JPH06290810A - Solid electrolyte battery - Google Patents

Solid electrolyte battery

Info

Publication number
JPH06290810A
JPH06290810A JP5096879A JP9687993A JPH06290810A JP H06290810 A JPH06290810 A JP H06290810A JP 5096879 A JP5096879 A JP 5096879A JP 9687993 A JP9687993 A JP 9687993A JP H06290810 A JPH06290810 A JP H06290810A
Authority
JP
Japan
Prior art keywords
solid electrolyte
battery
negative electrode
positive electrode
monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5096879A
Other languages
Japanese (ja)
Other versions
JP3203093B2 (en
Inventor
Masahisa Fujimoto
正久 藤本
Yoshihiro Shoji
良浩 小路
Koji Nishio
晃治 西尾
Toshihiko Saito
俊彦 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP09687993A priority Critical patent/JP3203093B2/en
Publication of JPH06290810A publication Critical patent/JPH06290810A/en
Application granted granted Critical
Publication of JP3203093B2 publication Critical patent/JP3203093B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To provide a solid electrolyte battery, which is excellent in a high rate discharging characteristic and a recycling characteristic (in the case of a secondary battery), by providing a solid electrolyte having good adhesiveness to an electrode formed by polymerizing and curing a monomer on the electrode. CONSTITUTION:A solid electrolyte battery BA1 consists of a positive electrode 1, a negative electrode 2, a solid electrolyte 3, which simultaneously serves as a separator for separating both of the positive electrode 1 and the negative electrode 2 from each other, a positive electrode can 4, a negative electrode can 5, a positive electrode collecting body 6, a negative electrode collecting body 7, an insulating packing 8, and the like. The solid electrolyte is formed in a following way. Slurry obtained by adding and mixing a monomer, which can be polymerized and cured by employing LiPF6 as a polymerizing catalyst, with an organic electrolyte using LiPF6 as a solute is applied on the positive electrode and the negative electrode. Both of the electrodes applied with the slurry are put together and heated, so that the monomer is polymerized and cured, while an organic solvent in the organic electrolyte is evaporated. LiClO4, LiCF3SO3, LiAlCl4, or ca(AlCl)4 is available in stead of LiPF6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は固体電解質電池に係わ
り、詳しくは固体電解質と電極との間の界面抵抗が小さ
い固体電解質電池を得ることを目的とした固体電解質の
改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid electrolyte battery, and more particularly to an improvement of a solid electrolyte battery for obtaining a solid electrolyte battery having a small interface resistance between a solid electrolyte and an electrode.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】近年、
ポリエチレンオキサイド(PEO)、ポリプロピレンオ
キサイド(PPO)などのイオン導電性ポリマーを電解
質とする固体電解質電池が、液漏れが無くポジションフ
リーであることから、注目を集めている。
2. Description of the Related Art In recent years,
Solid electrolyte batteries using ion-conductive polymers such as polyethylene oxide (PEO) and polypropylene oxide (PPO) as electrolytes have attracted attention because they do not leak and are position-free.

【0003】従来の固体電解質電池は、各別に作製した
電極を固体電解質を介して、積層し或いは渦巻き状に巻
き取ったのち電池缶内に収納し、封口することにより作
製されていた。
A conventional solid electrolyte battery has been manufactured by stacking or spirally winding electrodes separately manufactured through a solid electrolyte, storing the electrodes in a battery can, and sealing the electrodes.

【0004】しかしながら、このようにして作製された
固体電解質電池では、電極と固体電解質とは単に圧接さ
れているに過ぎず密着性が良くないため、剥離し易く、
またこれら両者間の界面抵抗が大きい。このため、従来
の固体電解質電池には、高率放電特性や、二次電池にあ
ってはさらにサイクル特性が良くないという問題があっ
た。
However, in the solid electrolyte battery produced in this manner, the electrode and the solid electrolyte are merely in pressure contact with each other and the adhesion is not good, so that they are easily peeled off,
Further, the interface resistance between them is large. Therefore, the conventional solid electrolyte battery has a problem that the high-rate discharge characteristic and the cycle characteristic of the secondary battery are not good.

【0005】本発明は、この問題を解決するべくなされ
たものであって、その目的とするところは、電極と固体
電解質との密着性が良い、高率放電特性やサイクル特性
(二次電池の場合)に優れた固体電解質電池を提供する
にある。
The present invention has been made to solve this problem, and an object thereof is to provide a high rate discharge characteristic and a cycle characteristic (for a secondary battery) which have good adhesion between an electrode and a solid electrolyte. If the case) is to provide an excellent solid electrolyte battery.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
の請求項1記載の発明に係る固体電解質電池(以下、
「第1電池」と称する。)は、LiPF6 を溶質とする
有機電解液に、前記LiPF6 を重合触媒として重合硬
化可能なモノマーを添加混合して得たスラリーを、正極
及び負極上に塗布し、これら両電極のスラリー塗布面を
重ね合わせたのち加熱して、前記モノマーを重合硬化さ
せるとともに、前記有機電解液中の有機溶媒を蒸発させ
てなる固体電解質が使用されてなる。
In order to achieve the above object, the solid electrolyte battery according to the invention of claim 1 (hereinafter,
It is referred to as the "first battery". ) Is a slurry obtained by adding and mixing a monomer curable by polymerization using LiPF 6 as a polymerization catalyst to an organic electrolytic solution containing LiPF 6 as a solute, and coating the slurry on both the positive electrode and the negative electrode. A solid electrolyte is used in which the surfaces are overlapped and then heated to polymerize and cure the monomer and to evaporate the organic solvent in the organic electrolytic solution.

【0007】また、請求項2記載の発明に係る固体電解
質電池(以下、「第2電池」と称する。)は、LiCl
4 、LiCF3 SO3 、LiAlCl4 又はCa(A
lCl)4 を溶質とする有機電解液に、重合触媒及び当
該重合触媒により重合硬化可能なモノマーを添加混合し
て得たスラリーを、正極及び負極上に塗布し、これら両
電極のスラリー塗布面を重ね合わせたのち加熱して、前
記モノマーを重合硬化させるとともに、前記有機電解液
中の有機溶媒を蒸発させてなる固体電解質が使用されて
なる。なお、以下においては第1電池と第2電池と総称
する場合、本発明電池と称することにする。
The solid electrolyte battery (hereinafter, referred to as "second battery") according to the invention of claim 2 is LiCl.
O 4 , LiCF 3 SO 3 , LiAlCl 4 or Ca (A
A slurry obtained by adding and mixing a polymerization catalyst and a monomer polymerizable and curable by the polymerization catalyst to an organic electrolytic solution containing lCl) 4 as a solute is applied on the positive electrode and the negative electrode, and the slurry application surfaces of both electrodes are coated. A solid electrolyte obtained by superposing and heating to polymerize and cure the monomer and evaporate the organic solvent in the organic electrolytic solution is used. In the following description, the first battery and the second battery will be collectively referred to as the battery of the present invention.

【0008】本発明電池は、重合触媒の存在下、重合可
能なモノマーを重合硬化させてなる固体電解質が使用さ
れる。モノマーの具体例としては、1,3−ジオキソラ
ン、4−メチル−1,3−ジオキソラン、テトラヒドロ
フラン、2−メチルテトラヒドロフランが挙げられる。
The battery of the present invention uses a solid electrolyte obtained by polymerizing and curing a polymerizable monomer in the presence of a polymerization catalyst. Specific examples of the monomer include 1,3-dioxolane, 4-methyl-1,3-dioxolane, tetrahydrofuran and 2-methyltetrahydrofuran.

【0009】第1電池においては、有機電解液の溶質た
るLiPF6 がモノマーの重合触媒として機能するので
別途重合触媒を加える必要は無いが、第2電池において
は、有機電解液の溶質たるLiClO4 、LiCF3
3 、LiAlCl4 及びCa(AlCl)4 が重合触
媒として機能しないので別途AlCl3 などの重合触媒
を加える必要がある。なお、有機電解液の溶質としてL
iPF6 を使用する場合であっても、重合反応を促進す
るために、AlCl4 等の他の重合触媒を別途添加する
ようにしてもよい。
In the first battery, LiPF 6 which is a solute of the organic electrolytic solution functions as a polymerization catalyst for the monomer, so that it is not necessary to add a separate polymerization catalyst, but in the second battery, LiClO 4 which is a solute of the organic electrolytic solution. , LiCF 3 S
Since O 3 , LiAlCl 4 and Ca (AlCl) 4 do not function as a polymerization catalyst, it is necessary to add a polymerization catalyst such as AlCl 3 separately. As the solute of the organic electrolyte, L
Even when iPF 6 is used, another polymerization catalyst such as AlCl 4 may be added separately in order to accelerate the polymerization reaction.

【0010】上記モノマーの重合反応を、1,3−ジオ
キソランを使用する場合を例に挙げて示すと、次の化1
に示す通りであり、この場合の重合反応は環状エーテル
の開環重合である。
The polymerization reaction of the above-mentioned monomer is shown below by taking the case of using 1,3-dioxolane as an example.
, And the polymerization reaction in this case is ring-opening polymerization of cyclic ether.

【0011】[0011]

【化1】 [Chemical 1]

【0012】本発明電池における有機電解液としては、
エチレンカーボネート、ビニレンカーボネート、プロピ
レンカーボネートなどの有機溶媒や、これらとジメチル
カーボネート、ジエチルカーボネート、1,2−ジメト
キシエタン、1,2−ジエトキシエタン、エトキシメト
キシエタンなどの低沸点溶媒との混合溶媒に、溶質とし
てのLiPF6 、LiClO4 、LiCF3 SO3 、L
iAlCl4 又はCa(AlCl)4 を溶かした溶液が
例示される。
As the organic electrolyte in the battery of the present invention,
For organic solvents such as ethylene carbonate, vinylene carbonate and propylene carbonate, and mixed solvents with these and low boiling point solvents such as dimethyl carbonate, diethyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane and ethoxymethoxyethane. , LiPF 6 as a solute, LiClO 4 , LiCF 3 SO 3 , L
A solution in which iAlCl 4 or Ca (AlCl) 4 is dissolved is exemplified.

【0013】上述したように、本発明は、電極上で重合
反応させて得た固体電解質を使用した点に特徴を有す
る。それゆえ、正極材料、負極材料などの電池を構成す
る他の部材については特に制限されず、固体電解質電池
用として従来使用され、或いは提案されている種々の材
料を制限無く使用することが可能である。
As described above, the present invention is characterized in that the solid electrolyte obtained by the polymerization reaction on the electrode is used. Therefore, other members constituting the battery such as the positive electrode material and the negative electrode material are not particularly limited, and various materials conventionally used for the solid electrolyte battery or proposed various materials can be used without limitation. is there.

【0014】例えば、正極材料(活物質)としては、L
iCoO2 、LiNiO2 、LiMnO2 、LiFeO
2 が好適なものとして挙げられる。
For example, as the positive electrode material (active material), L
iCoO 2 , LiNiO 2 , LiMnO 2 , LiFeO
2 is mentioned as a suitable thing.

【0015】また、負極材料としては、黒鉛、コークス
等の炭素材料の他、金属酸化物などが例示される。炭素
材料の中では、放電容量の大きな電池を得る上で、格子
面(002)面におけるd値(d002 )が3.37Å未
満でc軸方向の結晶子の大きさ(Lc)が200Å以上
の結晶性の高い黒鉛が特に好ましい。
Examples of the negative electrode material include carbon materials such as graphite and coke, and metal oxides. Among the carbon materials, in order to obtain a battery with a large discharge capacity, the d value (d 002 ) on the lattice plane (002) plane is less than 3.37 Å and the crystallite size (Lc) in the c-axis direction is 200 Å or more. Particularly preferred is graphite having high crystallinity.

【0016】[0016]

【作用】本発明電池においては、電極上でモノマーを重
合硬化させて形成された固体電解質が使用されているの
で、固体電解質と両電極との密着性が良い。このため、
充放電サイクルを重ねても剥離しにくく、また界面抵抗
が小さいので高率放電特性に優れる。
In the battery of the present invention, since the solid electrolyte formed by polymerizing and curing the monomer on the electrode is used, the adhesion between the solid electrolyte and both electrodes is good. For this reason,
It is difficult to peel off even after repeated charge and discharge cycles, and since the interface resistance is small, it has excellent high rate discharge characteristics.

【0017】[0017]

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例により何ら限定され
るものではなく、その要旨を変更しない範囲において適
宜変更して実施することが可能なものである。
The present invention will be described in more detail based on the following examples, but the invention is not intended to be limited by the following examples, and various modifications can be made without departing from the scope of the invention. Is possible.

【0018】(実施例)扁平角型の固体電解質二次電池
(本発明電池)を作製した。
(Example) A flat rectangular solid electrolyte secondary battery (the battery of the present invention) was produced.

【0019】〔正極〕正極活物質としてのLiCoO2
と、導電剤としての人造黒鉛と、ポリテトラフルオロエ
チレンとを、重量比率90:5:5で混合して正極合剤
を得た。次いで、この正極合剤を成形圧2トン/cm2
で加圧成形した後、250°Cで加熱処理して、正極を
作製した。なお、正極集電体として、ステンレス鋼板
(SUS304)を使用した。
[Positive electrode] LiCoO 2 as a positive electrode active material
Then, artificial graphite as a conductive agent and polytetrafluoroethylene were mixed at a weight ratio of 90: 5: 5 to obtain a positive electrode mixture. Then, the positive electrode mixture is molded at a molding pressure of 2 ton / cm 2.
After being pressure-molded in, a heat treatment was performed at 250 ° C. to prepare a positive electrode. A stainless steel plate (SUS304) was used as the positive electrode current collector.

【0020】〔負極〕負極材料としての天然黒鉛と、結
着剤としてのポリテトラフルオロエチレンとを、重量比
率95:5で混合して負極合剤を得た。次いで、この負
極合剤を成形圧2トン/cm2 で加圧成形した後、25
0°Cで加熱処理して、負極を作製した。なお、負極集
電体として、ステンレス鋼板(SUS304)を使用し
た。
[Negative Electrode] Natural graphite as a negative electrode material and polytetrafluoroethylene as a binder were mixed in a weight ratio of 95: 5 to obtain a negative electrode mixture. Then, this negative electrode mixture was pressure-molded at a molding pressure of 2 ton / cm 2 , and then 25
A heat treatment was performed at 0 ° C. to prepare a negative electrode. A stainless steel plate (SUS304) was used as the negative electrode current collector.

【0021】〔固体電解質〕アセトニトリルにLiPF
6 (純度99.9%)を1Mの割合で溶かして有機電解
液を調製した。次いで、この有機電解液500ccに、
1,3−ジオキソラン(モノマー)50ccを添加混合
してスラリーを作製した。このスラリーを正極及び負極
の片面にドクターブレード法により厚さ10μmに塗布
した後、両電極の塗布面を重ね合わせ、60°Cで2時
間加熱して、アセトニトリルを蒸発させるとともに、ス
ラリーを硬化させて、固体電解質を両電極と一体的に形
成した。
[Solid Electrolyte] LiPF6 in acetonitrile
6 (purity 99.9%) was dissolved at a ratio of 1 M to prepare an organic electrolyte solution. Next, to this organic electrolytic solution 500cc,
50 cc of 1,3-dioxolane (monomer) was added and mixed to prepare a slurry. After applying this slurry to one surface of the positive electrode and the negative electrode to a thickness of 10 μm by the doctor blade method, the application surfaces of both electrodes are overlapped and heated at 60 ° C. for 2 hours to evaporate acetonitrile and cure the slurry. Then, the solid electrolyte was formed integrally with both electrodes.

【0022】〔電池の作製〕これらの一体化された正負
両極及び固体電解質を電池缶内に収納して扁平角型の本
発明電池BA1(電池寸法:縦横10×5cm、厚み
0.5mm)を作製した。
[Manufacture of Battery] These integrated positive and negative electrodes and solid electrolyte are housed in a battery can to form a flat rectangular battery BA1 of the present invention (battery size: length and width 10 × 5 cm, thickness 0.5 mm). It was made.

【0023】図1は作製した本発明電池BA1を模式的
に示す断面図であり、同図に示す本発明電池BA1は、
正極1、負極2、これら両電極1,2を互いに離間する
セパレータを兼ねる固体電解質3、正極缶4、負極缶
5、正極集電体6、負極集電体7及びポリプロピレン製
の絶縁パッキング8などからなる。
FIG. 1 is a cross-sectional view schematically showing the produced battery BA1 of the present invention. The battery BA1 of the present invention shown in FIG.
Positive electrode 1, negative electrode 2, solid electrolyte 3 also serving as a separator for separating these electrodes 1, 2 from each other, positive electrode can 4, negative electrode can 5, positive electrode current collector 6, negative electrode current collector 7, polypropylene insulating packing 8, etc. Consists of.

【0024】正極1及び負極2は、固体電解質3を介し
て対向して正負両極缶4、5が形成する電池ケース内に
収納されており、正極1は正極集電体6を介して正極缶
4に、また負極2は負極集電体7を介して負極缶5に接
続され、電池内部で生じた化学エネルギーを正極缶4及
び負極缶5の両端子から電気エネルギーとして外部へ取
り出し得るようになっている。
The positive electrode 1 and the negative electrode 2 are housed in a battery case formed by positive and negative bipolar cans 4 and 5 facing each other with a solid electrolyte 3 in between, and the positive electrode 1 is connected via a positive electrode current collector 6 to the positive electrode can. 4, and the negative electrode 2 is connected to the negative electrode can 5 via the negative electrode current collector 7 so that the chemical energy generated inside the battery can be taken out as electrical energy from both terminals of the positive electrode can 4 and the negative electrode can 5. Has become.

【0025】(比較例)ポリオキシメチレン樹脂のメチ
ルエチルケトン(MEK)溶液(樹脂固形分:10重量
%)250ccに、アセトニトリル250ccにLiP
6 を0.5Mの割合で溶かした有機電解液を混合して
得たスラリーを、ガラス板上にドクターブレード法によ
り厚さ10μmに塗布し、60°Cで2時間乾燥してM
EKとアセトニトリルを蒸発させて、薄膜状の固体電解
質をガラス板上に生成させた。次いで、この固体電解質
を先の実施例で使用したものと同様の正極及び負極の間
に挟み込んだ状態で電池缶内に収納して、比較電池BC
1を作製した。
(Comparative Example) Methyl ethyl ketone (MEK) solution of polyoxymethylene resin (resin solid content: 10% by weight) 250 cc, acetonitrile 250 cc, LiP
A slurry obtained by mixing an organic electrolyte solution in which F 6 was dissolved at a ratio of 0.5 M was applied on a glass plate by a doctor blade method to a thickness of 10 μm, and dried at 60 ° C. for 2 hours to obtain M.
EK and acetonitrile were evaporated to form a thin film solid electrolyte on a glass plate. Then, this solid electrolyte was housed in a battery can in a state of being sandwiched between a positive electrode and a negative electrode similar to those used in the previous example, and the comparative battery BC
1 was produced.

【0026】〔両電池の放電容量〕先ず、室温(25°
C)下、20mAで充電終止電圧4.2Vまで充電した
後、20mAで放電終止電圧2.5Vまで放電した。次
いで、再び20mAで充電終止電圧4.2Vまで充電し
た後、種々の電流で放電して、両電池の放電容量を調べ
た。結果を図2に示す。
[Discharge capacity of both batteries] First, at room temperature (25 °
Under C), the battery was charged to 20 V at an end-of-charge voltage of 4.2 V and then discharged at 20 mA to an end-of-discharge voltage of 2.5 V. Then, the battery was charged again at 20 mA to the end-of-charge voltage of 4.2 V, then discharged at various currents, and the discharge capacities of both batteries were examined. The results are shown in Figure 2.

【0027】図2は、両電池の種々の放電電流における
放電容量を、縦軸に放電容量(mAh)を、横軸に放電
電流(mA)をとって示したグラフであり、同図より、
固体電解質が電極上に一体形成された本発明電池BA1
は、固体電解質が電極に単に圧接されているに過ぎない
比較電池BC1に比し、両者間の界面抵抗が小さいため
高率放電特性に優れていることが分かる。
FIG. 2 is a graph showing the discharge capacities of the two batteries at various discharge currents, with the vertical axis representing the discharge capacity (mAh) and the horizontal axis representing the discharge current (mA).
Battery BA1 of the present invention in which a solid electrolyte is integrally formed on an electrode
In comparison with the comparative battery BC1 in which the solid electrolyte is simply pressed against the electrode, the interfacial resistance between the two is small, and thus the high rate discharge characteristic is excellent.

【0028】〔両電池のサイクル特性〕室温(25°
C)下、25mAで充電終止電圧4.2Vまで充電した
後、25mAで放電終止電圧2.0Vまで放電する工程
を1サイクルとするサイクル試験を行い、両電池のサイ
クル特性を調べた。結果を図3に示す。
[Cycle characteristics of both batteries] Room temperature (25 °
Under C), a cycle test was conducted in which one cycle includes a process of charging the battery to a final charge voltage of 4.2 V at 25 mA and then discharging it to a final discharge voltage of 2.0 V at 25 mA, to examine the cycle characteristics of both batteries. The results are shown in Fig. 3.

【0029】図3は、両電池のサイクル特性を、縦軸に
放電容量(mAh)を、横軸にサイクル数(回)をとっ
て示したグラフであり、同図より、本発明電池BA1
は、比較電池BC1に比し、電極と固体電解質との密着
性が良く剥離しにくいため高率放電特性に優れているこ
とが分かる。
FIG. 3 is a graph showing the cycle characteristics of both batteries, with the vertical axis representing the discharge capacity (mAh) and the horizontal axis representing the number of cycles (times).
In comparison with Comparative Battery BC1, it can be seen that since the adhesion between the electrode and the solid electrolyte is good and peeling is difficult, the high rate discharge characteristic is excellent.

【0030】叙上の実施例では、本発明を扁平角型の固
体電解質二次電池に適用する場合を例に挙げて説明した
が、電池の形状は特に限定されない。
In the above embodiments, the case where the present invention is applied to the flat rectangular solid electrolyte secondary battery has been described as an example, but the shape of the battery is not particularly limited.

【0031】また、実施例では、リチウムイオンを電荷
担体とする固体電解質リチウム二次電池を例に挙げて説
明したが、本発明は、ナトリウムイオン等の他のアルカ
リ金属イオン又はカルシウムイオン等のアルカリ土類金
属イオンを電荷担体とする固体電解質電池にも適用し得
るものであり、また一次電池であるか、二次電池である
かについても問われない。
Further, in the embodiments, the solid electrolyte lithium secondary battery using lithium ions as charge carriers has been described as an example, but the present invention is not limited to alkali metal ions such as sodium ions or alkali ions such as calcium ions. It can be applied to a solid electrolyte battery using an earth metal ion as a charge carrier, and it does not matter whether it is a primary battery or a secondary battery.

【0032】さらに、実施例では、LiPF6 を溶質と
する有機電解液を使用したが、LiClO4 等を溶質と
する有機電解液を使用し、別途重合触媒を加えてモノマ
ーを重合硬化させるようにしても本発明電池BA1と同
様の高率放電特性及びサイクル特性に優れた固体電解質
二次電池を得ることが可能である。
Further, in the examples, an organic electrolyte solution containing LiPF 6 as a solute was used, but an organic electrolyte solution containing LiClO 4 or the like as a solute was used, and a polymerization catalyst was separately added to polymerize and cure the monomer. However, it is possible to obtain a solid electrolyte secondary battery excellent in high rate discharge characteristics and cycle characteristics similar to the battery BA1 of the present invention.

【0033】[0033]

【発明の効果】本発明電池は、電極上でモノマーを重合
硬化させてなるところの、電極との密着性に優れた固体
電解質が使用されているので、高率放電特性に優れると
ともに、二次電池にあってはさらにサイクル特性にも優
れるなど、本発明は優れた特有の効果を奏する。
EFFECTS OF THE INVENTION The battery of the present invention uses a solid electrolyte, which is obtained by polymerizing and curing a monomer on an electrode and has excellent adhesion to the electrode. In the case of a battery, the present invention has excellent unique effects such as excellent cycle characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】扁平角型の固体電解質電池(本発明電池)の断
面図である。
FIG. 1 is a cross-sectional view of a flat rectangular solid electrolyte battery (the battery of the present invention).

【図2】実施例及び比較例で作製した各電池を種々の電
流で放電したときの放電容量を示すグラフである。
FIG. 2 is a graph showing discharge capacities when the batteries produced in Examples and Comparative Examples were discharged at various currents.

【図3】実施例及び比較例で作製した各電池のサイクル
特性を示すグラフである。
FIG. 3 is a graph showing cycle characteristics of each battery manufactured in Examples and Comparative Examples.

【符号の説明】[Explanation of symbols]

BA1 固体電解質電池(本発明電池) 1 正極 2 負極 3 セパレータ BA1 solid electrolyte battery (cell of the present invention) 1 positive electrode 2 negative electrode 3 separator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 斎藤 俊彦 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Toshihiko Saito 2-18 Keihan Hondori, Moriguchi City, Osaka Sanyo Electric Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】LiPF6 を溶質とする有機電解液に、前
記LiPF6 を重合触媒として重合硬化可能なモノマー
を添加混合して得たスラリーを、正極及び負極上に塗布
し、これら両電極のスラリー塗布面を重ね合わせたのち
加熱して、前記モノマーを重合硬化させるとともに、前
記有機電解液中の有機溶媒を蒸発させてなる固体電解質
が使用されていることを特徴とする固体電解質電池。
1. A slurry obtained by adding and mixing a monomer curable by polymerization using LiPF 6 as a polymerization catalyst to an organic electrolytic solution containing LiPF 6 as a solute, is applied onto a positive electrode and a negative electrode, and the slurry of both electrodes is applied. A solid electrolyte battery comprising a solid electrolyte obtained by stacking slurry-coated surfaces and then heating them to polymerize and cure the monomers and to evaporate the organic solvent in the organic electrolytic solution.
【請求項2】LiClO4 、LiCF3 SO3 、LiA
lCl4 又はCa(AlCl)4 を溶質とする有機電解
液に、重合触媒及び当該重合触媒により重合硬化可能な
モノマーを添加混合して得たスラリーを、正極及び負極
上に塗布し、これら両電極のスラリー塗布面を重ね合わ
せたのち加熱して、前記モノマーを重合硬化させるとと
もに、前記有機電解液中の有機溶媒を蒸発させてなる固
体電解質が使用されていることを特徴とする固体電解質
電池。
2. LiClO 4 , LiCF 3 SO 3 , LiA
A slurry obtained by adding and mixing a polymerization catalyst and a monomer capable of being polymerized and cured by the polymerization catalyst to an organic electrolytic solution containing lCl 4 or Ca (AlCl) 4 as a solute is applied on the positive electrode and the negative electrode, and both electrodes are applied. The solid electrolyte battery is characterized in that a solid electrolyte obtained by superimposing the slurry application surfaces of the above and heating to polymerize and cure the monomer and evaporate the organic solvent in the organic electrolytic solution is used.
【請求項3】前記モノマーが1,3−ジオキソラン、4
−メチル−1,3−ジオキソラン、テトラヒドロフラン
又は2−メチルテトラヒドロフランである請求項1又は
2記載の固体電解質電池。
3. The monomer is 1,3-dioxolane, 4
The solid electrolyte battery according to claim 1, which is -methyl-1,3-dioxolane, tetrahydrofuran or 2-methyltetrahydrofuran.
JP09687993A 1993-03-30 1993-03-30 Solid electrolyte battery Expired - Fee Related JP3203093B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09687993A JP3203093B2 (en) 1993-03-30 1993-03-30 Solid electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09687993A JP3203093B2 (en) 1993-03-30 1993-03-30 Solid electrolyte battery

Publications (2)

Publication Number Publication Date
JPH06290810A true JPH06290810A (en) 1994-10-18
JP3203093B2 JP3203093B2 (en) 2001-08-27

Family

ID=14176708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09687993A Expired - Fee Related JP3203093B2 (en) 1993-03-30 1993-03-30 Solid electrolyte battery

Country Status (1)

Country Link
JP (1) JP3203093B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001325991A (en) * 2000-05-15 2001-11-22 Nisshinbo Ind Inc Electric parts and manufacturing method
WO2002027853A1 (en) * 2000-09-29 2002-04-04 Sharp Corporation Lithium secondary cell
US8083812B1 (en) 1999-02-19 2011-12-27 Sony Corporation Solid-electrolyte battery and manufacturing method therefor
JP2015018759A (en) * 2013-07-12 2015-01-29 三菱瓦斯化学株式会社 Polymer electrolyte

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8083812B1 (en) 1999-02-19 2011-12-27 Sony Corporation Solid-electrolyte battery and manufacturing method therefor
JP2001325991A (en) * 2000-05-15 2001-11-22 Nisshinbo Ind Inc Electric parts and manufacturing method
WO2002027853A1 (en) * 2000-09-29 2002-04-04 Sharp Corporation Lithium secondary cell
US7270914B2 (en) 2000-09-29 2007-09-18 Sharp Corporation Lithium secondary cell
JP2015018759A (en) * 2013-07-12 2015-01-29 三菱瓦斯化学株式会社 Polymer electrolyte

Also Published As

Publication number Publication date
JP3203093B2 (en) 2001-08-27

Similar Documents

Publication Publication Date Title
US7422826B2 (en) In situ thermal polymerization method for making gel polymer lithium ion rechargeable electrochemical cells
JP2004079327A (en) Non-aqueous secondary battery, positive electrode for secondary battery, and its manufacturing method
JP2000067920A (en) Solid electrolyte battery
US5789110A (en) Cathode-active material blends comprising Lix Mn2 O4 (0<x≦2)
JPH10255842A (en) Lithium-polymer secondary battery
JP2002117851A (en) Carbon material, negative electrode for secondary lithium ion battery, and secondary lithium ion battery
JPH07201316A (en) Nonaqueous electrolyte secondary battery
JP2003007342A (en) Manufacturing method of secondary nonaqueous battery
CN110400963B (en) Secondary battery of metal sodium or sodium-potassium alloy cathode/polyacrylonitrile sulfide anode and manufacturing method thereof
JP4193248B2 (en) Gel electrolyte battery
JP3203093B2 (en) Solid electrolyte battery
JP3188032B2 (en) Lithium secondary battery
JP2017152122A (en) Negative electrode active material for lithium ion secondary batteries, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JPH08171936A (en) Lithium secondary battery
JPH0997617A (en) Solid electrolytic battery
JP4382319B2 (en) Lithium secondary battery
JP3519766B2 (en) Non-aqueous secondary battery
JPH07134986A (en) Nonaqueous electrolyte battery
JP3407507B2 (en) Polymer electrolyte and lithium battery
JP3276710B2 (en) Non-aqueous electrolyte battery
CN114270571A (en) Battery system, method of using the same, and battery pack including the same
JP2004200122A (en) Manufacturing method of non-aqueous electrolyte secondary battery
JPH08124597A (en) Solid electrolytic secondary cell
JPH11162506A (en) Manufacture of lithium battery
JP2000200609A (en) Nonaqueous secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080622

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090622

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees