JP3203093B2 - Solid electrolyte battery - Google Patents

Solid electrolyte battery

Info

Publication number
JP3203093B2
JP3203093B2 JP09687993A JP9687993A JP3203093B2 JP 3203093 B2 JP3203093 B2 JP 3203093B2 JP 09687993 A JP09687993 A JP 09687993A JP 9687993 A JP9687993 A JP 9687993A JP 3203093 B2 JP3203093 B2 JP 3203093B2
Authority
JP
Japan
Prior art keywords
solid electrolyte
battery
monomer
slurry
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09687993A
Other languages
Japanese (ja)
Other versions
JPH06290810A (en
Inventor
正久 藤本
良浩 小路
晃治 西尾
俊彦 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP09687993A priority Critical patent/JP3203093B2/en
Publication of JPH06290810A publication Critical patent/JPH06290810A/en
Application granted granted Critical
Publication of JP3203093B2 publication Critical patent/JP3203093B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は固体電解質電池に係わ
り、詳しくは固体電解質と電極との間の界面抵抗が小さ
い固体電解質電池を得ることを目的とした固体電解質の
改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid electrolyte battery, and more particularly, to an improvement of a solid electrolyte for obtaining a solid electrolyte battery having a small interface resistance between the solid electrolyte and an electrode.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】近年、
ポリエチレンオキサイド(PEO)、ポリプロピレンオ
キサイド(PPO)などのイオン導電性ポリマーを電解
質とする固体電解質電池が、液漏れが無くポジションフ
リーであることから、注目を集めている。
2. Description of the Related Art In recent years,
BACKGROUND ART Solid electrolyte batteries using an ionic conductive polymer such as polyethylene oxide (PEO) or polypropylene oxide (PPO) as an electrolyte have attracted attention because they are liquid-free and position-free.

【0003】従来の固体電解質電池は、各別に作製した
電極を固体電解質を介して、積層し或いは渦巻き状に巻
き取ったのち電池缶内に収納し、封口することにより作
製されていた。
A conventional solid electrolyte battery has been manufactured by laminating or spirally winding electrodes separately manufactured through a solid electrolyte, and then housing the battery in a battery can and sealing the battery.

【0004】しかしながら、このようにして作製された
固体電解質電池では、電極と固体電解質とは単に圧接さ
れているに過ぎず密着性が良くないため、剥離し易く、
またこれら両者間の界面抵抗が大きい。このため、従来
の固体電解質電池には、高率放電特性や、二次電池にあ
ってはさらにサイクル特性が良くないという問題があっ
た。
However, in the solid electrolyte battery manufactured in this manner, the electrode and the solid electrolyte are simply pressed against each other and have poor adhesion, so that they are easily separated.
In addition, the interface resistance between these two is large. For this reason, the conventional solid electrolyte battery has a problem that the high-rate discharge characteristics and the cycle characteristics of the secondary battery are even worse.

【0005】本発明は、この問題を解決するべくなされ
たものであって、その目的とするところは、電極と固体
電解質との密着性が良い、高率放電特性やサイクル特性
(二次電池の場合)に優れた固体電解質電池を提供する
にある。
The present invention has been made in order to solve this problem. It is an object of the present invention to provide a high-rate discharge characteristic and a cycle characteristic (for a secondary battery) in which the adhesion between an electrode and a solid electrolyte is good. The case is to provide an excellent solid electrolyte battery.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
の請求項1記載の発明に係る固体電解質電池(以下、
「第1電池」と称する。)は、LiPF6 を溶質とする
有機電解液に、前記LiPF6 を重合触媒として重合硬
化可能なモノマーを添加混合して得たスラリーを、正極
及び負極上に塗布し、これら両電極のスラリー塗布面を
重ね合わせたのち加熱して、前記モノマーを重合硬化さ
せるとともに、前記有機電解液中の有機溶媒を蒸発させ
てなる固体電解質が使用されてなる。
In order to achieve the above object, a solid electrolyte battery according to the invention of claim 1 (hereinafter referred to as "solid electrolyte battery")
This is referred to as "first battery". ) Is a method in which a slurry obtained by adding and mixing a polymerizable and curable monomer using LiPF 6 as a polymerization catalyst to an organic electrolytic solution containing LiPF 6 as a solute is applied on the positive electrode and the negative electrode, and the slurry application of these two electrodes is performed. A solid electrolyte obtained by superposing the surfaces and then heating to polymerize and cure the monomer and evaporate the organic solvent in the organic electrolyte is used.

【0007】また、請求項2記載の発明に係る固体電解
質電池(以下、「第2電池」と称する。)は、LiCl
4 、LiCF3 SO3 、LiAlCl4 又はCa(A
lCl)4 を溶質とする有機電解液に、重合触媒及び当
該重合触媒により重合硬化可能なモノマーを添加混合し
て得たスラリーを、正極及び負極上に塗布し、これら両
電極のスラリー塗布面を重ね合わせたのち加熱して、前
記モノマーを重合硬化させるとともに、前記有機電解液
中の有機溶媒を蒸発させてなる固体電解質が使用されて
なる。なお、以下においては第1電池と第2電池と総称
する場合、本発明電池と称することにする。
A solid electrolyte battery (hereinafter referred to as a "second battery") according to the second aspect of the present invention comprises a LiCl battery.
O 4 , LiCF 3 SO 3 , LiAlCl 4 or Ca (A
A slurry obtained by adding and mixing a polymerization catalyst and a monomer curable by the polymerization catalyst to an organic electrolyte solution containing lCl) 4 as a solute is coated on a positive electrode and a negative electrode, and the slurry-coated surfaces of these two electrodes are coated. After overlapping, the mixture is heated to polymerize and cure the monomer, and a solid electrolyte obtained by evaporating an organic solvent in the organic electrolyte is used. Hereinafter, when the first battery and the second battery are collectively referred to, they are referred to as the batteries of the present invention.

【0008】本発明電池は、重合触媒の存在下、重合可
能なモノマーを重合硬化させてなる固体電解質が使用さ
れる。モノマーの具体例としては、1,3−ジオキソラ
ン、4−メチル−1,3−ジオキソラン、テトラヒドロ
フラン、2−メチルテトラヒドロフランが挙げられる。
The battery of the present invention uses a solid electrolyte obtained by polymerizing and curing a polymerizable monomer in the presence of a polymerization catalyst. Specific examples of the monomer include 1,3-dioxolan, 4-methyl-1,3-dioxolan, tetrahydrofuran, and 2-methyltetrahydrofuran.

【0009】第1電池においては、有機電解液の溶質た
るLiPF6 がモノマーの重合触媒として機能するので
別途重合触媒を加える必要は無いが、第2電池において
は、有機電解液の溶質たるLiClO4 、LiCF3
3 、LiAlCl4 及びCa(AlCl)4 が重合触
媒として機能しないので別途AlCl3 などの重合触媒
を加える必要がある。なお、有機電解液の溶質としてL
iPF6 を使用する場合であっても、重合反応を促進す
るために、AlCl4 等の他の重合触媒を別途添加する
ようにしてもよい。
In the first battery, LiPF 6, which is a solute of the organic electrolyte, functions as a catalyst for polymerizing the monomer, so there is no need to add a separate polymerization catalyst. In the second battery, LiClO 4 , which is a solute of the organic electrolyte, is used. , LiCF 3 S
Since O 3 , LiAlCl 4 and Ca (AlCl) 4 do not function as a polymerization catalyst, it is necessary to separately add a polymerization catalyst such as AlCl 3 . The solute of the organic electrolyte is L
Even when iPF 6 is used, another polymerization catalyst such as AlCl 4 may be separately added in order to promote the polymerization reaction.

【0010】上記モノマーの重合反応を、1,3−ジオ
キソランを使用する場合を例に挙げて示すと、次の化1
に示す通りであり、この場合の重合反応は環状エーテル
の開環重合である。
[0010] The polymerization reaction of the above-mentioned monomers will be described by taking the case of using 1,3-dioxolane as an example.
The polymerization reaction in this case is ring-opening polymerization of a cyclic ether.

【0011】[0011]

【化1】 Embedded image

【0012】本発明電池における有機電解液としては、
エチレンカーボネート、ビニレンカーボネート、プロピ
レンカーボネートなどの有機溶媒や、これらとジメチル
カーボネート、ジエチルカーボネート、1,2−ジメト
キシエタン、1,2−ジエトキシエタン、エトキシメト
キシエタンなどの低沸点溶媒との混合溶媒に、溶質とし
てのLiPF6 、LiClO4 、LiCF3 SO3 、L
iAlCl4 又はCa(AlCl)4 を溶かした溶液が
例示される。
The organic electrolyte in the battery of the present invention includes:
Organic solvents such as ethylene carbonate, vinylene carbonate, and propylene carbonate, and mixed solvents thereof with low-boiling solvents such as dimethyl carbonate, diethyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, and ethoxymethoxyethane. , LiPF 6 , LiClO 4 , LiCF 3 SO 3 , L
A solution in which iAlCl 4 or Ca (AlCl) 4 is dissolved is exemplified.

【0013】上述したように、本発明は、電極上で重合
反応させて得た固体電解質を使用した点に特徴を有す
る。それゆえ、正極材料、負極材料などの電池を構成す
る他の部材については特に制限されず、固体電解質電池
用として従来使用され、或いは提案されている種々の材
料を制限無く使用することが可能である。
As described above, the present invention is characterized in that a solid electrolyte obtained by performing a polymerization reaction on an electrode is used. Therefore, other members constituting the battery such as the positive electrode material and the negative electrode material are not particularly limited, and various materials conventionally used or proposed for solid electrolyte batteries can be used without limitation. is there.

【0014】例えば、正極材料(活物質)としては、L
iCoO2 、LiNiO2 、LiMnO2 、LiFeO
2 が好適なものとして挙げられる。
For example, as the positive electrode material (active material), L
iCoO 2 , LiNiO 2 , LiMnO 2 , LiFeO
2 is preferred.

【0015】また、負極材料としては、黒鉛、コークス
等の炭素材料の他、金属酸化物などが例示される。炭素
材料の中では、放電容量の大きな電池を得る上で、格子
面(002)面におけるd値(d002 )が3.37Å未
満でc軸方向の結晶子の大きさ(Lc)が200Å以上
の結晶性の高い黒鉛が特に好ましい。
[0015] Examples of the negative electrode material include carbon oxides such as graphite and coke, and metal oxides. Among carbon materials, in order to obtain a battery having a large discharge capacity, the d value (d 002 ) on the lattice plane (002) plane is less than 3.37 ° and the crystallite size (Lc) in the c-axis direction is 200 ° or more. Is particularly preferred.

【0016】[0016]

【作用】本発明電池においては、電極上でモノマーを重
合硬化させて形成された固体電解質が使用されているの
で、固体電解質と両電極との密着性が良い。このため、
充放電サイクルを重ねても剥離しにくく、また界面抵抗
が小さいので高率放電特性に優れる。
In the battery of the present invention, since a solid electrolyte formed by polymerizing and curing a monomer on the electrode is used, the adhesion between the solid electrolyte and both electrodes is good. For this reason,
Even if charge and discharge cycles are repeated, it is difficult to peel off, and the interface resistance is small, so that it has excellent high rate discharge characteristics.

【0017】[0017]

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例により何ら限定され
るものではなく、その要旨を変更しない範囲において適
宜変更して実施することが可能なものである。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples, and may be carried out by appropriately changing the scope of the present invention. Is possible.

【0018】(実施例)扁平角型の固体電解質二次電池
(本発明電池)を作製した。
(Example) A flat rectangular solid electrolyte secondary battery (battery of the present invention) was manufactured.

【0019】〔正極〕正極活物質としてのLiCoO2
と、導電剤としての人造黒鉛と、ポリテトラフルオロエ
チレンとを、重量比率90:5:5で混合して正極合剤
を得た。次いで、この正極合剤を成形圧2トン/cm2
で加圧成形した後、250°Cで加熱処理して、正極を
作製した。なお、正極集電体として、ステンレス鋼板
(SUS304)を使用した。
[Positive electrode] LiCoO 2 as positive electrode active material
And artificial graphite as a conductive agent and polytetrafluoroethylene in a weight ratio of 90: 5: 5 to obtain a positive electrode mixture. Next, this positive electrode mixture was molded at a molding pressure of 2 ton / cm 2.
, And then heat-treated at 250 ° C. to produce a positive electrode. Note that a stainless steel plate (SUS304) was used as the positive electrode current collector.

【0020】〔負極〕負極材料としての天然黒鉛と、結
着剤としてのポリテトラフルオロエチレンとを、重量比
率95:5で混合して負極合剤を得た。次いで、この負
極合剤を成形圧2トン/cm2 で加圧成形した後、25
0°Cで加熱処理して、負極を作製した。なお、負極集
電体として、ステンレス鋼板(SUS304)を使用し
た。
[Negative Electrode] Natural graphite as a negative electrode material and polytetrafluoroethylene as a binder were mixed at a weight ratio of 95: 5 to obtain a negative electrode mixture. Next, this negative electrode mixture was molded under pressure at a molding pressure of 2 ton / cm 2 ,
Heat treatment was performed at 0 ° C. to produce a negative electrode. Note that a stainless steel plate (SUS304) was used as the negative electrode current collector.

【0021】〔固体電解質〕アセトニトリルにLiPF
6 (純度99.9%)を1Mの割合で溶かして有機電解
液を調製した。次いで、この有機電解液500ccに、
1,3−ジオキソラン(モノマー)50ccを添加混合
してスラリーを作製した。このスラリーを正極及び負極
の片面にドクターブレード法により厚さ10μmに塗布
した後、両電極の塗布面を重ね合わせ、60°Cで2時
間加熱して、アセトニトリルを蒸発させるとともに、ス
ラリーを硬化させて、固体電解質を両電極と一体的に形
成した。
[Solid Electrolyte] LiPF in acetonitrile
6 (purity 99.9%) was dissolved at a ratio of 1M to prepare an organic electrolyte solution. Next, to 500 cc of the organic electrolyte,
A slurry was prepared by adding and mixing 50 cc of 1,3-dioxolane (monomer). This slurry was applied to one side of a positive electrode and a negative electrode to a thickness of 10 μm by a doctor blade method, and then the coated surfaces of both electrodes were overlapped and heated at 60 ° C. for 2 hours to evaporate acetonitrile and harden the slurry. Thus, a solid electrolyte was formed integrally with both electrodes.

【0022】〔電池の作製〕これらの一体化された正負
両極及び固体電解質を電池缶内に収納して扁平角型の本
発明電池BA1(電池寸法:縦横10×5cm、厚み
0.5mm)を作製した。
[Preparation of Battery] These integrated positive and negative electrodes and the solid electrolyte are housed in a battery can to obtain a flat rectangular battery BA1 (battery size: 10 × 5 cm in length and width, 0.5 mm in thickness). Produced.

【0023】図1は作製した本発明電池BA1を模式的
に示す断面図であり、同図に示す本発明電池BA1は、
正極1、負極2、これら両電極1,2を互いに離間する
セパレータを兼ねる固体電解質3、正極缶4、負極缶
5、正極集電体6、負極集電体7及びポリプロピレン製
の絶縁パッキング8などからなる。
FIG. 1 is a cross-sectional view schematically showing a manufactured battery BA1 of the present invention. The battery BA1 of the present invention shown in FIG.
A positive electrode 1, a negative electrode 2, a solid electrolyte 3 also serving as a separator for separating the electrodes 1 and 2 from each other, a positive electrode can 4, a negative electrode can 5, a positive electrode current collector 6, a negative electrode current collector 7, a polypropylene insulating packing 8, and the like. Consists of

【0024】正極1及び負極2は、固体電解質3を介し
て対向して正負両極缶4、5が形成する電池ケース内に
収納されており、正極1は正極集電体6を介して正極缶
4に、また負極2は負極集電体7を介して負極缶5に接
続され、電池内部で生じた化学エネルギーを正極缶4及
び負極缶5の両端子から電気エネルギーとして外部へ取
り出し得るようになっている。
The positive electrode 1 and the negative electrode 2 face each other with a solid electrolyte 3 interposed therebetween and are housed in a battery case formed by positive and negative bipolar cans 4, 5. 4 and the negative electrode 2 is connected to a negative electrode can 5 via a negative electrode current collector 7 so that chemical energy generated inside the battery can be taken out as electric energy from both terminals of the positive electrode can 4 and the negative electrode can 5. Has become.

【0025】(比較例)ポリオキシメチレン樹脂のメチ
ルエチルケトン(MEK)溶液(樹脂固形分:10重量
%)250ccに、アセトニトリル250ccにLiP
6 を0.5Mの割合で溶かした有機電解液を混合して
得たスラリーを、ガラス板上にドクターブレード法によ
り厚さ10μmに塗布し、60°Cで2時間乾燥してM
EKとアセトニトリルを蒸発させて、薄膜状の固体電解
質をガラス板上に生成させた。次いで、この固体電解質
を先の実施例で使用したものと同様の正極及び負極の間
に挟み込んだ状態で電池缶内に収納して、比較電池BC
1を作製した。
(Comparative Example) 250 cc of a polyoxymethylene resin in methyl ethyl ketone (MEK) solution (resin solid content: 10% by weight) and 250 cc of acetonitrile in LiP
A slurry obtained by mixing an organic electrolytic solution in which F 6 was dissolved at a ratio of 0.5 M was applied on a glass plate to a thickness of 10 μm by a doctor blade method, dried at 60 ° C. for 2 hours, and dried.
The EK and acetonitrile were evaporated to produce a thin solid electrolyte on a glass plate. Next, this solid electrolyte was placed in a battery can in a state of being sandwiched between the same positive and negative electrodes as those used in the previous example, and the comparative battery BC
1 was produced.

【0026】〔両電池の放電容量〕先ず、室温(25°
C)下、20mAで充電終止電圧4.2Vまで充電した
後、20mAで放電終止電圧2.5Vまで放電した。次
いで、再び20mAで充電終止電圧4.2Vまで充電し
た後、種々の電流で放電して、両電池の放電容量を調べ
た。結果を図2に示す。
[Discharge capacity of both batteries] First, at room temperature (25 °
C) The battery was charged at 20 mA to a charge end voltage of 4.2 V, and then discharged at 20 mA to a discharge end voltage of 2.5 V. Next, the battery was charged again at 20 mA to a charging end voltage of 4.2 V, and then discharged at various currents, and the discharge capacity of both batteries was examined. The results are shown in FIG.

【0027】図2は、両電池の種々の放電電流における
放電容量を、縦軸に放電容量(mAh)を、横軸に放電
電流(mA)をとって示したグラフであり、同図より、
固体電解質が電極上に一体形成された本発明電池BA1
は、固体電解質が電極に単に圧接されているに過ぎない
比較電池BC1に比し、両者間の界面抵抗が小さいため
高率放電特性に優れていることが分かる。
FIG. 2 is a graph showing the discharge capacity at various discharge currents of both batteries, the discharge capacity (mAh) on the vertical axis, and the discharge current (mA) on the horizontal axis.
Battery BA1 of the present invention in which a solid electrolyte is integrally formed on an electrode
It can be seen that, compared to the comparative battery BC1, in which the solid electrolyte is simply pressed against the electrode, the interfacial resistance between the two is smaller and thus the battery has excellent high-rate discharge characteristics.

【0028】〔両電池のサイクル特性〕室温(25°
C)下、25mAで充電終止電圧4.2Vまで充電した
後、25mAで放電終止電圧2.0Vまで放電する工程
を1サイクルとするサイクル試験を行い、両電池のサイ
クル特性を調べた。結果を図3に示す。
[Cycle characteristics of both batteries] Room temperature (25 °
C) Below, a cycle test was performed in which the battery was charged to a charge end voltage of 4.2 V at 25 mA and then discharged to a discharge end voltage of 2.0 V at 25 mA as one cycle, and the cycle characteristics of both batteries were examined. The results are shown in FIG.

【0029】図3は、両電池のサイクル特性を、縦軸に
放電容量(mAh)を、横軸にサイクル数(回)をとっ
て示したグラフであり、同図より、本発明電池BA1
は、比較電池BC1に比し、電極と固体電解質との密着
性が良く剥離しにくいため高率放電特性に優れているこ
とが分かる。
FIG. 3 is a graph showing the cycle characteristics of both batteries, the vertical axis representing the discharge capacity (mAh), and the horizontal axis representing the number of cycles (times).
It can be seen that, compared to the comparative battery BC1, the electrode has good adhesion between the electrode and the solid electrolyte and is difficult to peel off, and thus has excellent high-rate discharge characteristics.

【0030】叙上の実施例では、本発明を扁平角型の固
体電解質二次電池に適用する場合を例に挙げて説明した
が、電池の形状は特に限定されない。
In the above embodiment, the case where the present invention is applied to a flat rectangular solid electrolyte secondary battery has been described as an example, but the shape of the battery is not particularly limited.

【0031】また、実施例では、リチウムイオンを電荷
担体とする固体電解質リチウム二次電池を例に挙げて説
明したが、本発明は、ナトリウムイオン等の他のアルカ
リ金属イオン又はカルシウムイオン等のアルカリ土類金
属イオンを電荷担体とする固体電解質電池にも適用し得
るものであり、また一次電池であるか、二次電池である
かについても問われない。
Further, in the embodiment, the solid electrolyte lithium secondary battery using lithium ions as a charge carrier has been described as an example. However, the present invention is not limited to other alkali metal ions such as sodium ions or alkali ions such as calcium ions. The present invention can be applied to a solid electrolyte battery using an earth metal ion as a charge carrier, and it does not matter whether the battery is a primary battery or a secondary battery.

【0032】さらに、実施例では、LiPF6 を溶質と
する有機電解液を使用したが、LiClO4 等を溶質と
する有機電解液を使用し、別途重合触媒を加えてモノマ
ーを重合硬化させるようにしても本発明電池BA1と同
様の高率放電特性及びサイクル特性に優れた固体電解質
二次電池を得ることが可能である。
Further, in the embodiment, an organic electrolyte using LiPF 6 as a solute is used. However, an organic electrolyte using LiClO 4 or the like as a solute is used, and a polymerization catalyst is separately added to polymerize and cure the monomer. However, it is possible to obtain a solid electrolyte secondary battery excellent in high-rate discharge characteristics and cycle characteristics similar to the battery BA1 of the present invention.

【0033】[0033]

【発明の効果】本発明電池は、電極上でモノマーを重合
硬化させてなるところの、電極との密着性に優れた固体
電解質が使用されているので、高率放電特性に優れると
ともに、二次電池にあってはさらにサイクル特性にも優
れるなど、本発明は優れた特有の効果を奏する。
The battery of the present invention uses a solid electrolyte which is obtained by polymerizing and curing a monomer on the electrode and has excellent adhesion to the electrode. The present invention has excellent unique effects such as excellent cycle characteristics in batteries.

【図面の簡単な説明】[Brief description of the drawings]

【図1】扁平角型の固体電解質電池(本発明電池)の断
面図である。
FIG. 1 is a sectional view of a flat rectangular solid electrolyte battery (battery of the present invention).

【図2】実施例及び比較例で作製した各電池を種々の電
流で放電したときの放電容量を示すグラフである。
FIG. 2 is a graph showing discharge capacities when batteries produced in Examples and Comparative Examples were discharged at various currents.

【図3】実施例及び比較例で作製した各電池のサイクル
特性を示すグラフである。
FIG. 3 is a graph showing cycle characteristics of each of the batteries manufactured in Examples and Comparative Examples.

【符号の説明】[Explanation of symbols]

BA1 固体電解質電池(本発明電池) 1 正極 2 負極 3 セパレータ BA1 solid electrolyte battery (battery of the present invention) 1 positive electrode 2 negative electrode 3 separator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 斎藤 俊彦 大阪府守口市京阪本通2丁目18番地 三 洋電機株式会社内 (56)参考文献 特開 昭59−127382(JP,A) 特開 平3−129665(JP,A) 特開 平5−144315(JP,A) 特開 昭63−205063(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 10/40 H01M 4/02 - 4/04 H01M 6/18 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Toshihiko Saito 2-18-18 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (56) References JP-A-59-127382 (JP, A) 3-129665 (JP, A) JP-A-5-144315 (JP, A) JP-A-63-205063 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 10/40 H01M 4/02-4/04 H01M 6/18

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】LiPF6 を溶質とする有機電解液に、前
記LiPF6 を重合触媒として重合硬化可能なモノマー
を添加混合して得たスラリーを、正極及び負極上に塗布
し、これら両電極のスラリー塗布面を重ね合わせたのち
加熱して、前記モノマーを重合硬化させるとともに、前
記有機電解液中の有機溶媒を蒸発させてなる固体電解質
が使用されていることを特徴とする固体電解質電池。
1. A slurry obtained by adding and mixing a polymerizable and curable monomer using LiPF 6 as a polymerization catalyst to an organic electrolyte solution containing LiPF 6 as a solute, and coating the slurry on a positive electrode and a negative electrode. A solid electrolyte battery characterized by using a solid electrolyte obtained by superposing the slurry coated surfaces and then heating to polymerize and cure the monomer and evaporate the organic solvent in the organic electrolyte.
【請求項2】LiClO4 、LiCF3 SO3 、LiA
lCl4 又はCa(AlCl)4 を溶質とする有機電解
液に、重合触媒及び当該重合触媒により重合硬化可能な
モノマーを添加混合して得たスラリーを、正極及び負極
上に塗布し、これら両電極のスラリー塗布面を重ね合わ
せたのち加熱して、前記モノマーを重合硬化させるとと
もに、前記有機電解液中の有機溶媒を蒸発させてなる固
体電解質が使用されていることを特徴とする固体電解質
電池。
2. LiClO 4 , LiCF 3 SO 3 , LiA
A slurry obtained by adding and mixing a polymerization catalyst and a monomer curable by polymerization with the polymerization catalyst to an organic electrolyte solution containing lCl 4 or Ca (AlCl) 4 as a solute is coated on a positive electrode and a negative electrode, A solid electrolyte battery characterized in that a solid electrolyte obtained by superposing the slurry-coated surfaces of the above and heating to polymerize and cure the monomer and evaporating the organic solvent in the organic electrolyte is used.
【請求項3】前記モノマーが1,3−ジオキソラン、4
−メチル−1,3−ジオキソラン、テトラヒドロフラン
又は2−メチルテトラヒドロフランである請求項1又は
2記載の固体電解質電池。
3. The method according to claim 1, wherein the monomer is 1,3-dioxolane,
The solid electrolyte battery according to claim 1, which is -methyl-1,3-dioxolan, tetrahydrofuran, or 2-methyltetrahydrofuran.
JP09687993A 1993-03-30 1993-03-30 Solid electrolyte battery Expired - Fee Related JP3203093B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09687993A JP3203093B2 (en) 1993-03-30 1993-03-30 Solid electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09687993A JP3203093B2 (en) 1993-03-30 1993-03-30 Solid electrolyte battery

Publications (2)

Publication Number Publication Date
JPH06290810A JPH06290810A (en) 1994-10-18
JP3203093B2 true JP3203093B2 (en) 2001-08-27

Family

ID=14176708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09687993A Expired - Fee Related JP3203093B2 (en) 1993-03-30 1993-03-30 Solid electrolyte battery

Country Status (1)

Country Link
JP (1) JP3203093B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4385425B2 (en) 1999-02-19 2009-12-16 ソニー株式会社 Solid electrolyte battery and manufacturing method thereof
JP2001325991A (en) * 2000-05-15 2001-11-22 Nisshinbo Ind Inc Electric parts and manufacturing method
JP4707028B2 (en) * 2000-09-29 2011-06-22 シャープ株式会社 Lithium secondary battery
JP6135346B2 (en) * 2013-07-12 2017-05-31 三菱瓦斯化学株式会社 Polymer electrolyte

Also Published As

Publication number Publication date
JPH06290810A (en) 1994-10-18

Similar Documents

Publication Publication Date Title
US5753388A (en) Process for prelithiation of carbon based anodes for lithium ion electrochemical cells
US5851504A (en) Carbon based electrodes
US7422826B2 (en) In situ thermal polymerization method for making gel polymer lithium ion rechargeable electrochemical cells
JP4352475B2 (en) Solid electrolyte secondary battery
JPH10312826A (en) Nonaqueous electrolyte battery and charging method therefor
US20220077493A1 (en) Ion conductor material and battery
US5789110A (en) Cathode-active material blends comprising Lix Mn2 O4 (0<x≦2)
JP2004079327A (en) Non-aqueous secondary battery, positive electrode for secondary battery, and its manufacturing method
JPH10255842A (en) Lithium-polymer secondary battery
JPH11195419A (en) Depolarizing mix for nonaqueous battery and nonaqueous battery
JP2002117851A (en) Carbon material, negative electrode for secondary lithium ion battery, and secondary lithium ion battery
US5561007A (en) Cathode-active material blends of Lix Mn2 O4 and Liy -α-MnO2
CA2334240C (en) Lithium secondary battery using gelled polymeric electrolyte
JP3203093B2 (en) Solid electrolyte battery
JP2002025609A (en) Lithium secondary battery
JP2000294291A (en) Polymer electrolyte battery
JPH08171936A (en) Lithium secondary battery
JP4382319B2 (en) Lithium secondary battery
JPH0997617A (en) Solid electrolytic battery
JP3213458B2 (en) Non-aqueous electrolyte secondary battery
JP3268924B2 (en) Non-aqueous electrolyte battery
JP3276710B2 (en) Non-aqueous electrolyte battery
JP3407507B2 (en) Polymer electrolyte and lithium battery
JP2004200122A (en) Manufacturing method of non-aqueous electrolyte secondary battery
JPH11162506A (en) Manufacture of lithium battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080622

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090622

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees