분)에 비해 매우 우수함을 알 수 있다.The high rate pulse discharge characteristics of the hybrid type secondary batteries manufactured according to Examples 1, 2, 4 and 5 and the lithium secondary batteries prepared according to Comparative Examples 1 and 2 were charged with C / 2 constant current and 4,2 V constant voltage. , 10C 10 ms, 0C 90 ms (average 1C discharge rate) by the charge and discharge method to measure the voltage at 10C discharge is shown in Fig. From the graph of Figure 2, the high rate pulse discharge characteristics (44 minutes up to 3.0V) of the hybrid type super secondary battery manufactured according to the embodiment of the present invention is a high rate pulse discharge characteristics (3.0V) of the lithium secondary battery prepared according to the comparative example 12 minutes) is very excellent.

실시예 8Example 8

실시예 2 및 6에 따라 제조한 하이브리형 슈퍼이차전지와 비교예 2에 따라 제조한 리튬고분자 전지의 -10℃에서의 저온특성을 C/2 정전류, 4.2 V 정전압으로 충전하고, C/5 정전류로 방전하는 충방전법으로 측정하여 도 3에 표시하였다. 도 3의 그래프로부터, 본 발명의 실시예에 따라 제조된 하이브리드형 슈퍼이차전지의 저온특성이 비교예에 따라 제조된 리튬고분자전지의 저온특성에 비해 매우 우수함을 알 수 있다.The low-temperature characteristics at -10 ° C of the hybrid-type super secondary batteries prepared according to Examples 2 and 6 and the lithium polymer batteries prepared according to Comparative Example 2 were charged with C / 2 constant current, 4.2 V constant voltage, and C / 5 constant current. It measured by the charging / discharging method of discharging at and shown in FIG. From the graph of Figure 3, it can be seen that the low-temperature characteristics of the hybrid type super secondary battery manufactured according to the embodiment of the present invention is very excellent compared to the low temperature characteristics of the lithium polymer battery prepared according to the comparative example.

실시예 9Example 9

실시예 1 내지 6에 다라 제조한 하이브리드형 슈퍼이차전지와 비교예 1 및 2에 따라 제조한 리튬고분자 전지의 충방전특성을 C/2 정전류, 4.2V 정전압으로 충방하고, 1C 정전류로 방전하는 충방전법으로 측정하여 도 4에 표시하였다. 도 4의 그래프로부터, 본 발명의 실시예에 따라 제조된 하이브리드형 슈퍼이차전지의 충방전특성이 비교예에 따라 제조된 리튬고분자전지의 충방전특성에 비해 우수함을 알 수 있다.The charge / discharge characteristics of the hybrid type super secondary batteries prepared according to Examples 1 to 6 and the lithium polymer batteries prepared according to Comparative Examples 1 and 2 were charged with C / 2 constant current and 4.2V constant voltage and discharged with 1C constant current. It measured by the discharge method and shown in FIG. From the graph of Figure 4, it can be seen that the charge and discharge characteristics of the hybrid type super secondary battery prepared according to the embodiment of the present invention is superior to the charge and discharge characteristics of the lithium polymer battery prepared according to the comparative example.

상술한 실시예 7 내지 9에 나타난 바와 같이 본 발명에 의한 하이브리드형 슈퍼이차전지는 리튬이차전지와 슈퍼캐패시터의 장점을 살린 것으로 고율 펄스방전 특성, 저온특성, 싸이클수명 특성이 우수하게 나타나 디지털 기기용 전원이나, 전기자동차용 전원으로 매우 적합하다.As shown in Examples 7 to 9, the hybrid type super secondary battery according to the present invention utilizes the advantages of a lithium secondary battery and a supercapacitor, and exhibits high rate pulse discharge characteristics, low temperature characteristics, and cycle life characteristics. It is also very suitable for electric vehicle power.

Claims (24)

양극/분리막 또는 고체고분자전해질/음극/분리막 또는 고체고분자전해질/양극의 순서로 적층된 리튬이온전지 또는 리튬고분자전지와;A lithium ion battery or a lithium polymer battery stacked in the order of an anode / separator or a solid polymer electrolyte / cathode / a separator / solid polymer electrolyte / anode; 상기 전지위에 형성되는 기공이 없는 절연성 고분자막과;An insulating polymer film having no pores formed on the battery; 상기 고분자막위에 형성되는 양극/분리막/음극/분리막/양극의 순서로 적층된 슈퍼캐패시터;를 하나의 전지케이스내에 삽입하여 일체형화한 것을 특징으로 하는 하이브리드형 슈퍼이차전지.And a supercapacitor stacked in the order of the anode / separation membrane / cathode / separation membrane / anode formed on the polymer membrane, and integrated into one battery case. 제 1 항에 있어서, 상기 양극 활물질은 LiCoO2, LiNiO2, LiMn2O4, V2O5및 V6O13로 이루어지는 군중에서 선택되는 어느 하나인 것을 특징으로 하는 하이브리드형 슈퍼이차전지.According to claim 1, wherein the positive electrode active material is a hybrid type super secondary battery, characterized in that any one selected from the group consisting of LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , V 2 O 5 and V 6 O 13 . 제 1 항에 있어서, 상기 음극 활물질은 흑연, 코크스, 하드카본, 주석산화물과 이들을 리튬화시킨 것, 리튬 금속 및 리튬 합금으로 이루어지는 군중에서는 선택되는 어느 하나인 것을 특징으로 하는 하이브리드형 슈퍼이차전지.The hybrid super-secondary battery according to claim 1, wherein the negative electrode active material is any one selected from the group consisting of graphite, coke, hard carbon, tin oxide, lithium compounds thereof, lithium metal and lithium alloy. 제 1 항에 있어서, 상기 분리막은 PE (polyethylene), PP (polypropylene) 및 PE/PP 이중층로 이루어지는 군중에서 선택되는 어느 하나인 것을 특징으로 하는 하이브리드형 슈퍼이차전지.The hybrid type secondary battery of claim 1, wherein the separator is any one selected from the group consisting of PE (polyethylene), PP (polypropylene), and PE / PP bilayer. 제 1 항에 있어서, 상기 고체고분자전해질은, 폴리에틸렌옥사이드 (PEO)계, 폴리에틸렌글리콜 (PEG)계, 폴리아크릴로니트릴 (PAN)계, 폴리비닐리덴디플루오라이드 (PVdF)계 또는 이들의 고분자블렌드인 기지고분자와, 리튬염이 용해된 EC (ethylene carbonate) - DMC (dimethyl carbonate) 용액, 리튬염이 용해된 EC (ethylene carbonate) - EMC (ethyl methyl carbonate) 용액 또는 리튬염이 용해된 EC (ethylene carbonate) - DEC (diethyl carbonate) 용액에, MA (methyl acetate), MP (methyl propionate), EA (ethyl acetate) 또는 EP (ethyl propionate)가 첨가되거나 첨가되는 않은 용액으로 이루어지는 것을 특징으로 하는 하이브리드형 슈퍼이차전지.The method of claim 1, wherein the solid polymer electrolyte is polyethylene oxide (PEO), polyethylene glycol (PEG), polyacrylonitrile (PAN), polyvinylidene difluoride (PVdF) or polymer blends thereof EC (ethylene carbonate)-DMC (dimethyl carbonate) solution, lithium salt dissolved EC (ethylene carbonate)-EMC (ethyl methyl carbonate) solution or lithium salt dissolved EC (ethylene) carbonate)-a hybrid super characterized in that it consists of a solution with or without addition of MA (methyl acetate), MP (methyl propionate), EA (ethyl acetate) or EP (ethyl propionate) to a DEC (diethyl carbonate) solution Secondary battery. 제 1 항 내지 제 4 항 중 어느 한 항에 있어서, 상기 전지는 양극/분리막/음극/분리막/양극의 순서로 여러 층을 적층한 후 리튬이차전지용 유기용매전해질을 주입하여 제조한 리튬이온전지인 것을 특징으로 하는 하이브리드형 슈퍼이차전지.The battery according to any one of claims 1 to 4, wherein the battery is a lithium ion battery prepared by injecting an organic solvent electrolyte for a lithium secondary battery after stacking several layers in the order of anode / separation membrane / cathode / separation membrane / anode. Hybrid type super secondary battery, characterized in that. 제 6 항에 있어서, 상기 유기용매전해질은 리튬염이 용해된 EC (ethylene carbonate) - DMC (dimethyl carbonate) 용액, 리튬염이 용해된 EC (ethylene carbonate) - EMC (ethyl methyl carbonate) 용액 또는 리튬염이 용해된 EC (ethylene carbonate) - DEC (diethyl carbonate) 용액에, MA (methyl acetate), MP (methyl propionate), EA (ethyl acetate) 또는 EP (ethyl propionate)가 첨가되거나 첨가되는 않은 용액인 것을 특징으로 하는 하이브리드형 슈퍼이차전지.The method of claim 6, wherein the organic solvent electrolyte is EC (ethylene carbonate)-DMC (dimethyl carbonate) solution in which lithium salt is dissolved, EC (ethylene carbonate)-EMC (ethyl methyl carbonate) solution or lithium salt in which lithium salt is dissolved The dissolved EC (ethylene carbonate) -DEC (diethyl carbonate) solution is a solution in which MA (methyl acetate), MP (methyl propionate), EA (ethyl acetate) or EP (ethyl propionate) is added or not added. Hybrid type super secondary battery. 제 1 항, 제 2 항, 제 3 항 또는 제 5 항에 있어서, 상기 전지는 양극/고체고분자전해질/음극/고체고분자전해질/양극의 순서로 여러 층을 적층한 후 리튬이차전지용 유기용매전해질을 약간 주입하거나 주입하지 않고 제조한 리튬고분자전지인 것을 특징으로 하는 하이브리드형 슈퍼이차전지.The method of claim 1, 2, 3, or 5, wherein the battery is laminated with a plurality of layers in the order of positive electrode / solid polymer electrolyte / negative electrode / solid polymer electrolyte / anode, and then the organic solvent electrolyte for a lithium secondary battery Hybrid type super secondary battery, characterized in that the lithium polymer battery prepared with or without a slight injection. 제 8 항에 있어서, 상기 유기용매전해질은 리튬염이 용해된 EC (ethylene carbonate) - DMC (dimethyl carbonate) 용액, 리튬염이 용해된 EC (ethylene carbonate) - EMC (ethyl methyl carbonate) 용액 또는 리튬염이 용해된 EC (ethylene carbonate) - DEC (diethyl carbonate) 용액에, MA (methyl acetate), MP (methyl propionate), EA (ethyl acetate) 또는 EP (ethyl propionate)가 첨가되거나 첨가되는 않은 용액인 것을 특징으로 하는 하이브리드형 슈퍼이차전지.The method of claim 8, wherein the organic solvent electrolyte is EC (ethylene carbonate)-DMC (dimethyl carbonate) solution in which lithium salt is dissolved, EC (ethylene carbonate)-EMC (ethyl methyl carbonate) solution or lithium salt in which lithium salt is dissolved The dissolved EC (ethylene carbonate) -DEC (diethyl carbonate) solution is a solution in which MA (methyl acetate), MP (methyl propionate), EA (ethyl acetate) or EP (ethyl propionate) is added or not added. Hybrid type super secondary battery. 제 5 항, 제 7 항 또는 제 9 항에 있어서, 상기 리튬염은 LiPF6, LiClO4, LiCF3SO3또는 LiBF4인 것을 특징으로 하는 하이브리드형 슈퍼이차전지.The hybrid type super secondary battery according to claim 5, 7 or 9, wherein the lithium salt is LiPF 6 , LiClO 4 , LiCF 3 SO 3, or LiBF 4 . 제 1 항에 있어서, 상기 슈퍼캐패시터의 양극 및 음극 활물질은 활성 탄소, 카본 파이버 및 카본 물질로 이루어지는 군중에서 선택되는 어느 하나 위에 RuO2, MoO2및 V6O5로 이루어지는 군중에서 선택되는 어느 하나의 나노입자를 피복한 물질 또는 전도성 고분자인 것을 특징으로 하는 하이브리드형 슈퍼이차전지.The method of claim 1, wherein the positive electrode and the negative electrode active material of the supercapacitor is any one selected from the group consisting of RuO 2 , MoO 2 and V 6 O 5 on any one selected from the group consisting of activated carbon, carbon fiber and carbon material. Hybrid type super-secondary battery, characterized in that the nanoparticles of the coating material or conductive polymer. 제 1 항에 있어서, 상기 슈퍼캐패시터의 분리막은 리튬이온전지용 분리막 또는 리튬고분자전지용 고체고분자전해질인 것을 특징으로 하는 하이브리드형 슈퍼이차전지.The hybrid super-secondary battery of claim 1, wherein the separator of the supercapacitor is a separator for a lithium ion battery or a solid polymer electrolyte for a lithium polymer battery. 제 1 항, 제 11 항 또는 제 12 항에 있어서, 상기 슈퍼캐패시터는 양극/분리막/음극/분리막/양극의 순서로 여러 층을 적층한 후 슈퍼캐패시터용 유기용매 전해질 또는 알칼리 수용액을 주입하여 제조한 것인 것을 특징으로 하는 하이브리드형 슈퍼이차전지.The method of claim 1, 11 or 12, wherein the supercapacitor is prepared by stacking several layers in the order of anode / separator / cathode / separator / anode and then injecting an organic solvent electrolyte or alkaline aqueous solution for the supercapacitor. Hybrid type super secondary battery, characterized in that. 제 13 항에 있어서, 상기 슈퍼캐패시터용 유기용매전해질은 리튬염이 용해된 PC (propylene carbonate), TEABF4(tetraethylammonium tetrafluoroborate)가 용해된 PC (propylene carbonate) 또는 TEAMS (tetraethylammoninum methylsulfonate)가 용해된 Sulfolan/Acetonitrile 용액인 것을 특징으로 하는 하이브리드형 슈퍼이차전지.The method of claim 13, wherein the organic solvent electrolyte for the supercapacitor is Sulfolan / dissolved PC (propylene carbonate), TEABF 4 (tetraethylammonium tetrafluoroborate) dissolved in PC (propylene carbonate) or TEAMS (tetraethylammoninum methylsulfonate) dissolved Hybrid super secondary battery, characterized in that the Acetonitrile solution. 제 13 항에 있어서, 상기 알칼리 수용액은 KOH, LiOH, NaOH, H2SO4, HCl 또는 NaCl 용액인 것을 특징으로 하는 하이브리드형 슈퍼이차전지.The hybrid super secondary battery of claim 13, wherein the alkaline aqueous solution is a KOH, LiOH, NaOH, H 2 SO 4 , HCl, or NaCl solution. 리튬이차전지용 양극 활물질과 슈퍼캐패시터용 활물질을 혼합한 양극/분리막 또는 고체고분자전해질/리튬이차전지용 음극 활물질/분리막 또는 고체고분자전해질/리튬이차전지용 양극 활물질과 슈퍼캐패시터용 활물질을 혼합한 양극의 순서로 적층하고 유기용매 전해질을 넣은 후 진공 밀봉하여 일체형화한 것을 특징으로 하는 하이브리드형 슈퍼이차전지.In the order of the positive electrode / separator or a mixture of the positive active material for a lithium secondary battery and the active material for a supercapacitor or the negative electrode active material / separator for a solid polymer electrolyte / lithium secondary battery or a positive electrode mixed with a positive active material for a solid polymer electrolyte / lithium secondary battery and an active material for a supercapacitor. Hybrid type super-secondary battery, characterized in that the integrated and laminated by vacuum-sealing after putting the organic solvent electrolyte. 제 16 항에 있어서, 상기 리튬이차전지용 양극 활물질과 슈퍼캐패시터용 활물질을 혼합한 양극은 리튬이차전지용 양극활물질에 폴리아닐린, 폴리피롤, 폴리아세틸렌, 폴리티오펜 및 폴리파라페닐렌과 같은 전도성 고분자를 혼합한 양극이나, 전도성 고분자와 슈퍼캐패시터용 활성탄소, 카본파이버와 같은 활물질을 혼합한 양극인 것을 특징으로 하는 하이브리드형 슈퍼이차전지.17. The method of claim 16, wherein the positive electrode in which the positive electrode active material for a lithium secondary battery and the active material for a supercapacitor is mixed with a conductive polymer such as polyaniline, polypyrrole, polyacetylene, polythiophene, and polyparaphenylene in a positive electrode active material for a lithium secondary battery. A hybrid type super secondary battery comprising a positive electrode or a positive electrode mixed with a conductive polymer, an active carbon for a supercapacitor, and a carbon fiber. 제 16 항에 있어서, 상기 분리막은 PE (polyethylene), PP (polypropylene) 및 PE/PP 이중층로 이루어지는 군중에서 선택되는 어느 하나인 것을 특징으로 하는 하이브리드형 슈퍼이차전지.17. The hybrid type secondary battery of claim 16, wherein the separator is any one selected from the group consisting of PE (polyethylene), PP (polypropylene), and PE / PP bilayer. 제 16 항에 있어서, 상기 고체고분자전해질은, 폴리에틸렌옥사이드 (PEO)계, 폴리에틸렌글리콜 (PEG)계, 폴리아크릴로니트릴 (PAN)계, 폴리비닐리덴디플루오라이드 (PVdF)계 또는 이들의 고분자블렌드인 기지고분자와, 리튬염이 용해된 EC (ethylene carbonate) - DMC (dimethyl carbonate) 용액, 리튬염이 용해된 EC (ethylene carbonate) - EMC (ethyl methyl carbonate) 용액 또는 리튬염이 용해된 EC (ethylene carbonate) - DEC (diethyl carbonate) 용액에, MA (methyl acetate), MP (methyl propionate), EA (ethyl acetate) 또는 EP (ethyl propionate)가 첨가되거나 첨가되는 않은 용액으로 이루어지는 것을 특징으로 하는 하이브리드형 슈퍼이차전지.The method of claim 16, wherein the solid polymer electrolyte, polyethylene oxide (PEO), polyethylene glycol (PEG), polyacrylonitrile (PAN), polyvinylidene difluoride (PVdF) or polymer blends thereof EC (ethylene carbonate)-DMC (dimethyl carbonate) solution, lithium salt dissolved EC (ethylene carbonate)-EMC (ethyl methyl carbonate) solution or lithium salt dissolved EC (ethylene) carbonate)-a hybrid super characterized in that it consists of a solution with or without addition of MA (methyl acetate), MP (methyl propionate), EA (ethyl acetate) or EP (ethyl propionate) to a DEC (diethyl carbonate) solution Secondary battery. 제 16 항에 있어서, 상기 유기용매전해질은 리튬염이 용해된 EC (ethylene carbonate) - DMC (dimethyl carbonate) 용액, 리튬염이 용해된 EC (ethylene carbonate) - EMC (ethyl methyl carbonate) 용액 또는 리튬염이 용해된 EC (ethylene carbonate) - DEC (diethyl carbonate) 용액에, MA (methyl acetate), MP (methyl propionate), EA (ethyl acetate) 또는 EP (ethyl propionate)가 첨가되거나 첨가되는 않은 용액인 것을 특징으로 하는 하이브리드형 슈퍼이차전지.The method of claim 16, wherein the organic solvent electrolyte is EC (ethylene carbonate)-DMC (dimethyl carbonate) solution in which lithium salt is dissolved, EC (ethylene carbonate)-EMC (ethyl methyl carbonate) solution or lithium salt in which lithium salt is dissolved The dissolved EC (ethylene carbonate) -DEC (diethyl carbonate) solution is a solution in which MA (methyl acetate), MP (methyl propionate), EA (ethyl acetate) or EP (ethyl propionate) is added or not added. Hybrid type super secondary battery. 제 20 항에 있어서, 상기 리튬염은 LiPF6, LiClO4, LiCF3SO3또는 LiBF4인 것을 특징으로 하는 하이브리드형 슈퍼이차전지.The hybrid super secondary battery of claim 20, wherein the lithium salt is LiPF 6 , LiClO 4 , LiCF 3 SO 3, or LiBF 4 . 양극/분리막 또는 고체고분자전해질/음극/분리막 또는 고체고분자전해질/양극의 순서로 적층하여 리튬이온전지 또는 리튬고분자전지를 형성하고;Forming a lithium ion battery or a lithium polymer battery by laminating in order of an anode / separator or a solid polymer electrolyte / cathode / a separator or a solid polymer electrolyte / anode; 상기 전지위에 기공이 없는 절연성 고분자막을 형성하고;Forming an insulating polymer film without pores on the battery; 상기 고분자막위에 형성되는 양극/분리막/음극/분리막/양극의 순서로 적층된 슈퍼캐패시터;를 하나의 전지케이스내에 삽입하여 일체형화하는 것을 특징으로 하는 하이브리드형 슈퍼이차전지의 제조방법.And a supercapacitor stacked in the order of the anode / separation membrane / cathode / separation membrane / anode formed on the polymer membrane into one battery case to integrate the supercapacitor. 리튬이차전지용 양극 활물질과 슈퍼캐패시터용 활물질을 혼합한 양극/분리막 또는 고체고분자전해질/리튬이차전지용 음극 활물질/분리막 또는 고체고분자전해질/리튬이차전지용 양극 활물질과 슈퍼캐패시터용 활물질을 혼합한 양극의 순서로 적층하고 유기용매 전해질을 넣은 후 진공 밀봉하여 일체형화하는 것을 특징으로 하는 하이브리드형 슈퍼이차전지의 제조방법.In the order of the positive electrode / separator or a mixture of the positive active material for a lithium secondary battery and the active material for a supercapacitor or the negative electrode active material / separator for a solid polymer electrolyte / lithium secondary battery or a positive electrode mixed with a positive active material for a solid polymer electrolyte / lithium secondary battery and an active material for a supercapacitor. Method of manufacturing a hybrid type super-secondary battery, characterized in that the laminated and then the organic solvent electrolyte is sealed by vacuum sealing to integrate. 제 1 항 내지 제 21 항 중 어느 하나에 따른 하이브리형 슈퍼이차전지를 그대로 전원으로 사용하거나 전자제어회로를 부착하여 사용하는 방법.A method of using a hybrid type super secondary battery according to any one of claims 1 to 21 as a power source or by attaching an electronic control circuit.
KR1019990001183A 1999-01-16 1999-01-16 A hybrid type super rechargeable battery with lithium secondary batteries and super capacitors and its fabricating method KR100281828B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990001183A KR100281828B1 (en) 1999-01-16 1999-01-16 A hybrid type super rechargeable battery with lithium secondary batteries and super capacitors and its fabricating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990001183A KR100281828B1 (en) 1999-01-16 1999-01-16 A hybrid type super rechargeable battery with lithium secondary batteries and super capacitors and its fabricating method

Publications (2)

Publication Number Publication Date
KR20000050974A KR20000050974A (en) 2000-08-05
KR100281828B1 true KR100281828B1 (en) 2001-02-15

Family

ID=19571517

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990001183A KR100281828B1 (en) 1999-01-16 1999-01-16 A hybrid type super rechargeable battery with lithium secondary batteries and super capacitors and its fabricating method

Country Status (1)

Country Link
KR (1) KR100281828B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100370386B1 (en) * 2000-11-28 2003-01-30 제일모직주식회사 Non-aqueous electrolyte solution for lithium battery
KR20030014988A (en) * 2001-08-14 2003-02-20 한국전자통신연구원 Hybrid power source device and method for manufacturing the same
KR100875110B1 (en) * 2002-09-10 2008-12-22 삼성에스디아이 주식회사 Lithium battery with improved energy density and improved power density

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030075375A (en) * 2002-03-18 2003-09-26 광주과학기술원 All Solid State Supercapacitor and Hybridized Fuel Cell therewith
WO2008016236A1 (en) * 2006-07-31 2008-02-07 Lg Chem, Ltd. Hybrid-typed electrode assembly of capacitor-battery structure
US20110003188A1 (en) * 2009-07-06 2011-01-06 Cheng Bruce C H Energy storage device
KR20110130909A (en) * 2010-05-28 2011-12-06 현대자동차주식회사 Electrical storage system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100370386B1 (en) * 2000-11-28 2003-01-30 제일모직주식회사 Non-aqueous electrolyte solution for lithium battery
KR20030014988A (en) * 2001-08-14 2003-02-20 한국전자통신연구원 Hybrid power source device and method for manufacturing the same
KR100875110B1 (en) * 2002-09-10 2008-12-22 삼성에스디아이 주식회사 Lithium battery with improved energy density and improved power density

Also Published As

Publication number Publication date
KR20000050974A (en) 2000-08-05

Similar Documents

Publication Publication Date Title
Du Pasquier et al. Power-ion battery: bridging the gap between Li-ion and supercapacitor chemistries
KR101621410B1 (en) Lithium electrode and lithium secondary battery including the same
US9005820B2 (en) Lithium secondary battery using ionic liquid
KR102284480B1 (en) Organic/inorganic composite electrolyte, electrode-electrolyte assembly and lithium secondary battery containing the same, and manufacturing method of the electrode-electrolyte assembly
KR101454372B1 (en) Silicon Negative Active Material with lithium film, Manufacturing Method thereof And Lithium Secondary Battery Comprising The Same
US11764358B2 (en) Method for manufacturing all solid-state battery comprising polymeric solid electrolyte and all solid-state battery obtained thereby
KR20120046199A (en) Lithium ion battery
US12002944B2 (en) Method for manufacturing electrode comprising polymeric solid electrolyte and electrode obtained thereby
JP6153124B2 (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP2001176497A (en) Nonaqueous electrolyte secondary battery
US20130078522A1 (en) Lithium ion secondary battery
JP2001176482A (en) Nonaqueous electrolyte secondary battery
KR102517991B1 (en) A method for manufacturing an electrode comprising polymer-based solid electrolyte and an electrode manufactured thereby
JP2003242964A (en) Non-aqueous electrolyte secondary battery
CN112216875B (en) Lithium ion battery repeating unit, lithium ion battery, using method of lithium ion battery, battery module and automobile
CN112216876B (en) Lithium ion battery repeating unit, lithium ion battery, using method of lithium ion battery, battery module and automobile
US8980482B2 (en) Nonaqueous electrolyte lithium ion secondary battery
US20210043916A1 (en) Method for Manufacturing Electrode Comprising Polymeric Solid Electrolyte and Electrode Obtained Thereby
KR100281828B1 (en) A hybrid type super rechargeable battery with lithium secondary batteries and super capacitors and its fabricating method
JPH10255767A (en) Set battery for use in electric vehicle
CN112216878B (en) Lithium ion battery repeating unit, lithium ion battery, using method of lithium ion battery, battery module and automobile
JP4664455B2 (en) Non-aqueous electrolyte secondary battery
CN112216812B (en) Lithium ion battery repeating unit, lithium ion battery, using method of lithium ion battery, battery module and automobile
JP2014017136A (en) Nonaqueous electrolyte secondary battery
JP2018067482A (en) Lithium ion secondary battery and method for manufacturing the same

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20061102

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee