JPH02192732A - Manufacture of thin film transistor - Google Patents

Manufacture of thin film transistor

Info

Publication number
JPH02192732A
JPH02192732A JP1012668A JP1266889A JPH02192732A JP H02192732 A JPH02192732 A JP H02192732A JP 1012668 A JP1012668 A JP 1012668A JP 1266889 A JP1266889 A JP 1266889A JP H02192732 A JPH02192732 A JP H02192732A
Authority
JP
Japan
Prior art keywords
layer
doped
film
semiconductor layer
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1012668A
Other languages
Japanese (ja)
Inventor
Tomotaka Matsumoto
友孝 松本
Yasuyoshi Mishima
康由 三島
Tadayuki Kimura
忠之 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP1012668A priority Critical patent/JPH02192732A/en
Publication of JPH02192732A publication Critical patent/JPH02192732A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To make it possible to control threshold voltage without reducing an ON-current by a method wherein a non-doped layer and a doped layer are laminated on a gate insulating film, and a part, which comes into contact with an ohmic electrode, of the doped layer is removed before the formation of the ohmic electrode. CONSTITUTION:A gate electrode 9 having a prescribed pattern and a gate insulating film (an SiN film) 2, with which the electrode G is covered, are formed on an insulative substrate (a glass substrate) 1 and a non-doped semiconductor operating layer (a B-doped a-Si layer) 4 and a one conductivity type impurity-doped semiconductor layer (a non-doped a-Si layer) 3 are formed in order thereon. Then, a resist film 5 aligned to the electrode G is formed on the layer 3, the exposed parts of the layer 3 are removed using the film 5 as a mask and an opposite conductivity type impurity-doped semiconductor layer (an n<+> a-Si layer) 6 and a metal film (a Ti film) 7 are formed in order on the layer 3 including the film 5. Then, the film 5 is removed and a lift-off of the film 7 and the layer 6, which are adhered on the film 5, is performed to form source and drain electrodes S and D. Thereby, as a loss of voltage is not generated at the time of operation, a reduction in an ON-current can be prevented.

Description

【発明の詳細な説明】 〔概 要〕 液晶表示装置、エレクトロルミネジセンス(EL)等の
駆動に用いる逆スタガード型の薄膜トランジスタの製造
方法に関し、 オン電流の減少を引き起こすことなく、闇値電圧を制御
してオフ電流を抑制することを目的とし、絶縁性基板上
に所定のパターンを有するゲート電極と、該ゲート電極
を被覆するゲート絶縁膜と、その上にノンドープ動作半
導体層と一導電型不純物をドープした半導体層とを順次
成膜し、次いで、該一導電型不純物をドープした半導体
層上に前記ゲート電極に位置整合したレジスト膜を形成
し、次いで、該レジスト膜をマスクとして前記一導電型
不純物をドープした半導体層の露出部を除去し、次いで
、レジスト膜を含む前記半導体層上に反対導電型不純物
をドープした半導体層と金属膜を順次成膜し、次いで、
前記レジスト膜を除去して、その上に付着した金属膜と
反対導電型不純物をドープした半導体層をリフトオフす
る工程を含む構成とする。
[Detailed Description of the Invention] [Summary] This invention relates to a method for manufacturing an inverted staggered thin film transistor used for driving a liquid crystal display device, electroluminescence (EL), etc., which can increase the dark value voltage without causing a decrease in on-current. The purpose of controlling the off-state current is to suppress off-state current by forming a gate electrode having a predetermined pattern on an insulating substrate, a gate insulating film covering the gate electrode, and a non-doped operating semiconductor layer and one conductivity type impurity thereon. A resist film aligned with the gate electrode is formed on the semiconductor layer doped with an impurity of one conductivity type, and then, using the resist film as a mask, a semiconductor layer doped with an impurity of one conductivity type is formed. An exposed portion of the semiconductor layer doped with a type impurity is removed, and then a semiconductor layer doped with an opposite conductivity type impurity and a metal film are sequentially formed on the semiconductor layer including the resist film, and then,
The method includes a step of removing the resist film and lifting off a semiconductor layer doped with an impurity of a conductivity type opposite to that of the metal film attached thereon.

〔産業上の利用分野〕[Industrial application field]

本発明は、液晶表示装置、エレクトロルミネッセンス(
EL)等の駆動に用いる逆スタガード型の薄膜トランジ
スタの製造方法に関する。
The present invention relates to a liquid crystal display device, an electroluminescence (
The present invention relates to a method of manufacturing an inverted staggered thin film transistor used for driving an EL device, etc.

アクティブマトリクス型表示装置は、単純マトリクス型
表示装置と共に薄型の情報端末用表示装置として使用さ
れており、表示媒体としてはもっばら液晶が使用されて
いる。
Active matrix display devices are used as thin display devices for information terminals together with simple matrix display devices, and liquid crystal is often used as the display medium.

ここで両者の特性を比較するとアクティブマトリクス型
は、多数の画素をそれぞれ独立に駆動することができ、
そのため表示容量の増大に伴ってライン数が増加しても
、単純マトリクス型とは異なり、駆動のデユーティ比の
低下によるコントラスI・の低下や視野角の減少をきた
すなどの問題が生じない。
Comparing the characteristics of the two, the active matrix type can drive a large number of pixels independently,
Therefore, even if the number of lines increases with an increase in display capacity, unlike the simple matrix type, problems such as a decrease in contrast I and a decrease in viewing angle due to a decrease in driving duty ratio do not occur.

アクティブマトリクス型表示装置に用いられる薄膜トラ
ンジスタにおいては、スイッチング素子としての薄膜ト
ランジスタ(TPT)の、オフ時のリーク電流がある程
度以上になると、液晶セルに加わる実効電圧が変動して
表示品質が低下するなどの問題がある。この問題は、例
えば、特願昭61−212696号にて提案したゲート
接続方式対向マトリクス型のアクティブマトリクスにお
いて、顕著に発生する。
In thin film transistors used in active matrix display devices, when the leakage current of the thin film transistor (TPT) as a switching element when off exceeds a certain level, the effective voltage applied to the liquid crystal cell fluctuates, resulting in a decrease in display quality. There's a problem. This problem occurs conspicuously in, for example, the gate-connected opposed matrix type active matrix proposed in Japanese Patent Application No. 61-212696.

そこでアクティブマトリクス型表示装置では、TPTの
チャネル領域を構成している動作半導体層の一部あるい
は全部に、不純物を添加して闇値電圧を制御し、TPT
のオフ時のリーク電流を小さくしている。
Therefore, in active matrix display devices, impurities are added to part or all of the active semiconductor layer constituting the channel region of the TPT to control the dark voltage.
This reduces leakage current when the device is off.

〔従来の技術〕[Conventional technology]

従来のTPTの構成とその製造方法を第3図(a)によ
り説明する。
The structure of a conventional TPT and its manufacturing method will be explained with reference to FIG. 3(a).

同図に示すTPTは、電子アキュムレーション型のTP
Tであって、動作半導体層4にB(ボロン)のドーピン
グを行なった例である。ソース・ドレイン電極S、Dは
、ホール電流を抑制するため動作半導体層4上に形成し
たブロッキング層としてのn″a−3i層6と、その上
に配設した金属膜7とを積層した構造を有する。
The TPT shown in the figure is an electronic accumulation type TP.
This is an example in which the active semiconductor layer 4 is doped with B (boron). The source/drain electrodes S and D have a laminated structure of an n''a-3i layer 6 as a blocking layer formed on the active semiconductor layer 4 to suppress hole current, and a metal film 7 disposed thereon. has.

上記構造のTPTを製造するには、まず、ガラス基板の
ような絶縁性基板1上にTi(チタン)膜のような金属
膜を成膜し、これをパターニングしてゲート電極Gを形
成する。
To manufacture the TPT having the above structure, first, a metal film such as a Ti (titanium) film is formed on an insulating substrate 1 such as a glass substrate, and the gate electrode G is formed by patterning this.

その上に5iN(窒化シリコン)膜の様なゲート絶縁膜
2と、動作半導体層4としてBをドープしたa−3i(
アモルファスシリコン)層を積層する。
On top of that is a gate insulating film 2 such as a 5iN (silicon nitride) film, and an a-3i (B-doped) active semiconductor layer 4.
Amorphous silicon) layers are stacked.

このp型の動作半導体層4の上にゲート電極Gに自己整
合的に形成されたレジスト膜(図示せず)を形成し、動
作半導体N4の露出面上にn″aSiaSi層6上にソ
ース・ドレイン電極S。
A resist film (not shown) is formed on this p-type active semiconductor layer 4 in a self-aligned manner with the gate electrode G, and a source film is formed on the n″aSiaSi layer 6 on the exposed surface of the active semiconductor N4. Drain electrode S.

Dを構成する金属膜7を形成する。A metal film 7 constituting D is formed.

上記n″a−3i層6は、金属膜7と動作半導体層4と
の間のオーミックコンタクトを実現するためのコンタク
ト層として、また、ホール電流を抑制するためのブロッ
キング層として働(。
The n''a-3i layer 6 acts as a contact layer for realizing ohmic contact between the metal film 7 and the active semiconductor layer 4, and as a blocking layer for suppressing hole current.

この後、レジスト膜を除去して、図示したようなTPT
が完成する。
After this, the resist film is removed and the TPT film as shown in the figure is formed.
is completed.

従来のTPTは上述したように動作半導体層4中に、電
子アキュムレーシジン型ではBのようなp型不純物を、
ホールアキュムレーション型ではn型不純物をドープし
、これらと反対導電型の不純物をブロッキング層6中に
ドープすることにより、オフ電流を抑制するとともに、
動作半導体層4と金属膜7との間のエネルギー障壁を小
さ(している。
As mentioned above, in the conventional TPT, p-type impurities such as B are added to the active semiconductor layer 4 in the electron accumulation type.
In the hole accumulation type, by doping n-type impurities and doping impurities of the opposite conductivity type into the blocking layer 6, off-current is suppressed.
The energy barrier between the active semiconductor layer 4 and the metal film 7 is reduced.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記電子アキュムレーション型TPTの動作半導体層4
はp型であるため、ソース・ドレイン電極S、Dとの界
面はp/n”接合が生じる。この構成では、動作半導体
層4へのBのドーピングによって闇値電圧を正方向ヘシ
フトすることができる反面、動作時にp/n”界面が逆
方向にバイアスされることによる電圧ロスのため、オン
電流の低下が生じるという問題があった。
Operating semiconductor layer 4 of the electron accumulation type TPT
Since is p-type, a p/n" junction occurs at the interface with the source/drain electrodes S and D. In this configuration, the dark voltage can be shifted in the positive direction by doping B into the active semiconductor layer 4. However, there is a problem in that the on-current decreases due to voltage loss due to the p/n'' interface being biased in the opposite direction during operation.

ホール・アキュムレーション型のTPTにおいても、上
記説明中のpとnが入れ替わるだけであるので、この問
題は電子アキュムレーション型と同様に生じる。
In the hole accumulation type TPT as well, this problem occurs in the same way as in the electronic accumulation type, since p and n in the above explanation are simply interchanged.

第3図Φ)は従来の動作半導体層4中にドーピングした
TPTの特性変化を示す図で、曲線Iで示すノンドープ
のTPTの特性に比較して、ドーピングした場合には、
曲線■で示すように、闇値電圧は正方向にシフトするが
、動作時のオン電流の低下が無視できない。
FIG. 3 Φ) is a diagram showing the change in characteristics of TPT doped into the conventional operating semiconductor layer 4. Compared to the characteristics of undoped TPT shown by curve I, when doped,
As shown by the curve ■, the dark value voltage shifts in the positive direction, but the decrease in the on-current during operation cannot be ignored.

そこで本発明はこのような難点を解消すべく、オン電流
の減少を引き起こすことなく、闇値電圧を制御してオフ
電流を抑制することを目的とする。
SUMMARY OF THE INVENTION In order to solve these difficulties, it is an object of the present invention to suppress the off-state current by controlling the dark voltage without causing a decrease in the on-state current.

〔課題を解決するための手段〕[Means to solve the problem]

闇値電圧の制御のためには、チャネル部すなわち動作半
導体層のうちゲート電極上部にのみドーピングが行なわ
れればよく、オーミック電極部へのドーピングは必要な
い。また、動作半導体層はゲート絶縁膜側はノンドープ
層であっても闇値電圧の制御が可能である。
In order to control the dark voltage, it is sufficient to dope only the channel portion, that is, the upper part of the gate electrode in the active semiconductor layer, and doping to the ohmic electrode portion is not necessary. Further, even if the active semiconductor layer is a non-doped layer on the gate insulating film side, the dark voltage can be controlled.

本発明はこのような観点からなされたもので、動作半導
体層をゲート絶縁膜側からノンドープ/ドープ層構造と
するため、ゲート絶縁膜の上に、動作半導体層としてノ
ンドープ層とドープ層を積層し、オーミック電極形成に
先立って、オーミック電極と接する部分のドープ層をエ
ツチング除去し、このあと、オーミック電極を形成する
The present invention has been made from this point of view, and in order to form the active semiconductor layer into a non-doped/doped layer structure from the gate insulating film side, a non-doped layer and a doped layer are stacked as the active semiconductor layer on the gate insulating film. Prior to forming the ohmic electrode, the doped layer in contact with the ohmic electrode is removed by etching, and then the ohmic electrode is formed.

〔作 用〕[For production]

上記製造方法とすることにより、動作半導体層とオーミ
ック電極との界面は、電子アキュムレーション型ではノ
ンドープ層とn1層、ホール・アキュムレーション型で
はノンドープ層とp゛層とが接触する構造となるため、
動作時に電圧ロスが生じない。そのため、オン電流を低
下させることなく、しかもチャネル部にはドープ層が存
在するので、闇値電圧を正方向にシフトするよう制御で
きる。
By using the above manufacturing method, the interface between the active semiconductor layer and the ohmic electrode has a structure in which the non-doped layer and the n1 layer are in contact with each other in the electron accumulation type, and the non-doped layer and the p' layer are in contact with each other in the hole accumulation type.
No voltage loss occurs during operation. Therefore, since the doped layer is present in the channel portion, the dark voltage can be controlled to shift in the positive direction without reducing the on-state current.

〔実 施 例〕〔Example〕

以下本発明の一実施例を第1図(a)〜(C)により説
明する。なお本実施例では、動作半導体層をa −3i
とした例を説明する。
An embodiment of the present invention will be described below with reference to FIGS. 1(a) to (C). In this example, the active semiconductor layer is a −3i
An example will be explained below.

〔第1図(a)参照〕 ガラス基板1のような絶縁性基板上に、Tiのような金
属からなるゲート電%Gを形成し、プラズマ化学気゛相
成長(P−CVD)法により、ゲート絶縁膜として厚さ
約3000人のSiN膜2と、動作半導体層として約1
00人の厚さの何もドープしないa−3i層3と、厚さ
約100人のBをドープしたa−3i層4を連続的に成
膜する。
[See FIG. 1(a)] A gate electrode made of a metal such as Ti is formed on an insulating substrate such as the glass substrate 1, and is grown by plasma chemical vapor deposition (P-CVD). A SiN film 2 with a thickness of about 3000 as a gate insulating film and a SiN film 2 with a thickness of about 1 as an active semiconductor layer.
An undoped a-3i layer 3 having a thickness of about 100 mm and a B-doped a-3i layer 4 having a thickness of about 100 mm are successively deposited.

これら各層の成膜条件は、SiN膜2は反応圧力が約0
.2Torr、5iHnとNH,との流量比は凡そ1:
5.放電電力は約50Wであり、ノンドープa−3t層
3は、反応圧力が約0. 7Torr  5iHnの流
量が約50secm、放電電力は約30W1またBドー
プa−3i層4の反応圧力は約017To r r、B
2 H6とSiH4の流量比は凡そ10−3.放電電力
は約30Wとした。
The film forming conditions for each of these layers are as follows: SiN film 2 has a reaction pressure of approximately 0.
.. 2Torr, 5iHn and NH flow rate ratio is approximately 1:
5. The discharge power is about 50W, and the non-doped A-3T layer 3 has a reaction pressure of about 0. The flow rate of 7Torr 5iHn is about 50sec, the discharge power is about 30W1, and the reaction pressure of B-doped a-3i layer 4 is about 017Torr, B
2 The flow rate ratio of H6 and SiH4 is approximately 10-3. The discharge power was approximately 30W.

〔同図(b)参照〕[See figure (b)]

次いで上記Bドープミー3i層4のエツチングとオーミ
ック電極のリフトオフ用のレジスト膜5を形成しする。
Next, a resist film 5 for etching the B-doped Me layer 4 and lifting off the ohmic electrode is formed.

このレジスト膜5をマスクとしてガスプラズマエツチン
グを行い、上記BドープaSi層4の露出部を除去する
Using this resist film 5 as a mask, gas plasma etching is performed to remove the exposed portion of the B-doped aSi layer 4.

上記ガスプラズマエツチングの条件は、反応圧力が約0
,3Torr、CFaと0!の流量はそれぞれ凡そ10
1005c及び5sccm、放電電力は凡そ100Wと
した。
The above gas plasma etching conditions are such that the reaction pressure is approximately 0.
, 3Torr, CFa and 0! The flow rate of each is approximately 10
1005c and 5sccm, and the discharge power was approximately 100W.

〔同図(C)参照〕[See figure (C)]

次いで上記レジスト膜5を残したまま、P(燐)をドー
プしたn″a−3i層6を、反応圧力が約Q、5Tor
r、PH:lに対するSiH4の流量比は約0.5%、
放電電力は約50Wの条件下で、厚さ約500人の厚さ
にに形成し、その上にTi膜7を約tooo人の厚さに
成膜し、最後にレジスト膜を除去して、その上に付着し
たn″a−3i層6及びTi膜7をリフトオフを行い、
ソース・ドレイン電極S、Dを形成する。
Next, while leaving the resist film 5, the n''a-3i layer 6 doped with P (phosphorus) was heated to a reaction pressure of about Q, 5 Torr.
r, PH: The flow rate ratio of SiH4 to l is approximately 0.5%,
The discharge power was about 50 W, the resist film was formed to a thickness of about 500 mm, a Ti film 7 was formed thereon to a thickness of about 100 mm, and finally the resist film was removed. The n″a-3i layer 6 and Ti film 7 deposited thereon are lifted off,
Source/drain electrodes S and D are formed.

以上のようにして本実施例により作製したTPTは、ソ
ース・ドレイン電極S、D直下部の、Bドープa−3i
層4を予め除去しであるので、n0a−3i層6と接触
する動作半導体層はノンドープのa−3i層3となる。
The TPT manufactured in this example as described above has B-doped a-3i directly below the source/drain electrodes S and D.
Since the layer 4 is removed in advance, the active semiconductor layer in contact with the n0a-3i layer 6 becomes the non-doped a-3i layer 3.

従って、この部分ではp/n”接合が形成されないので
、動作時に電圧ロスが生じない。そのため、オン電流の
減少を防止できる。一方、チャネル部にはBドープa−
3i層4が存在するので、闇値電圧を従来通り正方向に
シフトできる。
Therefore, since no p/n" junction is formed in this part, no voltage loss occurs during operation. Therefore, a decrease in on-current can be prevented. On the other hand, the channel part is doped with B-doped a-
Since the 3i layer 4 is present, the dark value voltage can be shifted in the positive direction as before.

上記一実施例では、動作半導体層へBをドーピングした
電子アキュムレーション型TPTを本発明を用いて作製
する例を説明したが、ホール・アキュムレーション型の
TPTを作製する場合には、不純物ドープの動作半導体
層4にBの代わりに、P(燐)またはAs(砒素)をド
ープするとともに、n”a−3i層6に変えてp′″a
−3i層を用いればよい。また動作半導体層はa−3i
層の代わりに多結晶(poly)Stを用いることもで
きる。
In the above embodiment, an example was explained in which an electron accumulation type TPT in which the active semiconductor layer was doped with B was manufactured using the present invention. However, when manufacturing a hole accumulation type TPT, an impurity-doped active semiconductor layer The layer 4 is doped with P (phosphorus) or As (arsenic) instead of B, and the n"a-3i layer 6 is doped with p'"a.
-3i layer may be used. In addition, the active semiconductor layer is a-3i
Polycrystalline (poly) St can also be used instead of the layer.

第2図に上記一実施例で作製したTPT (曲線■)の
ドレイン電流1d−ゲート電圧Vg特性を、従来例のド
ーピングによって闇値電圧を制御したTPT (曲線■
)およびドーピングによる闇値制御を行なわないTPT
 (曲線I)と比較して示す。
Figure 2 shows the drain current 1d - gate voltage Vg characteristics of the TPT (curve ■) manufactured in the above example, and the TPT (curve ■) whose dark voltage was controlled by doping in the conventional example.
) and TPT without dark value control by doping.
(Curve I).

同図より本発明を用いれば、オン電流の低下を抑制しか
つ闇値を正方向にシフト制御できることが理解されよう
From the figure, it will be understood that by using the present invention, it is possible to suppress the decrease in on-current and shift control of the dark value in the positive direction.

〔発明の効果〕〔Effect of the invention〕

以上説明した如く本発明によれば、ノンドープTPTに
比べて殆どオン電流が低下することな(、闇値電圧を制
御することが可能である。
As explained above, according to the present invention, it is possible to control the dark value voltage with almost no decrease in on-current compared to non-doped TPT.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(C)は本発明一実施例を製造工程の順
に示す図、 第2図は上記一実施例の効果説明図、 第3図(a)、 (b)は従来のTFTの問題点説明図
である。 図において、1は絶縁性基板(ガラス基板)、2はゲー
ト絶縁膜、3はノンドープの動作半導体層(a−3i層
)、4は不純物をドープした動作半導体層(p型a−3
i層)、5はレジスト膜、6はブロッキング層(n”a
−3i層)、7は金属膜(Ti膜)、G、S、Dはそれ
ぞれゲート電極、ソース電極、ドレイン電極を示す。 第1図 IQ Q Vg(V) ソ巨(社6日用−偵Z力4邑49・]のタシ諷科しも供
己日]”l[Z第2図 (b) vg(V) 夏
Figures 1 (a) to (C) are diagrams showing one embodiment of the present invention in the order of manufacturing steps, Figure 2 is an explanatory diagram of the effects of the above embodiment, and Figures 3 (a) and (b) are diagrams showing the conventional manufacturing process. FIG. 2 is an explanatory diagram of a problem with TFT. In the figure, 1 is an insulating substrate (glass substrate), 2 is a gate insulating film, 3 is a non-doped active semiconductor layer (a-3i layer), and 4 is an impurity-doped active semiconductor layer (p-type a-3i layer).
i layer), 5 is a resist film, 6 is a blocking layer (n”a
-3i layer), 7 is a metal film (Ti film), and G, S, and D are a gate electrode, a source electrode, and a drain electrode, respectively. Figure 1 IQ Q Vg (V) So-huge (Sha 6-day - Detective Z force 4-49.) Tashika Shimo offering day] "l [Z Figure 2 (b) vg (V) Summer

Claims (1)

【特許請求の範囲】 絶縁性基板(1)上に所定のパターンを有するゲート電
極(G)と、該ゲート電極を被覆するゲート絶縁膜(2
)と、その上にノンドープ動作半導体層(4)と一導電
型不純物をドープした半導体層(3)とを順次成膜し、 次いで、該一導電型不純物をドープした半導体層(3)
上に前記ゲート電極(G)に位置整合したレジスト膜(
5)を形成し、 次いで、該レジスト膜(5)をマスクとして前記一導電
型不純物をドープした半導体層(3)の露出部を除去し
、 次いで、レジスト膜(5)を含む前記半導体層(3)上
に反対導電型不純物をドープした半導体層(6)と金属
膜(7)を順次成膜し、 次いで、前記レジスト膜(5)を除去して、その上に付
着した金属膜(7)と反対導電型不純物をドープした半
導体層(6)をリフトオフする工程を含むことを特徴と
する薄膜トランジスタの製造方法。
[Claims] A gate electrode (G) having a predetermined pattern on an insulating substrate (1), and a gate insulating film (2) covering the gate electrode.
), a non-doped operational semiconductor layer (4) and a semiconductor layer (3) doped with an impurity of one conductivity type are sequentially formed thereon, and then a semiconductor layer (3) doped with an impurity of one conductivity type is formed.
A resist film (
Next, using the resist film (5) as a mask, the exposed portion of the semiconductor layer (3) doped with one conductivity type impurity is removed, and then the semiconductor layer (3) including the resist film (5) is removed. 3) A semiconductor layer (6) doped with impurities of opposite conductivity type and a metal film (7) are sequentially formed on the resist film (5), and then the resist film (5) is removed and the metal film (7) attached thereon is deposited. ) and a step of lifting off a semiconductor layer (6) doped with an impurity of the opposite conductivity type.
JP1012668A 1989-01-20 1989-01-20 Manufacture of thin film transistor Pending JPH02192732A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1012668A JPH02192732A (en) 1989-01-20 1989-01-20 Manufacture of thin film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1012668A JPH02192732A (en) 1989-01-20 1989-01-20 Manufacture of thin film transistor

Publications (1)

Publication Number Publication Date
JPH02192732A true JPH02192732A (en) 1990-07-30

Family

ID=11811751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1012668A Pending JPH02192732A (en) 1989-01-20 1989-01-20 Manufacture of thin film transistor

Country Status (1)

Country Link
JP (1) JPH02192732A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015005757A (en) * 2009-02-13 2015-01-08 株式会社半導体エネルギー研究所 Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015005757A (en) * 2009-02-13 2015-01-08 株式会社半導体エネルギー研究所 Semiconductor device

Similar Documents

Publication Publication Date Title
KR100253611B1 (en) Active matrix liquid crystal display device and its manufacturing method
KR100268007B1 (en) Fabrication method of lcd
EP0449539A2 (en) Ohmic contact for thin film transistor
KR100199064B1 (en) Fabrication method of thin film transistor
JP5563787B2 (en) THIN FILM TRANSISTOR AND METHOD FOR MANUFACTURING SAME, THIN FILM TRANSISTOR ARRAY SUBSTRATE AND DISPLAY DEVICE
JP3599827B2 (en) Active matrix liquid crystal display manufacturing method
KR100272272B1 (en) Thin film transistor and method of manufacturing the same
JP3352191B2 (en) Method for manufacturing thin film transistor
JP2661561B2 (en) Thin film transistor and method of manufacturing the same
JPH06196703A (en) Thin film transistor and manufacture thereof
KR100946560B1 (en) Method of manufacturing thin film transistor
US20060071352A1 (en) Thin film transistors and methods of manufacture thereof
JP3420301B2 (en) Method for manufacturing thin film transistor
KR0179066B1 (en) Thin film transistor and manufacturing method of the same
JPH02192732A (en) Manufacture of thin film transistor
JPH11258636A (en) Thin-film transistor and its manufacture
JPH1197699A (en) Thin-film transistor
JPH09153621A (en) Thin film transistor, manufacture thereof, and liquid-crystal display device using thin film transistor
JPH01124263A (en) Thin-film transistor
JP2629601B2 (en) Semiconductor device
KR100303710B1 (en) Amorphous Silicon Thin Film Transistor and Liquid Crystal Display Device Structure and Manufacturing Method
JPH02189935A (en) Manufacture of thin-film transistor
JPH11214698A (en) Thin-film transistor in liquid crystal display
KR19990081221A (en) Method for manufacturing amorphous silicon thin film transistor and liquid crystal display device (LCD) by simple process
KR100255136B1 (en) Gate electrode of semiconductor device and method for manufacturing the same