JPH06290794A - Nonaqueous electrolytic battery - Google Patents

Nonaqueous electrolytic battery

Info

Publication number
JPH06290794A
JPH06290794A JP5096878A JP9687893A JPH06290794A JP H06290794 A JPH06290794 A JP H06290794A JP 5096878 A JP5096878 A JP 5096878A JP 9687893 A JP9687893 A JP 9687893A JP H06290794 A JPH06290794 A JP H06290794A
Authority
JP
Japan
Prior art keywords
battery
electrolyte
negative electrode
aqueous electrolyte
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5096878A
Other languages
Japanese (ja)
Other versions
JP3276710B2 (en
Inventor
Masahisa Fujimoto
正久 藤本
Yoshihiro Shoji
良浩 小路
Koji Nishio
晃治 西尾
Toshihiko Saito
俊彦 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP09687893A priority Critical patent/JP3276710B2/en
Publication of JPH06290794A publication Critical patent/JPH06290794A/en
Application granted granted Critical
Publication of JP3276710B2 publication Critical patent/JP3276710B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To provide a nonaqueous electrolytic battery having excellence in high efficient discharging characteristic and no leak of an organic electrolyte by using in the battery a pseudo solid electrolytic nonaqueous electrolyte impregnated with the organic electrolyte. CONSTITUTION:Prescribed ratios of monomers using LiPF6 as a polymerization catalyst is added and mixed into an organic electrolyte ethylene carbonate or the like having LiPF6 as a solute contained therein. The a polymer matrix prepared by polymerizing monomers to be cured is impregnated with the organic electrolyte to form a nonaqueous electrolyte 3. A positive electrode 1 and a negative electrode 2 are arranged opposite to each other via the nonaqueous electrolyte 3, and then received respectively in both positive and negative electrode cans 4, 5 to form a nonaqueous electrolytic battery. With this constitution, the nonaqueous electrolytic battery having high ionic conductivity, excellence in high efficient discharging characteristic and no leak of the organic electrolyte can be provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は非水系電解質電池に係わ
り、詳しくは高率放電特性に優れ、しかも液漏れの心配
の無い非水系電解質電池を得ることを目的とした非水系
電解質の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte battery, and more particularly to an improvement of a non-aqueous electrolyte battery for obtaining a non-aqueous electrolyte battery which has excellent high rate discharge characteristics and is free from liquid leakage. .

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】近年、
ポリエチレンオキサイド(PEO)、ポリプロピレンオ
キサイド(PPO)等のイオン導電性ポリマーからなる
固体電解質が、液漏れの無いポジションフリーの電池が
得られるなどの理由から、注目を集めている。
2. Description of the Related Art In recent years,
Solid electrolytes made of ion-conductive polymers such as polyethylene oxide (PEO) and polypropylene oxide (PPO) have been attracting attention because of the fact that a position-free battery without liquid leakage can be obtained.

【0003】しかしながら、固体電解質は一般に液体電
解質に比べてイオン導電性が低いため(通常、10-4
10-5S/cm程度)、固体電解質電池には液体電解質
電池に比べて高率放電特性が良くないという問題があっ
た。
However, solid electrolytes generally have lower ionic conductivity than liquid electrolytes (usually 10 −4 to
About 10 -5 S / cm), the solid electrolyte battery has a problem that poor high-rate discharge characteristics compared to a liquid electrolyte battery.

【0004】本発明は、以上の事情に鑑みなされたもの
であって、その目的とするところは、高率放電特性に優
れ、しかも液漏れの無い非水系電解質電池を提供するに
ある。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a non-aqueous electrolyte battery having excellent high rate discharge characteristics and having no liquid leakage.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
の本発明に係る非水系電解質電池(以下、「本発明電
池」と称する。)は、LiPF6 を溶質とする有機電解
液に前記LiPF6 を重合触媒とするモノマーを添加混
合したのち、常温下又は加熱して当該モノマーを重合硬
化させてなるところの、重合体マトリックス中に前記有
機電解液を含浸する非水系電解質が使用されてなる。
A non-aqueous electrolyte battery according to the present invention (hereinafter, referred to as "the present battery") for achieving the above object is a LiPF 6 organic solvent containing LiPF 6 as a solute. After adding and mixing the monomer having 6 as a polymerization catalyst, the non-aqueous electrolyte for impregnating the organic electrolyte in the polymer matrix is used, where the monomer is polymerized and cured at room temperature or by heating. .

【0006】本発明におけるモノマーとしては、有機電
解液を蒸散させることの無い温度で、LiPF6 を重合
触媒として重合硬化し得るモノマーであれば特に制限さ
れない。かかるモノマーの具体例としては、1,3−ジ
オキソラン、4−メチル−1,3−ジオキソラン、テト
ラヒドロフラン、2−メチルテトラヒドロフランが挙げ
られる。
The monomer in the present invention is not particularly limited as long as it is a monomer that can be polymerized and cured using LiPF 6 as a polymerization catalyst at a temperature at which the organic electrolyte solution is not evaporated. Specific examples of such a monomer include 1,3-dioxolane, 4-methyl-1,3-dioxolane, tetrahydrofuran and 2-methyltetrahydrofuran.

【0007】上記モノマーの有機電解液に対する好適な
添加比率は、使用するモノマーによって異なる。モノマ
ーとして1,3−ジオキソランを使用する場合の好適な
添加割合は、有機電解液100ccに対して5〜35g
の範囲である。5g未満であると、生成する重合体マト
リックスが充分に発達せず硬化不充分となるため漏液防
止効果が充分に期待できなくなる。一方、35gを越え
ると、相対的に有機電解液の含浸比率が低下するためイ
オン導電性が悪くなる。
The suitable addition ratio of the above-mentioned monomer to the organic electrolytic solution depends on the monomer used. When 1,3-dioxolane is used as the monomer, a suitable addition ratio is 5 to 35 g with respect to 100 cc of the organic electrolyte.
Is the range. If the amount is less than 5 g, the polymer matrix produced will not be sufficiently developed and the curing will be insufficient, so that the liquid leakage preventing effect cannot be expected sufficiently. On the other hand, when it exceeds 35 g, the impregnation ratio of the organic electrolytic solution is relatively lowered, so that the ionic conductivity is deteriorated.

【0008】上記モノマーの重合反応を、1,3−ジオ
キソランを使用する場合を例に挙げて示すと、次の化1
に示す通りであり、この場合の重合反応は環状エーテル
の開環重合である。
The polymerization reaction of the above-mentioned monomer will be shown by taking the case of using 1,3-dioxolane as an example.
, And the polymerization reaction in this case is ring-opening polymerization of cyclic ether.

【0009】[0009]

【化1】 [Chemical 1]

【0010】上記モノマーが添加混合される有機電解液
としては、エチレンカーボネート、ビニレンカーボネー
ト、プロピレンカーボネートなどの有機溶媒や、これら
とジメチルカーボネート、ジエチルカーボネート、1,
2−ジメトキシエタン、1,2−ジエトキシエタン、エ
トキシメトキシエタンなどの低沸点溶媒との混合溶媒
に、LiPF6 を0.7〜1.5M(モル/リットル)
の割合で溶かした溶液が例示される。なお、LiPF6
によるモノマーの重合反応が進行し難い場合は、AlC
4 等の他の重合触媒を別途添加混合するようにしても
よい。
As the organic electrolyte solution to which the above-mentioned monomers are added and mixed, organic solvents such as ethylene carbonate, vinylene carbonate and propylene carbonate, and these and dimethyl carbonate, diethyl carbonate, 1,
0.7 to 1.5 M (mol / liter) of LiPF 6 in a mixed solvent with a low boiling point solvent such as 2-dimethoxyethane, 1,2-diethoxyethane and ethoxymethoxyethane.
An example is a solution dissolved at a ratio of. In addition, LiPF 6
When it is difficult for the monomer polymerization reaction to proceed, AlC
Other polymerization catalysts such as l 4 may be added and mixed separately.

【0011】上述したように、本発明は、LiPF6
溶質とする有機電解液にモノマーを添加混合した後、該
モノマーをLiPF6 を重合触媒として重合硬化させて
なるところの、有機電解液を重合体マトリックス中に含
浸せる非水系電解質を使用した点に特徴を有する。それ
ゆえ、正極材料、負極材料などの電池を構成する他の部
材については特に制限されず、非水系電解質電池用とし
て従来使用され、或いは提案されている種々の材料を制
限無く使用することが可能である。
As described above, according to the present invention, an organic electrolytic solution is obtained by adding and mixing a monomer to an organic electrolytic solution containing LiPF 6 as a solute and polymerizing and curing the monomer using LiPF 6 as a polymerization catalyst. It is characterized by using a non-aqueous electrolyte that is impregnated in a polymer matrix. Therefore, other members constituting the battery such as the positive electrode material and the negative electrode material are not particularly limited, and various materials conventionally used for the non-aqueous electrolyte battery or proposed can be used without limitation. Is.

【0012】たとえば、正極材料(活物質)としては、
LiCoO2 、LiNiO2 、LiMnO2 、LiFe
2 が好適なものとして挙げられる。
For example, as the positive electrode material (active material),
LiCoO 2 , LiNiO 2 , LiMnO 2 , LiFe
O 2 is mentioned as a suitable one.

【0013】また、負極材料としては、黒鉛、コークス
等の炭素材料の他、金属酸化物などが例示される。炭素
材料の中では、放電容量の大きな電池を得る上で、格子
面(002)面におけるd値(d002 )が3.37Å未
満でc軸方向の結晶子の大きさ(Lc)が200Å以上
の結晶性の高い黒鉛が特に好ましい。
Examples of the negative electrode material include carbon materials such as graphite and coke, and metal oxides. Among the carbon materials, in order to obtain a battery with a large discharge capacity, the d value (d 002 ) on the lattice plane (002) plane is less than 3.37 Å and the crystallite size (Lc) in the c-axis direction is 200 Å or more. Particularly preferred is graphite having high crystallinity.

【0014】[0014]

【作用】本発明電池においては、有機電解液を含浸した
疑似固体電解質とでも称すべき非水系電解質が使用され
ているのでイオン導電性が高く、また有機電解液が非水
系電解質の重合体マトリックス中に取り込まれているの
で漏液が起こらない。
In the battery of the present invention, a nonaqueous electrolyte, which should be referred to as a pseudo solid electrolyte impregnated with an organic electrolyte, is used, so that the ionic conductivity is high, and the organic electrolyte is in a polymer matrix of the nonaqueous electrolyte. Since it is taken in, the leakage does not occur.

【0015】[0015]

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例により何ら限定され
るものではなく、その要旨を変更しない範囲において適
宜変更して実施することが可能なものである。
The present invention will be described in more detail based on the following examples, but the invention is not intended to be limited by the following examples, and various modifications can be made without departing from the scope of the invention. Is possible.

【0016】(実施例)扁平角型の非水系電解質電池
(本発明電池)を作製した。
(Example) A flat rectangular non-aqueous electrolyte battery (the battery of the present invention) was produced.

【0017】〔正極〕正極活物質としてのLiCoO2
と、導電剤としての人造黒鉛と、ポリテトラフルオロエ
チレンとを、重量比率90:5:5で混合して正極合剤
を得た。次いで、この正極合剤を成形圧2トン/cm2
で加圧成形した後、250°Cで加熱処理して、正極を
作製した。なお、正極集電体として、ステンレス鋼板
(SUS304)を使用した。
[Positive electrode] LiCoO 2 as a positive electrode active material
Then, artificial graphite as a conductive agent and polytetrafluoroethylene were mixed at a weight ratio of 90: 5: 5 to obtain a positive electrode mixture. Then, the positive electrode mixture is molded at a molding pressure of 2 ton / cm 2.
After being pressure-molded in, a heat treatment was performed at 250 ° C. to prepare a positive electrode. A stainless steel plate (SUS304) was used as the positive electrode current collector.

【0018】〔負極〕負極材料としての天然黒鉛と、結
着剤としてのポリテトラフルオロエチレンとを、重量比
率95:5で混合して負極合剤を得た。次いで、この負
極合剤を成形圧2トン/cm2 で加圧成形した後、25
0°Cで加熱処理して、負極を作製した。なお、負極集
電体として、ステンレス鋼板(SUS304)を使用し
た。
[Negative Electrode] Natural graphite as a negative electrode material and polytetrafluoroethylene as a binder were mixed in a weight ratio of 95: 5 to obtain a negative electrode mixture. Then, this negative electrode mixture was pressure-molded at a molding pressure of 2 ton / cm 2 , and then 25
A heat treatment was performed at 0 ° C. to prepare a negative electrode. A stainless steel plate (SUS304) was used as the negative electrode current collector.

【0019】〔非水系電解質〕エチレンカーボネート
(EC)とジメチルカーボネート(DMC)との等体積
混合溶媒に、LiPF6 (純度99.9%)を0.5M
の割合で溶かして有機電解液を調製した。次いで、この
有機電解液500ccに、1,3−ジオキソラン(モノ
マー)50ccを添加混合して非水系電解質(未硬化の
スラリー)を作製した。
[Non-Aqueous Electrolyte] LiPF 6 (purity 99.9%) is added to 0.5 M in a mixed solvent of ethylene carbonate (EC) and dimethyl carbonate (DMC) in an equal volume.
To prepare an organic electrolyte solution. Next, 50 cc of 1,3-dioxolane (monomer) was added to and mixed with 500 cc of this organic electrolytic solution to prepare a non-aqueous electrolyte (uncured slurry).

【0020】〔電池の作製〕正極及び負極に上記未硬化
のスラリーをドクターブレード法により厚さ10μmで
塗布した後、両電極の塗布面を重ね合わせ、60°Cで
2時間加熱して非水系電解質を硬化させた。これを電池
缶内に収納して扁平角型の本発明電池BA1(電池寸
法:縦横10×5cm、厚み0.5mm)を作製した。
[Production of Battery] The above uncured slurry was applied to the positive electrode and the negative electrode by the doctor blade method so as to have a thickness of 10 μm, the application surfaces of both electrodes were overlapped, and heated at 60 ° C. for 2 hours to obtain a non-aqueous system The electrolyte was cured. This was housed in a battery can to produce a flat rectangular battery BA1 of the present invention (battery size: length and width 10 × 5 cm, thickness 0.5 mm).

【0021】図1は作製した本発明電池BA1を模式的
に示す断面図であり、同図に示す本発明電池BA1は、
正極1、負極2、これら両電極1,2を互いに離間する
セパレータを兼ねる非水系電解質3、正極缶4、負極缶
5、正極集電体6、負極集電体7及びポリプロピレン製
の絶縁パッキング8などからなる。
FIG. 1 is a sectional view schematically showing the manufactured battery BA1 of the present invention. The battery BA1 of the present invention shown in FIG.
Positive electrode 1, negative electrode 2, non-aqueous electrolyte 3 also serving as a separator for separating these electrodes 1, 2 from each other, positive electrode can 4, negative electrode can 5, positive electrode current collector 6, negative electrode current collector 7, and polypropylene insulating packing 8 And so on.

【0022】正極1及び負極2は、有機電解液を含浸し
た非水系電解質3を介して対向して正負両極缶4、5が
形成する電池ケース内に収納されており、正極1は正極
集電体6を介して正極缶4に、また負極2は負極集電体
7を介して負極缶5に接続され、電池内部で生じた化学
エネルギーを正極缶4及び負極缶5の両端子から電気エ
ネルギーとして外部へ取り出し得るようになっている。
The positive electrode 1 and the negative electrode 2 are housed in a battery case formed by positive and negative bipolar cans 4 and 5 facing each other with a non-aqueous electrolyte 3 impregnated with an organic electrolytic solution, and the positive electrode 1 is a positive electrode current collector. The negative electrode 2 is connected to the positive electrode can 4 via the body 6, and the negative electrode 2 is connected to the negative electrode can 5 via the negative electrode current collector 7, and the chemical energy generated inside the battery is transferred from both terminals of the positive electrode can 4 and the negative electrode can 5 to electrical energy. It can be taken out as.

【0023】(比較例1)ポリオキシメチレン樹脂のメ
チルエチルケトン(MEK)溶液(樹脂固形分:10重
量%)250ccに、ECとDMCとの等体積混合溶媒
250ccにLiPF6 を0.5Mの割合で溶かした有
機電解液を混合して得たスラリーを、ガラス板上にドク
ターブレード法により厚さ10μmに塗布し、60°C
で2時間乾燥してMEKを蒸発させて、薄膜状の固体電
解質をガラス板上に生成させた。次いで、この固体電解
質を先の実施例で使用したものと同様の正極及び負極の
間に挟み込んだ状態で電池缶内に収納して、比較電池B
C1を作製した。
Comparative Example 1 250 cc of a methyl ethyl ketone (MEK) solution of polyoxymethylene resin (resin solid content: 10% by weight), 250 cc of a mixed solvent of EC and DMC in an equal volume, and LiPF 6 at a ratio of 0.5M. The slurry obtained by mixing the dissolved organic electrolytic solution was applied on a glass plate by a doctor blade method to a thickness of 10 μm, and the temperature was 60 ° C.
MEK was evaporated by drying for 2 hours to form a thin film solid electrolyte on a glass plate. Then, this solid electrolyte was housed in a battery can in a state of being sandwiched between a positive electrode and a negative electrode similar to those used in the previous example, and the comparative battery B
C1 was produced.

【0024】(比較例2)ポリオキシメチレン樹脂のメ
チルエチルケトン(MEK)溶液(樹脂固形分:10重
量%)250ccに、アセトニトリル250ccにLi
PF6 を0.5Mの割合で溶かした有機電解液を混合し
て得たスラリーを、ガラス板上にドクターブレード法に
より厚さ10μmに塗布し、60°Cで2時間乾燥して
MEKとアセトニトリルを蒸発させて、薄膜状の固体電
解質をガラス板上に生成させた。次いで、この固体電解
質を先の実施例で使用したものと同様の正極及び負極の
間に挟み込んだ状態で電池缶内に収納して、比較電池B
C2を作製した。
Comparative Example 2 Polyoxymethylene resin in methyl ethyl ketone (MEK) solution (resin solid content: 10% by weight) 250 cc, acetonitrile 250 cc Li
A slurry obtained by mixing an organic electrolyte solution in which PF 6 was dissolved at a ratio of 0.5M was applied on a glass plate by a doctor blade method to a thickness of 10 μm, and dried at 60 ° C. for 2 hours to obtain MEK and acetonitrile. Was evaporated to form a thin film solid electrolyte on the glass plate. Then, this solid electrolyte was housed in a battery can in a state of being sandwiched between a positive electrode and a negative electrode similar to those used in the previous example, and the comparative battery B
C2 was produced.

【0025】〔各電池の放電容量〕先ず、室温(25°
C)下、20mAで充電終止電圧4.2Vまで充電した
後、20mAで放電終止電圧2.5Vまで放電した。次
いで、再び20mAで充電終止電圧4.2Vまで充電し
た後、種々の電流で放電して、各電池の放電容量を調べ
た。結果を図2に示す。
[Discharge Capacity of Each Battery] First, at room temperature (25 °
Under C), the battery was charged to 20 V at an end-of-charge voltage of 4.2 V and then discharged at 20 mA to an end-of-discharge voltage of 2.5 V. Then, the battery was charged again at 20 mA to a charge end voltage of 4.2 V, and then discharged at various currents, and the discharge capacity of each battery was examined. The results are shown in Figure 2.

【0026】図2は、各電池の種々の放電電流における
放電容量を、縦軸に放電容量(mAh)を、横軸に放電
電流(mA)をとって示したグラフであり、同図より、
有機電解液を含浸する疑似固体電解質を使用した本発明
電池BA1は、固体電解質を使用した比較電池BC1及
びBC2に比し、高率放電特性が優れていることが分か
る。
FIG. 2 is a graph showing the discharge capacities at various discharge currents of each battery, with the vertical axis representing the discharge capacity (mAh) and the horizontal axis representing the discharge current (mA).
It can be seen that the battery BA1 of the present invention using the pseudo solid electrolyte impregnated with the organic electrolyte is superior in high rate discharge characteristics to the comparative batteries BC1 and BC2 using the solid electrolyte.

【0027】叙上の実施例では、本発明を扁平角型の非
水系電解質電池に適用する場合を例に挙げて説明した
が、電池の形状は特に限定されず、円筒型、コイン型な
ど種々の形状の非水系電解質電池に適用し得るものであ
り、また一次電池であるか、二次であるかについても特
に問われない。
In the above embodiments, the case where the present invention is applied to the flat rectangular non-aqueous electrolyte battery has been described as an example, but the shape of the battery is not particularly limited, and various types such as a cylindrical type and a coin type are used. It is applicable to a non-aqueous electrolyte battery having the above shape, and it is not particularly limited whether the battery is a primary battery or a secondary battery.

【0028】また、実施例では、リチウムイオンを電荷
担体とするリチウム電池を例に挙げて説明したが、本発
明は、ナトリウムイオン等の他のアルカリ金属イオン又
はカルシウムイオン等のアルカリ土類金属イオンを電荷
担体とする非水系電解質電池などにも適用し得るもので
ある。
Further, in the embodiment, a lithium battery using lithium ions as charge carriers has been described as an example, but the present invention is not limited to the above, but other alkali metal ions such as sodium ions or alkaline earth metal ions such as calcium ions. It can also be applied to a non-aqueous electrolyte battery or the like in which is used as a charge carrier.

【0029】さらに、実施例では、電極と非水系電解質
との界面抵抗を減少させるべくモノマーを電極上で重合
硬化させたが、本発明はかかる構成のものに限定され
ず、非水系電解質をガラス板などの上に薄膜として生成
せしめ、これを正極及び負極間に装填するようにしても
よい。
Further, in the examples, the monomer was polymerized and cured on the electrode in order to reduce the interfacial resistance between the electrode and the non-aqueous electrolyte, but the present invention is not limited to such a constitution, and the non-aqueous electrolyte may be a glass. It may be formed as a thin film on a plate or the like and loaded between the positive electrode and the negative electrode.

【0030】[0030]

【発明の効果】本発明電池は、有機電解液を含浸する非
水系電解質が使用されているので、高率放電特性に優
れ、しかも漏液しないなど、本発明は優れた特有の効果
を奏する。
Since the non-aqueous electrolyte impregnated with the organic electrolytic solution is used in the battery of the present invention, the present invention exhibits excellent unique effects such as excellent high rate discharge characteristics and no leakage.

【図面の簡単な説明】[Brief description of drawings]

【図1】扁平角型の非水系電解質電池(本発明電池)の
断面図である。
FIG. 1 is a cross-sectional view of a flat rectangular non-aqueous electrolyte battery (the battery of the present invention).

【図2】実施例及び比較例で作製した各非水系電解質電
池を種々の電流で放電したときの放電容量を示すグラフ
である。
FIG. 2 is a graph showing discharge capacities when the respective non-aqueous electrolyte batteries produced in Examples and Comparative Examples were discharged at various currents.

【符号の説明】[Explanation of symbols]

BA1 非水系電解質電池(本発明電池) 1 正極 2 負極 3 セパレータ BA1 non-aqueous electrolyte battery (the battery of the present invention) 1 positive electrode 2 negative electrode 3 separator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 斎藤 俊彦 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Toshihiko Saito 2-18 Keihan Hondori, Moriguchi City, Osaka Sanyo Electric Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】LiPF6 を溶質とする有機電解液に前記
LiPF6 を重合触媒とするモノマーを添加混合したの
ち、常温下又は加熱して当該モノマーを重合硬化させて
なる、重合体マトリックス中に前記有機電解液を含浸す
る非水系電解質が使用されていることを特徴とする非水
系電解質電池。
1. A polymer matrix prepared by adding and mixing a monomer having LiPF 6 as a polymerization catalyst to an organic electrolyte solution containing LiPF 6 as a solute, and polymerizing and curing the monomer at room temperature or by heating. A non-aqueous electrolyte battery comprising a non-aqueous electrolyte impregnated with the organic electrolytic solution.
【請求項2】前記モノマーが1,3−ジオキソラン、4
−メチル−1,3−ジオキソラン、テトラヒドロフラン
又は2−メチルテトラヒドロフランである請求項1記載
の非水系電解質電池。
2. The monomer is 1,3-dioxolane, 4
The non-aqueous electrolyte battery according to claim 1, which is -methyl-1,3-dioxolane, tetrahydrofuran or 2-methyltetrahydrofuran.
JP09687893A 1993-03-30 1993-03-30 Non-aqueous electrolyte battery Expired - Fee Related JP3276710B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09687893A JP3276710B2 (en) 1993-03-30 1993-03-30 Non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09687893A JP3276710B2 (en) 1993-03-30 1993-03-30 Non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JPH06290794A true JPH06290794A (en) 1994-10-18
JP3276710B2 JP3276710B2 (en) 2002-04-22

Family

ID=14176680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09687893A Expired - Fee Related JP3276710B2 (en) 1993-03-30 1993-03-30 Non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP3276710B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002087004A1 (en) * 2001-04-20 2002-10-31 Sharp Kabushiki Kaisha Lithium polymer secondary cell
US20220085455A1 (en) * 2019-01-04 2022-03-17 Cornell University In situ formation of solid-state polymer electrolytes for batteries
CN115505115A (en) * 2022-11-21 2022-12-23 北京理工大学深圳汽车研究院(电动车辆国家工程实验室深圳研究院) Composition for preparing gel electrolyte, electrolyte and battery thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002087004A1 (en) * 2001-04-20 2002-10-31 Sharp Kabushiki Kaisha Lithium polymer secondary cell
US7258952B2 (en) 2001-04-20 2007-08-21 Sharp Kabushiki Kaisha Lithium polymer secondary cell
US20220085455A1 (en) * 2019-01-04 2022-03-17 Cornell University In situ formation of solid-state polymer electrolytes for batteries
CN115505115A (en) * 2022-11-21 2022-12-23 北京理工大学深圳汽车研究院(电动车辆国家工程实验室深圳研究院) Composition for preparing gel electrolyte, electrolyte and battery thereof
CN115505115B (en) * 2022-11-21 2023-03-14 北京理工大学深圳汽车研究院(电动车辆国家工程实验室深圳研究院) Composition for preparing gel electrolyte, electrolyte and battery thereof

Also Published As

Publication number Publication date
JP3276710B2 (en) 2002-04-22

Similar Documents

Publication Publication Date Title
Tarascon et al. Performance of Bellcore's plastic rechargeable Li-ion batteries
US9142855B2 (en) Electrolyte for electrochemical device, method for preparing the electrolyte and electrochemical device including the electrolyte
JP4412778B2 (en) Polymer electrolyte battery
JPH10312826A (en) Nonaqueous electrolyte battery and charging method therefor
US11374262B2 (en) Solid electrolyte battery and battery module and battery pack comprising same
KR20000029095A (en) Solid electrolyte battery
JP4210440B2 (en) Gel-like electrolyte and lithium battery using the same
CA2334240C (en) Lithium secondary battery using gelled polymeric electrolyte
JPH08306367A (en) Nonaqueous polymer battery
JP3197684B2 (en) Non-aqueous electrolyte secondary battery
JP4193248B2 (en) Gel electrolyte battery
JP2002025609A (en) Lithium secondary battery
JP2000294291A (en) Polymer electrolyte battery
JP3276710B2 (en) Non-aqueous electrolyte battery
JPH08171936A (en) Lithium secondary battery
JPH0997617A (en) Solid electrolytic battery
US6617077B1 (en) Polymer electrolyte battery and method of fabricating the same
JP3203093B2 (en) Solid electrolyte battery
JPH10261437A (en) Polymer electrolyte and lithium polymer battery using it
KR20190088333A (en) Electrode for solid electrolyte battery and solid electrolyte battery including the same
JP3268924B2 (en) Non-aqueous electrolyte battery
JP3384661B2 (en) Solid electrolyte battery and method for manufacturing solid electrolyte battery
JP4382319B2 (en) Lithium secondary battery
JPH11260413A (en) Secondary battery
JPH1145725A (en) Lithium battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090208

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees