JPH021939A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH021939A
JPH021939A JP14224788A JP14224788A JPH021939A JP H021939 A JPH021939 A JP H021939A JP 14224788 A JP14224788 A JP 14224788A JP 14224788 A JP14224788 A JP 14224788A JP H021939 A JPH021939 A JP H021939A
Authority
JP
Japan
Prior art keywords
oxide film
doped
regions
gate electrode
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14224788A
Other languages
Japanese (ja)
Inventor
Yoshihiro Osada
長田 芳裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP14224788A priority Critical patent/JPH021939A/en
Publication of JPH021939A publication Critical patent/JPH021939A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To finish an ion-implantation process in one time only and to obtain an LDD structure constituted as was expected by a method wherein when sidewalls are each formed on both end parts of a gate electrode, an oxide film doped with an impurity of a corresponding conductivity type is deposited and low-doped diffused regions are formed in a selected main surface of a semiconductor substrate using the oxide film, doped with this impurity, as a diffusion source. CONSTITUTION:Phosphorus is diffused in the main surface of a substrate from a phosphorus-doped oxide film 15 and low-doped regions, in short, N<-> regions 16 are formed comparatively shallow comprising parts close to both end parts of a gate electrode 14 in source and drain regions. An N-type impurity, such as arsenic here, is ion-implanted in a selected main surface of the semiconductor substrate 11 using a field oxide film 12, the electrode 14 and sidewalls 17 as masks on a condition of 50keV and 10<15>/cm<3>. Thereby, high-doped regions, in short, N<+> regions 18 are each formed comparatively deep in each N<-> region 16 of parts apart from both end parts of the electrode 14 in the source and drain regions by an amount equivalent to the width of each sidewall 17. Lastly, a heat treatment is performed at 1000 deg.C for 60 minutes or thereabouts and these N<-> and N<+> regions 16 and 18 are activated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、半導体装置の製造方法に関し、さらに詳し
くは、いわゆるLDD構造を有するMOS型電界効果ト
ランジスタの製造方法の改良に係るものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a semiconductor device, and more specifically, to an improvement in a method for manufacturing a MOS field effect transistor having a so-called LDD structure.

〔従来の技術〕[Conventional technology]

般に、微細化されたMOS(Metal 0xide 
Sem1conduc jor)型電界効果トランジス
タにおいては、ドレイン耐圧を向上させるために、その
トレイン拡散領域に対して、いわゆるLDD(Li)<
Mly DopedDrain)構造、つまり、ゲート
電極端の近傍でのドレイン拡散領域部分の不純物濃度を
、それ以外の領域部分の不純物濃度よりも小さく形成し
た構造を採用している。
Generally, miniaturized MOS (Metal Oxide)
In order to improve the drain breakdown voltage of the Sem1conduc jor) type field effect transistor, the so-called LDD(Li)<
In other words, a structure in which the impurity concentration in the drain diffusion region near the end of the gate electrode is lower than the impurity concentration in other regions is adopted.

従来例によるこの種の装置構成として、こ工では、第2
図(a)ないしくe)にNチャネルMOS型電界効果ト
ランジスタにおけるLDD構造の形成方法の主要な製造
段階を工程順に示しである。
As a conventional device configuration of this type, in this work, the second
Figures (a) to (e) show the main manufacturing steps of a method for forming an LDD structure in an N-channel MOS field effect transistor in order of process.

すなわち、こわらの第2図(a)ないしくe)において
、従来例方法は、素子間分離のための厚いフィールド酸
化@2によって分離された1例えば比抵抗がlOΩcm
程度のP形シリコン半導体基板l上の所定位置にあって
、まず、薄いゲート酸化膜3を介してゲート電極4を選
択的に形成させておき(同図(a))、かつこの状態で
、これらのフィールド酸化膜2およびゲート電極4をマ
スクにして、前記半導体基板lの選択された主面上にN
形の不純物、こSでは、例えばリンを50にeV、 1
0”/crn’の条件でイオン注入(第1回目)させる
ことにより、ソース、ドレイン領域でのゲート電極4の
両端部に接近した部分を含んで低濃度不純物領域。
That is, in FIGS. 2(a) to 2(e) of the Kowara, the conventional method uses 1, for example, a resistivity of 1OΩcm, which is separated by a thick field oxide @2 for isolation between elements.
First, a gate electrode 4 is selectively formed through a thin gate oxide film 3 at a predetermined position on a P-type silicon semiconductor substrate l (see FIG. 2(a)), and in this state, Using these field oxide film 2 and gate electrode 4 as a mask, N is deposited on the selected main surface of the semiconductor substrate l.
Impurities of the form, e.g. phosphorus at 50 eV, 1
By performing ion implantation (first time) under the condition of 0''/crn', a low concentration impurity region is formed including the portions close to both ends of the gate electrode 4 in the source and drain regions.

つまりN−領域5を形成する(同図(b))。In other words, an N- region 5 is formed (FIG. 2(b)).

ついで、これらの全面に酸化膜、こSでは、不純物など
を特にドープしてないノンドープ酸化膜6を3000人
程度0厚さにデポジットしく同図(C))だ上で、これ
を選択的にエツチングして、前記ゲート電極4の両端部
に、そのN−領域5の一部を含んで、厚さ相当の300
0人程度0厚のサイドウオール7を形成させる(同図(
d))。
Next, an oxide film, in this case, a non-doped oxide film 6 which is not particularly doped with impurities, is deposited on the entire surface to a thickness of about 3000 (see Figure (C)), and then this is selectively deposited. By etching, both ends of the gate electrode 4, including a part of the N- region 5, are etched to a thickness of 300 mm.
A side wall 7 with a thickness of about 0 is formed (see the same figure).
d)).

その後、今度は、これらのフィールド酸化膜2゜ゲート
電極4およびサイドウオール7をマスクにして、前回同
様に、前記半導体基板lの選択された主面上にN形の不
純物、こ\では、例えば砒素を50KeV、 1015
/crn’の条件でイオン注入(第2回目)させること
により、ソース、ドレイン領域でのゲート電極4の両端
部からサイドウオール7の幅相当分だけ離れた部分に高
濃度不純物領域、つまりN+領域8を形成し、最後に、
1000℃、60分程度の熱処理をなして、これらの各
N−領域5およびN1領域8を活性化させ(同図(e)
)、このようにして所期のLDD構造を有するNチャネ
ルMOS型電界効果トランジスタを得るのである。
Thereafter, using the field oxide film 2, gate electrode 4, and sidewall 7 as masks, N-type impurities, for example Arsenic at 50KeV, 1015
By performing ion implantation (second time) under the condition of /crn', a high concentration impurity region, that is, an N+ region, is formed in the source and drain regions at a distance corresponding to the width of the sidewall 7 from both ends of the gate electrode 4. form 8 and finally,
A heat treatment is performed at 1000° C. for about 60 minutes to activate each of these N- regions 5 and N1 regions 8 (FIG. 3(e)).
), thus obtaining an N-channel MOS field effect transistor having the desired LDD structure.

従って、このように構成されるNチャネルMOSを電界
効果トランジスタでは、ゲート電極4の端部近傍に、ド
レイン領域部分となる低濃度不純物拡散領域としてのN
−領域5の一部が、また、それ以外のドレイン領域部分
に、同N−領域5の他部を含めて高濃度不純物拡散領域
としてのN+領域8がそれぞれに形成され、これらがL
DD構造を構成して、この装置のドレイン耐圧を向上さ
せることができる。
Therefore, when an N-channel MOS configured as described above is used as a field effect transistor, an N-channel MOS transistor is formed near the end of the gate electrode 4 as a low concentration impurity diffusion region which becomes a drain region.
An N+ region 8 as a high-concentration impurity diffusion region is formed in a part of the - region 5 and in the other part of the drain region, including the other part of the N- region 5, and these are L
A DD structure can be configured to improve the drain breakdown voltage of this device.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、前記の各工程を経て製造される従来例で
の1.OD構造を有するNチャネルMOS型電界効果ト
ランジスタの製造方法においては、その製造工程中に2
回に亘るイオン注入を必要としており、製造操作が煩雑
になって作業性が悪く、かつ生産性に欠けるなどの問題
点があった。
However, in the conventional example manufactured through the above-mentioned steps, 1. In the method for manufacturing an N-channel MOS field effect transistor having an OD structure, two
This method requires multiple ion implantations, which results in complicated manufacturing operations, poor workability, and a lack of productivity.

この発明は、従来のこのような問題点を解消するために
なされたもので、その目的とするところは、イオン注入
工程を1回のみで済ませて所期通りのLDD構造を得ら
れるようにした。この種の半導体装置の製造方法、こS
では、 LDD構造によるMOS型電界効果トランジス
タを提供することである。
This invention was made to solve these conventional problems, and its purpose is to make it possible to obtain the desired LDD structure by completing the ion implantation process only once. . This type of semiconductor device manufacturing method,
The object of the present invention is to provide a MOS field effect transistor having an LDD structure.

〔課題を解決するための手段〕[Means to solve the problem]

前記目的を達成するために、この発明に係る半導体装置
の製造方法は、ゲート電極の両端部に対するサイドウオ
ールの形成時にあって、該当する導電形の不純物をドー
プさせた酸化膜をデポジットさせ、この不純物をドープ
させた酸化膜を拡散源にして、半導体基板の選択された
主面上に低濃度不純物拡rli、領域を形成させるよう
にしたものである。
In order to achieve the above object, the method for manufacturing a semiconductor device according to the present invention deposits an oxide film doped with an impurity of the corresponding conductivity type when forming sidewalls on both ends of a gate electrode. Using an oxide film doped with impurities as a diffusion source, a low concentration impurity diffusion region is formed on a selected main surface of a semiconductor substrate.

すなわち、この発明は、MOS型電界効果トランジスタ
におけるLDD構造の形成方法であって、ゲート酸化膜
、ゲート電極を形成させた第1導電形の半導体基板上に
、まず、第2導電形の不純物をドープした酸化膜をデポ
ジットさせ、この不純物をドープした酸化膜を拡散源と
して、前記ゲート電極の両端部に接近した部分を含む半
導体基板の主面上に、低濃度不純物拡散領域を比較的浅
く選択的に形成させ、その後、前記不純物をドープした
酸化+1fiを選択的に除去して、前記ゲート電極の両
端部にサイドウオールを形成させ、続いて、前記ゲート
電極の両端部から各サイドウオールの幅相当分だけ離れ
た低濃度不純物拡散領域部分に、第2導電形の不純物を
イオン注入しかつ熱処理して、高濃度不純物拡散領域を
比較的深く形成させるごとを特徴とする半導体装置の製
造方法である。
That is, the present invention is a method for forming an LDD structure in a MOS field effect transistor, in which impurities of a second conductivity type are first added onto a semiconductor substrate of a first conductivity type on which a gate oxide film and a gate electrode have been formed. A doped oxide film is deposited, and a relatively shallow low-concentration impurity diffusion region is selected on the main surface of the semiconductor substrate, including portions close to both ends of the gate electrode, using the impurity-doped oxide film as a diffusion source. Then, the impurity-doped oxide +1fi is selectively removed to form sidewalls at both ends of the gate electrode, and then the width of each sidewall is reduced from both ends of the gate electrode. A method for manufacturing a semiconductor device, characterized in that impurities of a second conductivity type are ion-implanted into a low-concentration impurity diffusion region separated by a considerable distance and heat-treated to form a relatively deep high-concentration impurity diffusion region. be.

〔作   用〕[For production]

従って、この発明方法においては、ゲート酸化膜、ゲー
ト電極を形成させた第1導電形の半導体基板上に、第2
導電形の不純物をドープした酸化膜をデポジットさせて
おき、これを拡散源としてゲート電極の両端部に接近し
た部分を含んで、低濃度不純物拡散領域を比較的浅く選
択的に形成させると共に、各サイドウオールの形成後、
ゲート電極の両端部から各サイドウオールの幅相当分だ
け離れた低濃度不純物拡散領域部分に、第2導電形の不
純物をイオン注入しかつ熱処理して、高濃度不純物拡散
領域を比較的深く形成させるようにしたから、 LDD
構造の形成に必要なイオン注入操作を1回だけで済ませ
ることができ、これによって製造工程の簡略化、ならび
に生産性の向トを図り得るのである。
Therefore, in the method of the present invention, a second conductivity type semiconductor substrate is formed on a semiconductor substrate of a first conductivity type on which a gate oxide film and a gate electrode are formed.
An oxide film doped with a conductive type impurity is deposited, and this is used as a diffusion source to selectively form a relatively shallow low concentration impurity diffusion region including the areas close to both ends of the gate electrode. After forming the sidewalls,
Impurity of the second conductivity type is ion-implanted into the low-concentration impurity diffusion region located away from both ends of the gate electrode by the width of each sidewall, and heat-treated to form a relatively deep high-concentration impurity diffusion region. Because I did it, LDD
The ion implantation operation required to form the structure can be completed only once, thereby simplifying the manufacturing process and increasing productivity.

〔実 施 例〕〔Example〕

以下、この発明に係る半導体装置の製造方法の一実施例
につき、第1図(a)ないしくe)を参照して詳細に説
明する。
Hereinafter, one embodiment of the method for manufacturing a semiconductor device according to the present invention will be described in detail with reference to FIGS. 1(a) to 1(e).

これらの第1図(a)ないしくe)は、この実施例を通
用したNチャネルMOS型電界効果トランジスタにおけ
るLDD構造の形成方法の主要な製造段階を工程順に模
式的に示したそれぞれに断面図である。
These FIGS. 1(a) to 1(e) are cross-sectional views schematically showing the main manufacturing steps of the method for forming the LDD structure in the N-channel MOS field effect transistor used in this embodiment in order of process. It is.

すなわち、こわらの第1図(a)ないしくe)において
も、この実施例方法は、素子間分離のための厚いフィー
ルド酸化膜12によって分離された9例えば比抵抗が1
0Ωcrn程度のP形シリコン半導体基板II上の所定
位置にあって、まず、薄いゲート酸化膜I3を介してゲ
ート電極14を選択的に形成させておき(同図(a))
、かつこれらの全面にN形の不純物、こ鳥では、例えば
リンをlO胃11程度ドープさせたリンドープト酸化膜
15を3000人程度0厚さにデポジットする(同図(
b))。
That is, in FIGS. 1(a) to 1(e) of Kowara, this embodiment method also applies to 9 parts separated by a thick field oxide film 12 for isolation between elements, for example, when the resistivity is 1.
First, a gate electrode 14 is selectively formed at a predetermined position on the P-type silicon semiconductor substrate II of about 0 Ωcrn through a thin gate oxide film I3 (FIG. 2(a)).
, and a phosphorus-doped oxide film 15 doped with N-type impurities, for example, 11% of phosphorus, is deposited on these entire surfaces to a thickness of about 3,000 (see the same figure).
b)).

ついで、111記状態で、1100℃、30分程度の熱
処理を行なうことにより、前記半導体基板lの選択され
た主面上に、前記リンドープド酸化膜15からリンを拡
散させて、ソース、ドレイン領域でのゲート電極14の
両端部に接近した部分を含んで低濃度不純物領域、つま
りN−領域16を比較的浅く形成させ(同図(C))、
その後、このリンドープド酸化膜15を選択的にエツチ
ングして、前記ゲート電極14の両端部に、そのN−領
域16の一部を含んで、厚さ相当の3000人程度0厚
のサイドウオール17を形成させる(同図(d))。
Next, heat treatment is performed at 1100° C. for about 30 minutes in the state described in No. 111 to diffuse phosphorus from the phosphorus-doped oxide film 15 onto the selected main surface of the semiconductor substrate l, thereby forming a material in the source and drain regions. A low concentration impurity region, that is, an N- region 16 is formed relatively shallowly including a portion close to both ends of the gate electrode 14 (FIG. 1C),
Thereafter, this phosphorus-doped oxide film 15 is selectively etched to form a sidewall 17 having a thickness of about 3000 mm at both ends of the gate electrode 14, including a part of the N- region 16. ((d) in the same figure).

さらに続いて、これらのフィールド酸化膜12゜ゲート
電極14およびサイドウオール17をマスクに用いて、
前記半導体基板11の選択された主面上にN形の不純物
、こ5では、例えば砒素を50KeV。
Further, using these field oxide film 12° gate electrode 14 and sidewall 17 as a mask,
A selected main surface of the semiconductor substrate 11 is doped with an N-type impurity, for example arsenic, at 50 KeV.

1015/crn’の条件でイオン注入させることによ
り、前記ソース、ドレイン領域でのゲート電極I4の両
端部から前記サイドウオール17の幅相当分だけ芝れた
部分の前記N−領域16に高濃度不純物領域、つまりN
+領域18を比較的深く形成させてから、最後に、10
00℃、60分程度の熱処理をなして、これらの各N−
領域16およびN+領域18を活性化させ(同図(C)
)、このようにして所期のLDD構造を有するNチャネ
ルMOS型電界効果トランジスタを得るのである。
By implanting ions under the condition of 1015/crn', a high concentration impurity is implanted in the N- region 16 in the source and drain regions, which is a part of the N- region 16 that extends from both ends of the gate electrode I4 by an amount equivalent to the width of the side wall 17. area, that is, N
+ region 18 is formed relatively deeply, and finally, 10
Each of these N-
Activate region 16 and N+ region 18 (FIG. (C)
), thus obtaining an N-channel MOS field effect transistor having the desired LDD structure.

従って、こ1でもこの実施例方法により構成されるNチ
ャネルMOS型電界効果トランジスタにおいては、結果
的に前記従来例方法の場合と全く同様に、ゲート電極■
4の端部近傍に、トレイン領域部分となる低濃度不純物
拡散領域としてのN−領域16の一部が、また、それ以
外のドレイン領域部分に、四N−領域16の他部を含め
て高濃度不純物拡散領域としてのN+領域18がそれぞ
れに形成され、これらがLDD構造を構成して、この装
置のドレイン耐圧を向上させることができる。
Therefore, in the N-channel MOS field effect transistor constructed by the method of this embodiment, the gate electrode
A part of the N- region 16 as a low-concentration impurity diffusion region that becomes a train region is located near the end of the fourth N- region 16, and a part of the N- region 16, which is a low concentration impurity diffusion region that becomes a train region, is located in the vicinity of the end of the fourth N- region 16. N+ regions 18 as concentrated impurity diffusion regions are formed in each region, and these constitute an LDD structure to improve the drain breakdown voltage of this device.

そして、この場合には、最初の低濃度不純物拡散領域、
つまりN−領域16をリンドープド酸化膜15からの拡
散によって形成させ、また、次の高濃度不純物拡散領域
、つまりN+領域16を砒素のイオン注入によって形成
させているために、イオン注入が1回だけの操作で済み
、これによって製造工程の簡略化、ならびに生産性の向
上を図り得るのである。
In this case, the first low concentration impurity diffusion region,
In other words, since the N- region 16 is formed by diffusion from the phosphorus-doped oxide film 15, and the next high concentration impurity diffusion region, that is, the N+ region 16, is formed by arsenic ion implantation, ion implantation is only performed once. This simplifies the manufacturing process and improves productivity.

なお、前記実施例方法においては、低濃度不純物拡散領
域の拡散源となり、かつゲート電極の両端部でのサイド
ウオールとなる不純物をドープさせた酸化膜として、リ
ンドープド酸化膜を用いる場合について述べたが、これ
を砒素などの不純物をドープさせた酸化膜に代えてもよ
く、また、半導体基板と各不純物拡散領域との導電形を
反対にしても、同様な作用、効果が得られる。
In the above embodiment method, a case was described in which a phosphorus-doped oxide film was used as the impurity-doped oxide film that served as a diffusion source for the low-concentration impurity diffusion region and as a sidewall at both ends of the gate electrode. , this may be replaced with an oxide film doped with an impurity such as arsenic, or even if the conductivity types of the semiconductor substrate and each impurity diffusion region are reversed, similar actions and effects can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように、この発明方法によれば、MOS型
電界効果トランジスタにおけるLDD構造の形成方法に
おいて、ゲート酸化膜、ケート電極を形成させた第1導
電形の゛ト導体基板上に、第2導電形の不純物をドープ
した酸化膜をデポジットさせておき、これを拡散源とし
てケート電極の両端部に接近した部分を含み、低濃度不
純物拡散領域を比較的浅く選択的に形成させると共に、
各サイドウオールの形成後、ゲート電極の両端部から各
サイドウオールの幅相当分だけ離れた低濃度不純物拡散
領域部分に、第2導電形の不純物をイオン注入しかつ熱
処理して、高濃度不純物拡散領域を比較的深く形成させ
るようにしたので、ドレイン耐圧向上のための低濃度、
高濃度不純物拡散領域によるLDD構造を、不純物ドー
プド酸化膜からの拡散と、不純物のイオン注入、拡散と
で形成し得るもので、製造工程を煩雑化するイオン注入
操作を1回だけで済ませることができ、これによって製
造工程の簡略化、ならびに生産性の向上を図り得るので
ある。
As described in detail above, according to the method of the present invention, in the method for forming an LDD structure in a MOS field effect transistor, a first conductor substrate of the first conductivity type on which a gate oxide film and a gate electrode are formed is formed. An oxide film doped with impurities of two conductivity types is deposited, and this is used as a diffusion source to selectively form relatively shallow low-concentration impurity diffusion regions including portions close to both ends of the gate electrode.
After each sidewall is formed, impurities of the second conductivity type are ion-implanted into the low-concentration impurity diffusion region located away from both ends of the gate electrode by the width of each sidewall, and heat-treated to diffuse the high-concentration impurity. Since the region is formed relatively deep, low concentration and
The LDD structure with a high concentration impurity diffusion region can be formed by diffusion from an impurity-doped oxide film and impurity ion implantation and diffusion, making it possible to complete the ion implantation operation, which would otherwise complicate the manufacturing process, only once. This makes it possible to simplify the manufacturing process and improve productivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)ないしくe)はこの発明の一実施例を適用
したNチャネルMOS型電界効果トランジスタにおける
LDD構造の形成方法の主要な製造段階を工程順に模式
的に示すそれぞれに断面図であり、また、′f、2図(
a)ないしくe)は従来例による同上NチャネルMOS
型電界効果トランジスタにおけるLDD構造の形成方法
の主要な製造段階を工程順に模式的に示すそれぞれに断
面図である。 11・・・・P形シリコン半導体基板、12・・・・フ
ィールド酸化膜、13・・・・ゲート酸化膜、I4・・
・・ゲート電極、15・・・・リン(N形不純物)ドー
プド酸化膜、16・・・・N−領域(低濃度不純物拡散
領域)、17・・・・サイドウオール、18・・・・N
“領域(高濃度不純物拡散領域)。 第1図 代理人   大   岩   増   雄5: つ リ
 (N月多P曵4勿丹 −ブ1 内釜イ(月楚65 N
−件1?−(イtト、;刀【]11+Rり吻74ノλ調
口を牛srsεン第:図 17;ブイ V。 フォーjし 18、N″9曾工畿 (高温[力し不救オη毛広取令頁
域)第2図
FIGS. 1(a) to 1(e) schematically show, in order of process, the main manufacturing steps of a method for forming an LDD structure in an N-channel MOS field effect transistor to which an embodiment of the present invention is applied. Yes, and ′f, Figure 2 (
a) or e) is the same N-channel MOS according to the conventional example.
2A and 2B are cross-sectional views schematically showing the main manufacturing steps of a method for forming an LDD structure in a type field effect transistor in order of process. 11... P-type silicon semiconductor substrate, 12... Field oxide film, 13... Gate oxide film, I4...
...Gate electrode, 15...Phosphorus (N-type impurity) doped oxide film, 16...N- region (low concentration impurity diffusion region), 17...Side wall, 18...N
“Region (high concentration impurity diffusion region). Figure 1 Agent Masu Oiwa 5: Tsuri (N Monthly P 4 Mutsutan - Bu 1 Inner pot ii (Moe Chu 65 N
- Case 1? -(itto,; sword [] 11 + R nose 74 no lambda) cow srsε nth: Figure 17; buoy V. Four j 18, N''9 Figure 2

Claims (1)

【特許請求の範囲】[Claims] MOS型電界効果トランジスタにおけるLDD構造の形
成方法であつて、ゲート酸化膜、ゲート電極を形成させ
た第1導電形の半導体基板上に、まず、第2導電形の不
純物をドープした酸化膜をデポジットさせ、この不純物
をドープした酸化膜を拡散源として、前記ゲート電極の
両端部に接近した部分を含む半導体基板の主面上に、低
濃度不純物拡散領域を比較的浅く選択的に形成させ、そ
の後、前記不純物をドープした酸化膜を選択的に除去し
て、前記ゲート電極の両端部にサイドウォールを形成さ
せ、続いて、前記ゲート電極の両端部から各サイドウォ
ールの幅相当分だけ離れた低濃度不純物拡散領域部分に
、第2導電形の不純物をイオン注入しかつ熱処理して、
高濃度不純物拡散領域を比較的深く形成させることを特
徴とする半導体装置の製造方法。
A method for forming an LDD structure in a MOS field effect transistor, in which an oxide film doped with impurities of a second conductivity type is first deposited on a semiconductor substrate of a first conductivity type on which a gate oxide film and a gate electrode have been formed. Using this impurity-doped oxide film as a diffusion source, a relatively shallow and selective low-concentration impurity diffusion region is formed on the main surface of the semiconductor substrate, including portions close to both ends of the gate electrode, and then , the impurity-doped oxide film is selectively removed to form sidewalls at both ends of the gate electrode, and then a low Ion-implanting impurities of the second conductivity type into the concentrated impurity diffusion region and heat-treating the regions.
A method of manufacturing a semiconductor device, characterized in that a high concentration impurity diffusion region is formed relatively deeply.
JP14224788A 1988-06-09 1988-06-09 Manufacture of semiconductor device Pending JPH021939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14224788A JPH021939A (en) 1988-06-09 1988-06-09 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14224788A JPH021939A (en) 1988-06-09 1988-06-09 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH021939A true JPH021939A (en) 1990-01-08

Family

ID=15310869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14224788A Pending JPH021939A (en) 1988-06-09 1988-06-09 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH021939A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07130998A (en) * 1993-11-01 1995-05-19 Nec Corp Manufacture of semiconductor device
US5518945A (en) * 1995-05-05 1996-05-21 International Business Machines Corporation Method of making a diffused lightly doped drain device with built in etch stop
US9944427B2 (en) 2004-11-01 2018-04-17 Rapid Action Packaging Limited Packs for holding food items

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07130998A (en) * 1993-11-01 1995-05-19 Nec Corp Manufacture of semiconductor device
US5518945A (en) * 1995-05-05 1996-05-21 International Business Machines Corporation Method of making a diffused lightly doped drain device with built in etch stop
US9944427B2 (en) 2004-11-01 2018-04-17 Rapid Action Packaging Limited Packs for holding food items

Similar Documents

Publication Publication Date Title
US5278441A (en) Method for fabricating a semiconductor transistor and structure thereof
JP2663402B2 (en) Method for manufacturing CMOS integrated circuit device
KR20020067795A (en) Method of fabricating Metal Oxide Semiconductor transistor with Lightly Doped Drain structure
KR19980039124A (en) Manufacturing method of semiconductor device
JP2000260987A (en) Semiconductor device and its manufacture
JPH0536917A (en) Manufacture of complementary semiconductor device
JPH021939A (en) Manufacture of semiconductor device
US4197630A (en) Method of fabricating MNOS transistors having implanted channels
JPH09306862A (en) Manufacturing semiconductor device
JP2000068499A (en) Semiconductor device and manufacture of the same
US4196507A (en) Method of fabricating MNOS transistors having implanted channels
JPH04251939A (en) Semiconductor device and manufacture thereof
JPH0423329A (en) Manufacture of semiconductor device
JPH08288504A (en) Method of semiconductor device
JPH07297397A (en) Manufacture of semiconductor device
KR20000061623A (en) Manufacturing method of CDMOS
JPH1027855A (en) Manufacture of cmos transistor
JPS62198162A (en) Mos transistor and manufacture thereof
JPH06350086A (en) Manufacture of semiconductor device
JPH0377377A (en) Manufacture of semiconductor device
JP3108927B2 (en) Method for manufacturing semiconductor device
JPS61287160A (en) Manufacture of mos type semiconductor device
JPH03231456A (en) Manufacture of semiconductor device
JP2541251B2 (en) Method for manufacturing semiconductor device
JPH06216379A (en) Semiconductor device and its manufacture