JPH02189862A - Paste type cd electrode for alkaline storage battery and manufacture thereof - Google Patents
Paste type cd electrode for alkaline storage battery and manufacture thereofInfo
- Publication number
- JPH02189862A JPH02189862A JP1010309A JP1030989A JPH02189862A JP H02189862 A JPH02189862 A JP H02189862A JP 1010309 A JP1010309 A JP 1010309A JP 1030989 A JP1030989 A JP 1030989A JP H02189862 A JPH02189862 A JP H02189862A
- Authority
- JP
- Japan
- Prior art keywords
- alkali
- active material
- paste
- metal powder
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000003860 storage Methods 0.000 title claims description 36
- 238000004519 manufacturing process Methods 0.000 title claims description 22
- 229910052751 metal Inorganic materials 0.000 claims abstract description 77
- 239000002184 metal Substances 0.000 claims abstract description 77
- 239000000843 powder Substances 0.000 claims abstract description 65
- 239000003513 alkali Substances 0.000 claims abstract description 50
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 38
- 239000003292 glue Substances 0.000 claims abstract description 18
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical group [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 118
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 claims description 79
- 229910052793 cadmium Inorganic materials 0.000 claims description 78
- 239000011149 active material Substances 0.000 claims description 58
- 229910052759 nickel Inorganic materials 0.000 claims description 41
- 238000000034 method Methods 0.000 claims description 21
- 239000000835 fiber Substances 0.000 claims description 20
- 239000002245 particle Substances 0.000 claims description 20
- CXKCTMHTOKXKQT-UHFFFAOYSA-N cadmium oxide Inorganic materials [Cd]=O CXKCTMHTOKXKQT-UHFFFAOYSA-N 0.000 claims description 19
- CFEAAQFZALKQPA-UHFFFAOYSA-N cadmium(2+);oxygen(2-) Chemical compound [O-2].[Cd+2] CFEAAQFZALKQPA-UHFFFAOYSA-N 0.000 claims description 19
- 239000002002 slurry Substances 0.000 claims description 19
- 238000001035 drying Methods 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 5
- 238000004898 kneading Methods 0.000 claims description 4
- 238000002844 melting Methods 0.000 claims description 3
- 230000008018 melting Effects 0.000 claims description 3
- 238000003723 Smelting Methods 0.000 claims description 2
- 238000000151 deposition Methods 0.000 claims description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 abstract description 21
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 abstract description 21
- 229910001882 dioxygen Inorganic materials 0.000 abstract description 21
- 239000013543 active substance Substances 0.000 abstract 5
- 229910052783 alkali metal Inorganic materials 0.000 abstract 2
- 150000001340 alkali metals Chemical class 0.000 abstract 2
- 238000010521 absorption reaction Methods 0.000 description 19
- 230000000052 comparative effect Effects 0.000 description 16
- 238000012360 testing method Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 8
- 239000002585 base Substances 0.000 description 7
- 239000006230 acetylene black Substances 0.000 description 5
- OJIJEKBXJYRIBZ-UHFFFAOYSA-N cadmium nickel Chemical compound [Ni].[Cd] OJIJEKBXJYRIBZ-UHFFFAOYSA-N 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000004020 conductor Substances 0.000 description 4
- 210000001787 dendrite Anatomy 0.000 description 4
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229940065285 cadmium compound Drugs 0.000 description 2
- 150000001662 cadmium compounds Chemical class 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- -1 nickel and iron Chemical class 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical group OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- PLLZRTNVEXYBNA-UHFFFAOYSA-L cadmium hydroxide Chemical compound [OH-].[OH-].[Cd+2] PLLZRTNVEXYBNA-UHFFFAOYSA-L 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000003411 electrode reaction Methods 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000009931 harmful effect Effects 0.000 description 1
- NPURPEXKKDAKIH-UHFFFAOYSA-N iodoimino(oxo)methane Chemical compound IN=C=O NPURPEXKKDAKIH-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- HKKDKUMUWRTAIA-UHFFFAOYSA-N nitridooxidocarbon(.) Chemical compound [O]C#N HKKDKUMUWRTAIA-UHFFFAOYSA-N 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 239000012744 reinforcing agent Substances 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【発明の詳細な説明】
(イ)産業上の利用分野
本発明は、ニッケルーカドミウム蓄電池等のアルカリ蓄
電池に用いられるペース)−式カドミウム電極及びその
製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a PACE-type cadmium electrode used in alkaline storage batteries such as nickel-cadmium storage batteries and a method for manufacturing the same.
(ロ)従来の技術
ニッケルーカドミウム蓄電池等に用いられるカドミウム
電極としては、製造工程が簡易で製造コストの安いペー
スト式の如き、非焼結式のカドミウム電極が工業的に広
く用いられている。この種のカドミウム電極は、酸化カ
ドミウム粉末や水酸化カドミウム粉末等の活物質を糊料
液と共に混練して形成したペーストを導電芯体に塗着、
充填し、次いで乾燥を行なう等して製造されている。(b) Prior Art As cadmium electrodes used in nickel-cadmium storage batteries and the like, non-sintered cadmium electrodes such as paste-type cadmium electrodes, which have a simple manufacturing process and are low in manufacturing cost, are widely used industrially. This type of cadmium electrode is made by applying a paste made by kneading an active material such as cadmium oxide powder or cadmium hydroxide powder with a glue liquid onto a conductive core.
It is manufactured by filling and then drying.
しかしながら、この種の非焼結式カドミウム電極は、酸
素ガスの吸収性能が低いという問題点があり、これを解
決すべく種々の提案がなされている。However, this type of non-sintered cadmium electrode has a problem of low oxygen gas absorption performance, and various proposals have been made to solve this problem.
例えば、特開昭60−2164・19号公報、特開昭6
1−240576号公報等には、ペースI・式カドミウ
ム極板の表面に、炭素あるいはニッケル等の耐アルカリ
性の導電物質からなる導電層を形成することが提案され
ている。このようにすることで、カドミウム極板表面の
導電性を高め、極板表面での金属カドミウムの生成を促
進させて、酸素ガス吸収能力を高めることが可能となる
。For example, JP-A-60-2164/19, JP-A-6
1-240576 and the like proposes forming a conductive layer made of an alkali-resistant conductive material such as carbon or nickel on the surface of a PACE I type cadmium electrode plate. By doing so, it is possible to increase the conductivity of the surface of the cadmium electrode plate, promote the generation of metal cadmium on the surface of the electrode plate, and increase the oxygen gas absorption capacity.
しかしながら、このような方法においても、やはり、酸
素ガス吸収能力のさらに優れたものが求められると共に
、また別の新たな問題点が生じてきた。However, even in such a method, there is still a need for even better oxygen gas absorption ability, and other new problems have arisen.
(ハ)発明が解決しようとする課題
ペースト式カドミウム極板の表面に、炭素粉末からなる
導電層を形成した場合、充電時において前記導電層と活
物質層との界面での金属カドミウムの生成が促進され、
酸素ガス吸収性能は向上する。しかし、最も酸素ガスと
の反応が進みやすい、導電層中及びその表面での金属カ
ドミウムの生成を促進させる効果は有しておらず、酸素
ガス吸収性能を向上させる余地がある。(c) Problem to be solved by the invention When a conductive layer made of carbon powder is formed on the surface of a paste-type cadmium electrode plate, metal cadmium is generated at the interface between the conductive layer and the active material layer during charging. promoted,
Oxygen gas absorption performance is improved. However, it does not have the effect of promoting the production of metal cadmium in and on the surface of the conductive layer, where the reaction with oxygen gas is most likely to proceed, and there is still room for improvement in oxygen gas absorption performance.
方、ペースト式カドミウム極板の表面に耐アメカリ性の
導電物質、たとえばニッケル粉末からなる導電層を単に
形成した場合、前記導電物質の有する高導電性に基づき
、充電時において、金属カドミウムの生成の核とするこ
とができる。その結果、前記導電層中及びその表面に、
金属カドミウムが生成し、酸素ガス吸収性能は、炭素粉
末を用いた場合よりも、更に向上する。しかしながら、
充電時に、水素ガスの発生が促進されたり、電池の保存
特性が低下したり、デンドライト発生が促進されるとい
った新たな問題が生じてくる。On the other hand, if a conductive layer made of a metal resistant conductive material, such as nickel powder, is simply formed on the surface of a paste-type cadmium electrode plate, the formation of metallic cadmium during charging is inhibited due to the high conductivity of the conductive material. It can be used as a core. As a result, in the conductive layer and on its surface,
Metallic cadmium is produced, and the oxygen gas absorption performance is further improved than when carbon powder is used. however,
New problems arise during charging, such as accelerated generation of hydrogen gas, decreased storage characteristics of the battery, and accelerated formation of dendrites.
また、上記2方法の中間的な方法として、ペースト式カ
ドミウム極板の表面に、炭素粉末と耐アルカリ性金属粉
末との混合層を形成することが考えられる。しかしなが
ら、やはりこの方法においても、単に耐アルカリ性金属
粉末として、たとえばニッケルを使用するだけでは、基
本的に上記2方法の問題を有している。したがって酸素
ガス吸収性能の向上効果を維持しながら前記問題を解決
していくためには、導電層中における耐アルカリ性金属
粉末の存在状態を、考慮する必要がある。Furthermore, as an intermediate method between the above two methods, it is conceivable to form a mixed layer of carbon powder and alkali-resistant metal powder on the surface of the paste-type cadmium electrode plate. However, even in this method, simply using, for example, nickel as the alkali-resistant metal powder basically has the problems of the above two methods. Therefore, in order to solve the above problem while maintaining the effect of improving oxygen gas absorption performance, it is necessary to consider the state of existence of the alkali-resistant metal powder in the conductive layer.
ここで耐アルカリ性金属粉末の見かけ密度は、通常0.
2g/cc以上(たとえばカーボニルニ・ンケル0.5
g/cc)であるので、炭素粉末と糊料からなるスラリ
ー中への均一な分散は、極めて困難である。したがって
、このスラリーを極板表面に塗布、乾燥させて形成され
る導電層も、また耐アルカリ性金属粉末が、均一に分散
されたものとはなり難い。The apparent density of the alkali-resistant metal powder is usually 0.
2g/cc or more (e.g. carbonyl nitrogen 0.5
g/cc), it is extremely difficult to uniformly disperse the carbon powder into a slurry made of carbon powder and paste. Therefore, in the conductive layer formed by applying and drying this slurry onto the surface of the electrode plate, the alkali-resistant metal powder is also difficult to be uniformly dispersed.
更に、たとえば耐アルカリ性金属としてのニッケル、鉄
などの金属は、活物質である酸化カドミウム等のカドミ
ウム化合物に比べ、水素発生過電圧が低く、導電層の導
電性が高くなりすぎると、液−固界面で充電時に、水素
ガス発生を伴なうということがある。そこで、ニッケル
の添加形態や、添加量を規制する必要がある。Furthermore, metals such as nickel and iron, which are alkali-resistant metals, have a lower hydrogen generation overvoltage than cadmium compounds such as cadmium oxide, which are active materials, and if the conductivity of the conductive layer becomes too high, the liquid-solid interface When charging, hydrogen gas may be generated. Therefore, it is necessary to regulate the form and amount of nickel added.
ここで耐アルカリ性導電性粉末としてニッケル粉末を用
いた場合、極板の表面における導電層との導電部が、
″点5.で構成される。したがって、充電時に生成した
金属カドミウムが極板表面に達した部分における、導電
層中のニッケルしか導電性の向上に寄与できない。また
ニッケルの利用量を上げるべく、ニッケルの添加量を多
くすると、前述の如く導電層の導電性が高くなりすぎ、
水素ガスの発生といった問題が生じてくる。When nickel powder is used as the alkali-resistant conductive powder, the conductive part with the conductive layer on the surface of the electrode plate is
Therefore, only nickel in the conductive layer can contribute to improving conductivity in the area where the metal cadmium generated during charging reaches the surface of the electrode plate.Also, in order to increase the amount of nickel used, If the amount of nickel added is increased, the conductivity of the conductive layer becomes too high as mentioned above,
Problems such as generation of hydrogen gas arise.
一方、ペースト式カドミウム極板の表面を、ニッケルメ
ッキ処理した場合には、極板表面がニッケル層により閉
塞されてしまい、水素ガス発生の促進及び電極反応の阻
害が観察されるので好ましくない。On the other hand, when the surface of a paste-type cadmium electrode plate is subjected to nickel plating, the surface of the electrode plate is blocked by a nickel layer, which is undesirable because hydrogen gas generation is accelerated and electrode reaction is inhibited.
また金属繊維を導電層中へ添加した場合には、ペースト
式カドミウム極板の表面上に、金属カドミウムのネット
ワークを形成しやすい点で有効であるが、たとえばニッ
ケル粉末は、繊維径が数μm〜数十μmと太く、可撓性
に乏しいので、セパレーターをつき破ってしまう。その
結果、電池内部短絡を生じる可能性がある。Furthermore, when metal fibers are added to the conductive layer, it is effective in easily forming a metal cadmium network on the surface of the paste-type cadmium electrode plate. It is thick, several tens of micrometers, and has poor flexibility, so it will break through the separator. As a result, an internal short circuit in the battery may occur.
(ハ)発明が解決しようとする課題
本発明は、上述せる問題点に鑑みてなさtしたものであ
って、本発明の主たる目的はペースト式カドミウム電極
の、酸素ガス吸収性能を更に向上させることにある。(c) Problems to be Solved by the Invention The present invention has been made in view of the above-mentioned problems, and the main purpose of the present invention is to further improve the oxygen gas absorption performance of a paste-type cadmium electrode. It is in.
また他の目的は、充電時におけるカドミウム化合物から
の水素ガス発生を抑制することにある。Another purpose is to suppress hydrogen gas generation from cadmium compounds during charging.
更に他の目的は、充電時におけるカドミウム電極からの
デンドライト発生を抑制下ることにある。Still another object is to suppress the generation of dendrites from the cadmium electrode during charging.
また他の目的は、ペースト式カドミウム極板表面上に耐
アルカリ性導電粉末からなる導電層を形成した場合にお
いて、耐アルカリ性金属粉末の均な分散方法を提案する
ものである。Another object of the present invention is to propose a method for uniformly dispersing alkali-resistant metal powder when a conductive layer made of alkali-resistant conductive powder is formed on the surface of a paste-type cadmium electrode plate.
そして更に他の目的は、ペースト式カドミウム極板表面
上にニッケル体を分散させた場合において、前記ニッケ
ル体による電池内部短絡を抑制することである。Still another object is to suppress short circuits within the battery due to the nickel bodies when the nickel bodies are dispersed on the surface of the paste-type cadmium electrode plate.
(ニ)課題を解決するための手段
本発明の第1のアルカリ蓄電池用ペースト式カドミウム
電極は、導電芯体に塗着した酸化カドミウムを主成分と
する活物質層の表面に、炭素粉末と耐アルカリ性金属粉
末とが混在せる導電層を有するものであって、前記耐ア
ルカリ性金属粉末の表面積は、前記活物質1gに対して
0.001〜0.05m’であることを特徴とする。(d) Means for Solving the Problems The first paste-type cadmium electrode for alkaline storage batteries of the present invention has a carbon powder and a resistant material on the surface of an active material layer mainly composed of cadmium oxide applied to a conductive core. It has a conductive layer in which alkaline metal powder is mixed, and the surface area of the alkali-resistant metal powder is 0.001 to 0.05 m' with respect to 1 g of the active material.
またその製造方法は、酸化カドミウムを主成分とする活
物質を導電芯体に塗着して活物質層を形成し、前記活物
質層の表面に、炭素粉末と耐アルカリ性金属粉末とが混
在せる導電層を配設せる製造方法であって、前記耐アル
カリ性金属粉末の表面積を、前記活物質1gに対して0
.001〜0.05m’としたことを特徴とする。In addition, the manufacturing method includes applying an active material containing cadmium oxide as a main component to a conductive core to form an active material layer, and carbon powder and alkali-resistant metal powder are mixed on the surface of the active material layer. A manufacturing method in which a conductive layer is provided, wherein the surface area of the alkali-resistant metal powder is 0 per 1 g of the active material.
.. 001 to 0.05 m'.
また第2の本発明のアルカリ蓄電池用ペースト式カドミ
ウム電極極は、導電芯体に塗着した酸化カドミウムを主
成分とする活物質層の表面に、炭素粉末と耐アルカリ性
金属粉末とが混在せる導電層を有するものであって、前
記導電層は、炭素粉末と、糊料と、見かけ密度が0 、
2 g 7ccJ:)下の耐アルカリ性金属粉末とから
なることを特徴とする。In addition, the paste-type cadmium electrode for alkaline storage batteries of the second invention is a conductive material in which carbon powder and alkali-resistant metal powder are mixed on the surface of an active material layer mainly composed of cadmium oxide applied to a conductive core. The conductive layer includes carbon powder, a glue, and an apparent density of 0.
2g 7ccJ:) It is characterized by consisting of the following alkali-resistant metal powder.
またその製造方法は、酸化カドミウムを主成分とする活
物質を導電芯体に塗着して活物質層を形成し、前記活物
質層の表面に、炭素粉末と、糊料と、見かけ密度が0.
2g/cc以下の耐アルカリ性金属粉末とを混練して得
たスラリーを塗布して乾燥を行い、導電層を形成するこ
とを特徴とするものである。In addition, the manufacturing method includes applying an active material containing cadmium oxide as a main component to a conductive core to form an active material layer, and adding carbon powder, a glue, and an apparent density to the surface of the active material layer. 0.
A conductive layer is formed by applying a slurry obtained by kneading 2 g/cc or less of alkali-resistant metal powder and drying it.
また第3の本発明のアルカリ蓄電池用ペースト式カドミ
ウム電極は、導電芯体に塗着した酸化カドミウムを主成
分とする活物質層の表面に、耐アルカリ性金属粉末及び
糊料よりなる第1の導電層と、炭素粉末及び糊料よりな
る第2の導電層とを冶するものであって、前記第1の導
電層を前記活物質層に密接して配置したことを特徴とす
る。Further, in the paste-type cadmium electrode for alkaline storage batteries according to the third aspect of the present invention, a first conductive layer made of an alkali-resistant metal powder and a glue is applied to the surface of the active material layer mainly composed of cadmium oxide applied to a conductive core. layer and a second conductive layer made of carbon powder and paste, and is characterized in that the first conductive layer is disposed closely to the active material layer.
またその製造方法は、導電芯体に塗着した酸化カドミウ
ムを主成分とする活物質層の表面に、耐アルカリ性金属
粉末及び糊料よりなる第1のスラリーを付着させ、乾燥
を行い第1の導電層を形成した後、炭素粉末及び糊料よ
りなる第2のスラリーを(=I着させ、乾燥を行い第2
の導電層を形成することを特徴とするものである。In addition, the manufacturing method involves depositing a first slurry made of alkali-resistant metal powder and glue on the surface of an active material layer mainly composed of cadmium oxide applied to a conductive core, and drying the slurry. After forming the conductive layer, a second slurry (=I) consisting of carbon powder and glue is applied, dried, and a second slurry is applied.
It is characterized by forming a conductive layer of.
そして」二記アルカリ蓄電池用ペースト式カドミウム電
極及びその製造方法において、耐アルカリ性金属粉末と
しては、ニッケル粉末を用いるのが好ましい。In the paste-type cadmium electrode for alkaline storage batteries and its manufacturing method described in Section 2, it is preferable to use nickel powder as the alkali-resistant metal powder.
更に第・1の本発明のアルカリ蓄電池用ベースI・式カ
ドミウム電極は、導電芯体に塗着した酸化カドミウムを
主成分とする活物質層の表面に、平均繊維径が1μm以
下の繊維状ニッケル体もしくは/及び平均粒径が1μm
以下のニッケル体を分散させたことを特徴とするもので
ある。Furthermore, in the first base I type cadmium electrode for alkaline storage batteries of the present invention, fibrous nickel with an average fiber diameter of 1 μm or less is coated on the surface of the active material layer mainly composed of cadmium oxide applied to the conductive core. body or/and average particle size is 1 μm
It is characterized by dispersing the following nickel bodies.
またその製造方法は、酸化カドミウムを主成分とする活
物質を導電芯体に塗着して活物質層を形成した後、前記
活物質層の表面に、平均繊維径が1μm以下の繊維状ニ
ッケル体もしくは/及び平均粒径が]μm以下のニッケ
ル体を分散、添加することを特徴とするものである。In addition, the manufacturing method includes coating an active material mainly composed of cadmium oxide on a conductive core to form an active material layer, and then applying fibrous nickel having an average fiber diameter of 1 μm or less on the surface of the active material layer. This method is characterized by dispersing and adding nickel bodies and/or nickel bodies having an average particle size of ]μm or less.
ここにおいて、前記ニッケル体としては、粒子が接触あ
るいは半融によって、一定の方向性をもって連結した粒
子構造のものを分散、添加することを特徴とするもので
ある。Here, the nickel body is characterized in that particles having a particle structure in which particles are connected in a certain direction by contact or smelting are dispersed and added.
(ホ)作 用
第1の本発明のアルカリ蓄電池用ペースト式カドミウム
電極において、炭素粉末を含有せる導電層中の耐アルカ
リ性金属粉末は、それ自体を核とし、充電時、金属カド
ミウムを極板表面に生成させるという効果を有している
。この効果と、炭素粉末からなる導電層が本来有してい
る前記導電層と、極板表面の活物質層との界面における
金属カドミウム生成の促進効果により、カドミウム電極
の酸素ガス吸収性能が更に向」ニする。(E) Function In the paste-type cadmium electrode for alkaline storage batteries of the first invention, the alkali-resistant metal powder in the conductive layer containing carbon powder serves as a core itself, and during charging, the metal cadmium is transferred to the surface of the electrode plate. It has the effect of causing the generation of Due to this effect and the effect of promoting the generation of metallic cadmium at the interface between the conductive layer made of carbon powder and the active material layer on the surface of the electrode plate, the oxygen gas absorption performance of the cadmium electrode is further improved. ”
尚、酸素ガス吸収性能を向上させる効果において、極板
表面部での金属カドミウムの生成は均一であれば十分で
あり、金属カドミウムの過剰量の生成は、活物質移行、
デンドライト形成等の弊害を引き起こす。したがって、
耐アルカリ性金属粉末を過剰に添加するのは好ましくな
い。また、耐アルカリ性金属粉末の過剰な添加は、電池
の保存特性を低下させ/こり、水素ガスの発生を惹起す
るという問題を生じることがある。そこで本発明者が、
種々の条件について検討したところ、耐アルカリ性金属
粉末の物性において、水素ガス発生と最も関連の大きな
因子は、活物質単位重量当りの前記金属粉末の総表面積
であることを見いだした。そして前述の問題を解決する
には、耐アルカノ性金属粉末が金属カドミウムの生成の
核であってその表面積は大きい方が望ましいという点を
ふまえな上で、前記金属粉末の総表面積が活物質1g当
り0.001〜0.05m’とするのが最適であること
を知得した。In addition, for the effect of improving oxygen gas absorption performance, it is sufficient that the generation of metal cadmium on the surface of the electrode plate is uniform, and the generation of an excessive amount of metal cadmium is due to active material migration,
This causes harmful effects such as dendrite formation. therefore,
It is not preferable to add an excessive amount of alkali-resistant metal powder. Further, excessive addition of alkali-resistant metal powder may cause problems such as deterioration/stiffness of storage characteristics of the battery and generation of hydrogen gas. Therefore, the inventor
After examining various conditions, it was found that in the physical properties of the alkali-resistant metal powder, the factor most closely related to hydrogen gas generation is the total surface area of the metal powder per unit weight of the active material. In order to solve the above-mentioned problem, the total surface area of the metal powder should be 1g of active material, keeping in mind that the alkano-resistant metal powder is the nucleus for the production of metal cadmium, and it is desirable that its surface area be large. It has been learned that the optimum distance is 0.001 to 0.05 m'.
また、第2の本発明のアルカリ蓄電池用ペースト式カド
ミウム電極において、炭素粉末よりなる導電層は、前述
せる如く、基本的に活物質層との界面での金属カドミウ
ムの生成を促進する。そして耐アルカリ性金属粉末を前
記導電層中に添加した場合には、この耐アルカリ性金属
粉末が導電層内部での金属カドミウムの生成を促進させ
る。Furthermore, in the paste-type cadmium electrode for an alkaline storage battery according to the second aspect of the present invention, the conductive layer made of carbon powder basically promotes the generation of metallic cadmium at the interface with the active material layer, as described above. When an alkali-resistant metal powder is added to the conductive layer, this alkali-resistant metal powder promotes the formation of metal cadmium inside the conductive layer.
そしてこの導電層内部での金属カドミウムの生成は、よ
り均一に生成させるのが効果的であり、このようにする
ことで、導電層内部及び活物質層との界面という広い範
囲において金属カドミウムの生成が可能となる。その結
果、酸素ガス吸収性能が向上し、サイクル寿命の低下を
生じることがない。したがって、導電層を構成する耐ア
ルカリ性金属粉末を、前記導電層中において均一に分散
させることが重要であり、そのためには見かけ密度の小
さい粉末が好適することがわかった。そこで種々実験を
行い、見かけ密度が0.2g7cc以下であれば、飛躍
的に分散性が向」ニし、酸素ガス吸収性能を増大させる
ことを見い出し、本発明を完成するに至った。It is effective to generate metal cadmium inside the conductive layer more uniformly, and by doing so, metal cadmium can be generated in a wide range inside the conductive layer and at the interface with the active material layer. becomes possible. As a result, the oxygen gas absorption performance is improved and the cycle life is not reduced. Therefore, it is important to uniformly disperse the alkali-resistant metal powder constituting the conductive layer in the conductive layer, and it has been found that powder with a low apparent density is suitable for this purpose. Therefore, various experiments were conducted and it was discovered that when the apparent density is 0.2 g 7 cc or less, the dispersibility is dramatically improved and the oxygen gas absorption performance is increased, and the present invention has been completed.
更に、活物質層の表面部に、炭素粉末と糊料よりなる第
2の導電層のみを形成した場合には、前記活物質層と第
2の導電層との界面部に、充電時、金属カドミウムが生
成する。Furthermore, when only a second conductive layer made of carbon powder and glue is formed on the surface of the active material layer, a metal layer is formed at the interface between the active material layer and the second conductive layer during charging. Cadmium is produced.
そこで、第3の本発明のアルカリ蓄電池用ペースト式カ
ドミウム電極の如く、前記活物質層と第2の導電層との
間に、耐アルカリ性金属粉末と糊料よりなる第1の導電
層を介在させ、第1の導電層を活物質層に密接すること
により、充電時に耐アルカリ性金属粉末が金属カドミウ
ムにおおわれるようになる。その結果、充電時における
耐アルカリ性金属粉末からの水素ガス発生を抑制するこ
とが可能となる。加えて、耐アルカリ性金属粉末の有す
る高い導電性に基づき、金属カドミウムの生成が促進さ
れ、酸素ガス吸収性能の大幅な向上が望める。Therefore, as in the paste-type cadmium electrode for alkaline storage batteries of the third invention, a first conductive layer made of alkali-resistant metal powder and a glue is interposed between the active material layer and the second conductive layer. By bringing the first conductive layer into close contact with the active material layer, the alkali-resistant metal powder is covered with metal cadmium during charging. As a result, it becomes possible to suppress hydrogen gas generation from the alkali-resistant metal powder during charging. In addition, based on the high conductivity of the alkali-resistant metal powder, the production of metal cadmium is promoted, and a significant improvement in oxygen gas absorption performance can be expected.
尚、以上」二連した耐アルカリ性金属粉末としては、ニ
ッケル粉末が好適である。Incidentally, nickel powder is suitable as the alkali-resistant metal powder in the above-mentioned series.
一方、第4の本発明のアルカリ蓄電池用ペースト式カド
ミウム電極によれば、カドミウム極板の表面に、平均繊
維径が1μm以下の繊維状ニッケル体もしくは/及び平
均粒径が1μm以下の粉末状ニッケル体を分散させるこ
とにより、充電時に生成せる金属カドミウムのネットワ
ークを、極板表面に形成させることができる。その結果
、炭素粉末等の粉末を用いたものに比へ、極板表面に金
属カドミウムがネットワーク状に形成されやすくなり、
酸素ガス吸収性能が大幅に向上する。また、添加せるニ
ッケル体は平均繊維径もしくは/及び平均粒径が18m
以下と極めて小さく、小さな応力で、容易にくびれある
いは破断してしまう。したがって、前記ニッケル体が、
セパレータをつき破り、電池内部短絡を生じるという問
題もない。On the other hand, according to the paste-type cadmium electrode for alkaline storage batteries of the fourth aspect of the present invention, a fibrous nickel body with an average fiber diameter of 1 μm or less and/or a powdered nickel body with an average particle diameter of 1 μm or less is provided on the surface of the cadmium electrode plate. By dispersing the particles, a network of metallic cadmium, which is generated during charging, can be formed on the surface of the electrode plate. As a result, metal cadmium is more likely to form a network on the surface of the electrode plate than when using powder such as carbon powder.
Oxygen gas absorption performance is greatly improved. In addition, the nickel body to be added has an average fiber diameter or/and an average particle diameter of 18 m.
It is extremely small and easily constricts or breaks under small stress. Therefore, the nickel body is
There is no problem of breaking through the separator and causing a short circuit inside the battery.
尚、ニッケル体からの水素ガス発生という点については
、前記ニッケル体が生成せる金属カドミウムにおおわれ
てしまうので、何ら問題を生しることはない。It should be noted that no problem arises in terms of hydrogen gas generation from the nickel body, since the nickel body is covered with the metal cadmium produced.
尚、ここで用いるニッケル体は、その形状が接触あるい
は半融によって、繊維の如き一定の方向性を有し、連結
した構造のもの、たとえばlNC0社製の平均繊維径約
0.6μm、繊維長数μmのニッケル体を用いるのが好
適である。The nickel body used here has a certain directionality like fibers due to contact or melting, and has a connected structure, for example, a nickel body manufactured by INC0 with an average fiber diameter of about 0.6 μm and a fiber length. It is preferable to use a nickel body of several μm.
(へ)実施例 以下に、本発明と比較例との対比に言及し、詳述する。(f) Example Below, the comparison between the present invention and a comparative example will be mentioned and explained in detail.
〔第1実験例〕
酸化カドミウム粉末900gと金属カドミウム粉末10
0gよりなる活物質と、デンドライト防止剤としての酸
化マグネシウム20gと、結着剤としてのヒドロキシプ
ロピルセルロース6gと、補強剤としてのナイロンm維
10gと、水利防止剤としてのリン酸ナトリウム水溶液
300ccとを混練して、活物質シートを得た。該シー
トをパンチングメタルよりなる導電芯体の両表面に塗着
し、乾燥を行ないカドミウム極板を得、ベース極板とし
た。[First experimental example] 900 g of cadmium oxide powder and 10 g of metal cadmium powder
0 g of active material, 20 g of magnesium oxide as a dendrite inhibitor, 6 g of hydroxypropyl cellulose as a binder, 10 g of nylon m fiber as a reinforcing agent, and 300 cc of a sodium phosphate aqueous solution as a water usage inhibitor. The mixture was kneaded to obtain an active material sheet. The sheet was applied to both surfaces of a conductive core made of punched metal and dried to obtain a cadmium electrode plate, which was used as a base electrode plate.
次に、B、E、T法による比表面積が5m’/gのニッ
ケル粉末とアセチレンブラックを所定量混合し、糊料と
してのヒドロキシプロピルセルロス(IJPC)を添加
し、スラリーを得た。Next, a predetermined amount of nickel powder having a specific surface area of 5 m'/g by the B, E, T method and acetylene black were mixed, and hydroxypropyl cellulose (IJPC) as a glue was added to obtain a slurry.
このスラリーを、nij記ベース極板にローラ転写法に
より塗布し、60℃で乾燥を行いカドミウム電極を得た
。This slurry was applied to a base plate using a roller transfer method and dried at 60°C to obtain a cadmium electrode.
尚、アセチレンブラックの添加量は、いずれも活物質重
量に対し0.5重量%とじた。The amount of acetylene black added was 0.5% by weight based on the weight of the active material.
またB、E、T法による比表面積が2m2/gのニッケ
ル粉末を用いたものについても、前記同様カドミウム電
極を得た。Cadmium electrodes were also obtained using nickel powder having a specific surface area of 2 m2/g by the B, E, T method in the same manner as described above.
これらのカドミウム電極と、焼結式ニッケル正極板とを
セパレータを介して持回し、渦巻電極体を作製し、公称
容量1.3Ahの密閉式ニッケルーカドミウム蓄電池(
SCサイズ)を得、各[生能を比較した。These cadmium electrodes and a sintered nickel positive electrode plate were rotated through a separator to create a spiral electrode body, and a sealed nickel-cadmium storage battery with a nominal capacity of 1.3 Ah (
SC size) was obtained and the viability of each [SC size] was compared.
(テスト1)
前記カドミウム電極を備えた電池を用い、活物質単位重
量当りの導電層中のニッケル粉末総表面積と、電池の平
衡内部ガス圧との関係を調べた。(Test 1) Using a battery equipped with the cadmium electrode, the relationship between the total surface area of nickel powder in the conductive layer per unit weight of active material and the equilibrium internal gas pressure of the battery was investigated.
この時の条件は、25℃において、1.3A (IC)
の電流で連続充電するというものである。The conditions at this time were 1.3A (IC) at 25°C.
The battery is continuously charged with a current of .
この結果を、第1図に示す。第1図中、実線は比表面積
5 m 27 gのニッケル粉末を用いたもの、鎖線は
比表面積2m27gのニッケル粉末を用いたものを示し
ている。The results are shown in FIG. In FIG. 1, the solid line shows the case where nickel powder with a specific surface area of 5 m 27 g is used, and the chain line shows the case where nickel powder with a specific surface area of 2 m 27 g is used.
第1図より、比表面積が5m’/g、2m”/gと異な
ったものであっても、添加せるニッケル粉末の紙・表面
積が活物質1gに対し0.001m’以」−となった時
に、酸素ガス吸収性能が大幅に向上していることがわか
る。From Figure 1, even if the specific surface area is different from 5 m'/g to 2 m'/g, the paper surface area of the nickel powder added is 0.001 m' or more per 1 g of active material. At times, it can be seen that the oxygen gas absorption performance is significantly improved.
(テスト2)
次に、前記同様に、電池を用い、活物質単位重量当りの
導電層中のニッケル粉末総表面積と、電池内水素ガス発
生量との関係を調べた。この時の条件は、10 ’Ci
:おイテ、2.6A (2C) の電流で160%充電
するというものである。(Test 2) Next, in the same manner as described above, using a battery, the relationship between the total surface area of nickel powder in the conductive layer per unit weight of active material and the amount of hydrogen gas generated within the battery was investigated. The conditions at this time are 10'Ci
:It charges to 160% with a current of 2.6A (2C).
この結果を、第2図に示す。第2図中、実線は比表面積
5m2/gのニッケル粉末を用いたもの、鎖線は比表面
積2m’/gのニッケル粉末を用いたものを、それぞれ
示している。The results are shown in FIG. In FIG. 2, the solid line shows the case where nickel powder with a specific surface area of 5 m2/g was used, and the chain line shows the case where nickel powder with a specific surface area of 2 m'/g was used.
第2図より、ニッケル粉末の比表面積が5 m ’/g
、2 m ’ / gと異なったものであっても、添加
せるニッケル粉末の総表面積が、活物質1gに対し、o
、osm’/gを越えると、水素ガス発生が顕著に観察
されるようになる。From Figure 2, the specific surface area of nickel powder is 5 m'/g.
, 2 m'/g, the total surface area of the added nickel powder is o per 1 g of active material.
, osm'/g, hydrogen gas generation becomes noticeable.
以」−、テスト1及びテスト2の結果より、導゛准層中
の耐アルカリ性金属粉末、即ち活物質1gに対するニッ
ケル粉末の添加量は、表面積でoO01〜0.05m”
とするのが最適である。From the results of Test 1 and Test 2, the amount of alkali-resistant metal powder in the guiding layer, that is, the amount of nickel powder added to 1 g of active material, is 001 to 0.05 m in surface area.
It is best to
〔第2実験例〕
炭素粉末としてのアセチレンブラックと、糊料としての
ヒドロキシプロピルセルロース(HI)C)とからなる
溶液に、各種見かけ密度(州北式測定器による)のニッ
ケル粉末を添加し、十分に撹拌、混合し、スラリーを得
た。このスラリーを、前記第1実験例で用いたベース極
板にローラ転写法により塗布し、60℃で乾燥を行い、
極板表面に導電層を形成した。このようにして、炭素粉
末と耐アルカリ性金属粉末とが混在せる導電層を有する
カドミウム電極を得た。[Second Experimental Example] Nickel powder of various apparent densities (according to the Shuhoku measuring device) was added to a solution consisting of acetylene black as carbon powder and hydroxypropylcellulose (HI)C as a glue, The mixture was thoroughly stirred and mixed to obtain a slurry. This slurry was applied to the base plate used in the first experimental example using a roller transfer method, and dried at 60°C.
A conductive layer was formed on the surface of the electrode plate. In this way, a cadmium electrode having a conductive layer containing a mixture of carbon powder and alkali-resistant metal powder was obtained.
尚、アセチレンブラックの添加量は、いずれも、活物質
重量に列し、0.8重量%とした。The amount of acetylene black added was 0.8% by weight in all cases based on the weight of the active material.
また、ニッケル粉末の添加量は、アセチレン1このよう
にして得た種々の見かけ密度を有するニッケル粉末を用
いたカドミウムを極と、焼結式ニンケル正極板とをセパ
レータを介して持回し、渦巻電極体を作製し、公称容量
] 、 3 A hの密閉式ニンケルーカドミウム蓄電
池(SCサイズ)を得、各性能を比較した。In addition, the amount of nickel powder added was determined by using acetylene 1.The cadmium electrode using the nickel powder having various apparent densities obtained in this way was rotated between a sintered nickel positive electrode plate and a spiral electrode. A sealed type Ninkel cadmium storage battery (SC size) with a nominal capacity of 3 Ah was obtained, and its performance was compared.
(テスト3)
前記カドミウム電極を備えた電池を用い、導電層中のニ
ッケル粉末の見かけ密度と、電池の平衡内部ガス圧との
関係を調べた。この時の条件は、25℃において、1.
3A (1,0C)の電流で、連続充電するというもの
である。(Test 3) Using a battery equipped with the cadmium electrode, the relationship between the apparent density of nickel powder in the conductive layer and the equilibrium internal gas pressure of the battery was investigated. The conditions at this time were 1.
It charges continuously with a current of 3A (1.0C).
この結果を、第3図に示す。第3図より、添加せるニッ
ケル粉末の見かけ密度を0.2g/cc以下にすること
により、電池内部圧を低くすることが可能となる。The results are shown in FIG. From FIG. 3, it is possible to lower the internal pressure of the battery by reducing the apparent density of the added nickel powder to 0.2 g/cc or less.
〔第3実験例〕
カーボニルニッケル粉末(粒径2.5μm)と、糊料と
してのHP Cとを混練して、第1のスラリーを得、前
記第1実験例で用いたベース極板の表面に、前記スラリ
ーをローラ転写法により塗布し、60℃で乾燥を行った
。このようにして、第1の導電層を形成した。次に、炭
素粉末としてのアセチレンブラックと、糊料としての1
−11) Cとを混練して第2のスラリーを得、第1の
導電層上に、mj記同様にして、塗布、乾燥を行い、第
2の導電層を形成した。[Third Experimental Example] A first slurry was obtained by kneading carbonyl nickel powder (particle size 2.5 μm) and HP C as a glue, and the surface of the base electrode plate used in the first experimental example was mixed. Then, the slurry was applied by a roller transfer method and dried at 60°C. In this way, the first conductive layer was formed. Next, acetylene black as carbon powder and 1 as glue
-11) C was kneaded to obtain a second slurry, and applied and dried on the first conductive layer in the same manner as described in mj to form a second conductive layer.
このようにして、本発明によるカドミウム電極Aを得た
。尚、前記導電層中のカーボニルニッケルの添加量は、
活物質重量に対し01重量%、炭素粉末の添加量は、活
OI質重量に対し0.5重量%である。In this way, a cadmium electrode A according to the present invention was obtained. The amount of carbonyl nickel added in the conductive layer is
The amount of carbon powder added is 0.5% by weight based on the weight of the active OI material.
一方第1比較例として、前記ベース極板に、第2の導電
層のみを形成した比較電極Bを作製した。この導電層中
における炭素粉末の添加量は、活物質重量に対し0.5
重量%であった。On the other hand, as a first comparative example, a comparative electrode B was prepared in which only the second conductive layer was formed on the base electrode plate. The amount of carbon powder added in this conductive layer is 0.5 based on the weight of the active material.
% by weight.
次に第2比較例として、前記ベース極板に、第1の導電
層のみを形成した比較゛電極Cを作製した。この導電層
中におけるニッケル粉末の添加量は、活物質重量に対し
、0.1重量%であった。Next, as a second comparative example, a comparative electrode C was prepared in which only the first conductive layer was formed on the base plate. The amount of nickel powder added in this conductive layer was 0.1% by weight based on the weight of the active material.
これらの電極A、B、Cを用い、前記第1実験例、第2
実験例と同様にして、公称容量1.3Ahの密閉式ニッ
ケルーカドミウム蓄電池(SCサイズ)を得、各性能を
比較した。Using these electrodes A, B, and C, the first experimental example, the second
A sealed nickel-cadmium storage battery (SC size) with a nominal capacity of 1.3 Ah was obtained in the same manner as in the experimental example, and the respective performances were compared.
(テスト4)
前記電池を用い、充電時間と電池内部圧との関係を調べ
た。この時の条件は、25℃において、1.3A (]
C)の電流で連続充電するというものである。(Test 4) Using the battery, the relationship between charging time and battery internal pressure was investigated. The conditions at this time are 1.3A (] at 25℃
C) Continuous charging is performed using the current.
この結果を、第4図に示す。これより、カーボニルニッ
ケルのみからなる第2の導電層を有する比較電池Cが、
本発明電池aと同程度の低い内部圧を有することがわか
る。The results are shown in FIG. From this, comparative battery C having a second conductive layer made only of carbonyl nickel,
It can be seen that the battery has an internal pressure as low as that of the battery a of the present invention.
(テスト5)
次に、前記同様に電池を用い、一定時間充電後の、電池
内水素ガス分圧を調べた。この時の条件は、0℃におい
て、1.3A、(]C)の電流で2時間光!(200%
充電)するというものである。(Test 5) Next, using a battery in the same manner as described above, the partial pressure of hydrogen gas inside the battery was examined after charging for a certain period of time. The conditions at this time were 2 hours of light at 0°C and a current of 1.3A (]C)! (200%
charging).
この結果を、第1表に示す。The results are shown in Table 1.
第1表
この結果より、本発明電池a及び比$9.電池すは、比
較電池Cに比して、電池内水素ガス分圧が低く、水素ガ
ス発生が抑制されていることがわかる。From the results in Table 1, it can be seen that the invention battery a and the ratio $9. It can be seen that the internal hydrogen gas partial pressure of battery C is lower than that of comparative battery C, and hydrogen gas generation is suppressed.
以上、テスト4及びテスト5の結果より、本発明電池A
は、酸素ガス吸収性能に優れると共に、水素ガス発生が
抑制されることがわかる。したかって、本発明型ff1
Aの如く、カドミウム極板の表面に酊アルカリ性金属粉
末を含む第1の導電層を形成した後、炭素粉末を含む第
2の導電層を配設することにより、前記特性を発揮し、
サイクル特性に優itだアルカリ蓄電池が提供できる。As described above, from the results of Test 4 and Test 5, the invention battery A
It can be seen that the material has excellent oxygen gas absorption performance and hydrogen gas generation is suppressed. Therefore, the present invention type ff1
As shown in A, the above characteristics are exhibited by forming a first conductive layer containing an alkaline metal powder on the surface of a cadmium electrode plate, and then disposing a second conductive layer containing carbon powder.
Alkaline storage batteries with excellent cycle characteristics can be provided.
〔第4実施例〕
平均繊維径的0.6μm、繊維長数μmのニッケル体(
INCO社製)、糊料(HPC)及び水とを十分に撹拌
してスラリーを調整し、このスラリをローラ転写法によ
りベース極板の表面に塗布した。尚、この時のニッケル
体の添加量は、SCサイズの極板において]00mgと
した。このようにして、本発明電極りを作製した。[Fourth Example] A nickel body (with an average fiber diameter of 0.6 μm and a fiber length of several μm)
(manufactured by INCO), a paste (HPC), and water were sufficiently stirred to prepare a slurry, and this slurry was applied to the surface of the base plate by a roller transfer method. The amount of nickel added at this time was 00 mg for the SC size electrode plate. In this way, the electrode of the present invention was produced.
第1比較例として、繊維径・1μm、長さ1mmのニン
ケルa!維を用い、前記本発明電極りと同様にして、比
較電極Eを作製した。As a first comparative example, Ninkel a! with a fiber diameter of 1 μm and a length of 1 mm is used. Comparative electrode E was prepared in the same manner as the electrode of the present invention using fibers.
第2比較例として、平均粒径25μmのニッケル粉末を
用い、前記本発明電極りと同様にして比較電極Fを作製
した。As a second comparative example, a comparative electrode F was prepared in the same manner as the electrode of the present invention using nickel powder having an average particle size of 25 μm.
更に、第3比較例として、平均粒径2,5μmのニアケ
ル粉末を用い、その添加量をSCサイズの極板において
200mgとした以外は、前記本発明電極りと同様にし
て、比較電極Gを作製した。Furthermore, as a third comparative example, a comparative electrode G was prepared in the same manner as the electrode of the present invention, except that Niacel powder with an average particle size of 2.5 μm was used and the amount added was 200 mg in the SC size electrode plate. Created.
また、第4比較例として、ベース極板をそのまま用い、
比較電極1(とじた。In addition, as a fourth comparative example, using the base plate as is,
Comparative electrode 1 (closed.
このようにして得た電極り、E、F、G、Hを用い、前
記第1乃至第3実験例と同様にして、公称容量1.3
A hの密閉式ニッケルーカドミウム蓄電池(SCサイ
ズ)を得、各性能を比較した。Using the electrodes E, F, G, and H obtained in this way, the nominal capacity was 1.3 in the same manner as in the first to third experimental examples.
A sealed nickel-cadmium storage battery (SC size) of A h was obtained and its performance was compared.
(テストロ)
前記電池d、e、f、g、hを用い、充電時間と電池内
部圧との関係を調べた。この時の条件は、電池を130
mA (0,I C)で16時間充電し、]、OCで完
全放電を行った後、1. 、 OCで急速充電を行うと
いうものである。(Testro) Using the batteries d, e, f, g, and h, the relationship between charging time and battery internal pressure was investigated. The conditions at this time are that the battery is 130
After charging for 16 hours at mA (0, I C) and completely discharging at OC, 1. , which performs rapid charging using OC.
この結果を、第5図に示す。これより、ニッケル体を添
加すること(電池d、e、f、g)により、酸素ガス吸
収性能が向上することがわかる。The results are shown in FIG. From this, it can be seen that the oxygen gas absorption performance is improved by adding a nickel body (cells d, e, f, and g).
なお、比較電池gの初期の電池内部圧が高いのは、ニッ
ケル体の添加量が多く、水素ガスを発生したためである
と考えられる。The reason why the initial battery internal pressure of comparative battery g was high is considered to be because the amount of nickel added was large and hydrogen gas was generated.
ここで、本発明電池dにおいては、添加せるニッケル体
の平均繊維径が0.6μmと極めて小さく、酸素ガス吸
収効果に優れると考えられる。また平均繊維径もしくは
平均粒径が1μmを越えて大きくなるとニッケル体の可
撓性が低下し、セパレータをつきやぶって内部短絡を生
じる可能性があるので、添加せるニッケル体の平均繊維
径もしくは平均粒径は1μm以下とするのが好ましい。Here, in the battery d of the present invention, the average fiber diameter of the nickel body to be added is extremely small, 0.6 μm, and is considered to have an excellent oxygen gas absorption effect. In addition, if the average fiber diameter or average particle diameter becomes larger than 1 μm, the flexibility of the nickel body decreases, and there is a possibility that the separator may be damaged and an internal short circuit may occur. The particle size is preferably 1 μm or less.
尚、本発明に好適な平均繊維径もしくは平均粒径が1μ
m以下のニッケル体は、その形状が接触あるいは半融に
よって繊維の如き一定の方向性を有し、連結した構造の
ものであり、こft以外にも平均粒径が1μm以下のニ
ッケル粒子、平均繊維径が1μm以下のニアケル粉末等
を用いることができる。Note that the average fiber diameter or average particle diameter suitable for the present invention is 1μ.
The nickel bodies with a diameter of 1 μm or less have a fixed directional structure like fibers due to contact or melting, and have a connected structure. Niacel powder or the like having a fiber diameter of 1 μm or less can be used.
また本発明の実施例において、導電層の形成方法として
ローラ転写法を例示したが、何らこれに限定されるもの
ではなく、スプレー法、浸漬法等を用いることも可能で
ある。Further, in the embodiments of the present invention, a roller transfer method was exemplified as a method for forming the conductive layer, but the method is not limited to this in any way, and it is also possible to use a spray method, a dipping method, etc.
(ト)発明の効果
本発明によれば、ペースト式カドミウム電極における酸
素ガス吸収性能を更に向」ニさせることができ、その工
業的価値は極めて大きい。(G) Effects of the Invention According to the present invention, the oxygen gas absorption performance of a paste-type cadmium electrode can be further improved, and its industrial value is extremely large.
第1図は添加せるニッケル粉末の表面積と電池内部圧と
の関係を示す図、第2図は添加せるニアケル粉末の表面
積と電池的水素分圧との関係を示す図、第3図は添加せ
るニッケル粉末の見かけ密度と電池内部圧との関係を示
す図、第4図及び第5図は充電時間と電池内部圧との関
係を示す図である。Figure 1 is a diagram showing the relationship between the surface area of nickel powder to be added and battery internal pressure, Figure 2 is a diagram showing the relationship between the surface area of nickel powder to be added and battery hydrogen partial pressure, and Figure 3 is a diagram showing the relationship between the surface area of nickel powder to be added and battery hydrogen partial pressure. A diagram showing the relationship between the apparent density of nickel powder and the battery internal pressure, and FIGS. 4 and 5 are diagrams showing the relationship between the charging time and the battery internal pressure.
Claims (16)
る活物質層の表面に、炭素粉末と耐アルカリ性金属粉末
とが混在せる導電層を有するものであって、 前記耐アルカリ性全属粉末の表面積は、前記活物質1g
に対して0.001〜0.05m^2であることを特徴
とするアルカリ蓄電池用ペースト式カドミウム電極。(1) A conductive layer containing a mixture of carbon powder and alkali-resistant metal powder on the surface of an active material layer mainly composed of cadmium oxide applied to a conductive core, wherein the alkali-resistant all-metal powder The surface area of 1g of the active material is
A paste-type cadmium electrode for an alkaline storage battery, characterized in that it has a thickness of 0.001 to 0.05 m^2.
ることを特徴とする請求項(1)記載のアルカリ蓄電池
用ペースト式カドミウム電極。(2) The paste-type cadmium electrode for an alkaline storage battery according to claim (1), wherein the alkali-resistant metal powder is nickel powder.
に塗着して活物質層を形成し、前記活物質層の表面に、
炭素粉末と耐アルカリ性金属粉末とが混在せる導電層を
配設せる製造方法であって、 前記耐アルカリ性金属粉末の表面積を、前記活物質1g
に対して0.001〜0.05m^2としたことを特徴
とするアルカリ蓄電池用ペースト式カドミウム電極の製
造方法。(3) Applying an active material containing cadmium oxide as a main component to a conductive core to form an active material layer, and on the surface of the active material layer,
A manufacturing method for disposing a conductive layer in which carbon powder and alkali-resistant metal powder are mixed, the surface area of the alkali-resistant metal powder being equal to 1 g of the active material.
A method for producing a paste-type cadmium electrode for an alkaline storage battery, characterized in that the electrode has a thickness of 0.001 to 0.05 m^2.
を添加することを特徴とする請求項(3)記載のアルカ
リ蓄電池用ペースト式カドミウム電極の製造方法。(4) The method for manufacturing a paste-type cadmium electrode for an alkaline storage battery according to claim (3), characterized in that nickel powder is added as the alkali-resistant metal powder.
る活物質層の表面に、炭素粉末と耐アルカリ性全属粉末
とが混在せる導電層を有するものであって、 前記導電層は、炭素粉末と、糊料と、見かけ密度0.2
g/cc以下の耐アルカリ性金属粉末とからなることを
特徴とするアルカリ蓄電池用ペースト式カドミウム電極
。(5) A conductive layer having a mixture of carbon powder and alkali-resistant all-metal powder on the surface of an active material layer mainly composed of cadmium oxide applied to a conductive core, the conductive layer comprising: Carbon powder, glue, and apparent density 0.2
A paste-type cadmium electrode for an alkaline storage battery, comprising an alkali-resistant metal powder of g/cc or less.
ることを特徴とする請求項(5)記載のアルカリ蓄電池
用ペースト式カドミウム電極。(6) The paste-type cadmium electrode for an alkaline storage battery according to claim (5), wherein the alkali-resistant metal powder is nickel powder.
に塗着して活物質層を形成し、前記活物質層の表面に、
炭素粉末と、糊料と、見かけ密度が0.2g/cc以下
の耐アルカリ性金属粉末とを混練して得たスラリーを塗
布して乾燥を行い、導電層を形成することを特徴とする
アルカリ蓄電池用ペースト式カドミウム電極の製造方法
。(7) Applying an active material containing cadmium oxide as a main component to a conductive core to form an active material layer, and on the surface of the active material layer,
An alkaline storage battery characterized in that a slurry obtained by kneading carbon powder, a glue, and an alkali-resistant metal powder with an apparent density of 0.2 g/cc or less is applied and dried to form a conductive layer. A method for manufacturing paste-type cadmium electrodes for use.
を添加することを特徴とする請求項(7)記載のアルカ
リ蓄電池用ペースト式カドミウム電極の製造方法。(8) The method for producing a paste-type cadmium electrode for an alkaline storage battery according to claim (7), characterized in that nickel powder is added as the alkali-resistant metal powder.
る活物質層の表面に、耐アルカリ性金属粉末及び糊料よ
りなる第1の導電層と、炭素粉末及び糊料よりなる第2
の導電層とを有するものであって、 前記第1の導電層を前記活物質層に密接して配置したこ
とを特徴とするアルカリ蓄電池用ペースト式カドミウム
電極。(9) A first conductive layer made of alkali-resistant metal powder and glue, and a second conductive layer made of carbon powder and glue, on the surface of the active material layer mainly composed of cadmium oxide applied to the conductive core.
A paste-type cadmium electrode for an alkaline storage battery, characterized in that the first conductive layer is disposed closely to the active material layer.
あることを特徴とする請求項(9)記載のアルカリ蓄電
池用ペースト式カドミウム電極。(10) The paste-type cadmium electrode for an alkaline storage battery according to claim 9, wherein the alkali-resistant metal powder is nickel powder.
する活物質層の表面に、耐アルカリ性金属粉末及び糊料
よりなる第1のスラリーを付着させ、乾燥を行い第1の
導電層を形成した後、炭素粉末及び糊料よりなる第2の
スラリーを付着させ、乾燥を行い第2の導電層を形成す
ることを特徴とするアルカリ蓄電池用ペースト式カドミ
ウム電極の製造方法。(11) A first slurry made of alkali-resistant metal powder and glue is applied to the surface of the active material layer mainly composed of cadmium oxide applied to the conductive core, and dried to form the first conductive layer. A method for producing a paste-type cadmium electrode for an alkaline storage battery, which comprises, after forming, depositing a second slurry made of carbon powder and paste and drying to form a second conductive layer.
末を添加することを特徴とする請求項(11)記載のア
ルカリ蓄電池用ペースト式カドミウム電極の製造方法。(12) The method for producing a paste-type cadmium electrode for an alkaline storage battery according to claim (11), characterized in that nickel powder is added as the alkali-resistant metal powder.
する活物質層の表面に、平均繊維径が1μm以下の繊維
状ニッケル体もしくは/及び平均粒径が1μm以下の粉
末状ニッケル体を分散させたことを特徴とするアルカリ
蓄電池用ペースト式カドミウム電極。(13) Fibrous nickel bodies with an average fiber diameter of 1 μm or less and/or powdered nickel bodies with an average particle diameter of 1 μm or less are applied to the surface of the active material layer mainly composed of cadmium oxide applied to the conductive core. A paste-type cadmium electrode for alkaline storage batteries characterized by being dispersed.
よって、一定の方向性をもって連結した粒子構造である
ことを特徴とする請求項(13)記載のアルカリ蓄電池
用ペースト式カドミウム電極。(14) The paste-type cadmium electrode for an alkaline storage battery according to claim (13), wherein the nickel body has a particle structure in which particles are connected in a certain direction by contact or by melting.
体に塗着して活物質層を形成した後、前記活物質層の表
面に、平均繊維径が1μm以下の繊維状ニッケル体もし
くは/及び平均粒径が1μm以下の粉末状ニッケル体を
分散、添加することを特徴とするアルカリ蓄電池用ペー
スト式カドミウム電極の製造方法。(15) After applying an active material containing cadmium oxide as a main component to a conductive core to form an active material layer, apply a fibrous nickel body with an average fiber diameter of 1 μm or less or/to the surface of the active material layer. and a method for producing a paste-type cadmium electrode for an alkaline storage battery, which comprises dispersing and adding powdered nickel bodies having an average particle size of 1 μm or less.
融によって、一定の方向性をもって連結した粒子構造の
ものを分散、添加することを特徴とする請求項(15)
記載のアルカリ蓄電池用ペースト式カドミウム電極の製
造方法。(16) Claim (15) characterized in that the nickel body has a particle structure in which particles are connected in a certain direction by contact or smelting.
The method for manufacturing the paste-type cadmium electrode for alkaline storage batteries described above.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1010309A JP2840270B2 (en) | 1989-01-18 | 1989-01-18 | Paste type cadmium electrode for alkaline storage battery and method for producing the same |
US07/466,530 US4988589A (en) | 1989-01-18 | 1990-01-17 | Paste-type cadmium electrode for use in an alkaline storage cell and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1010309A JP2840270B2 (en) | 1989-01-18 | 1989-01-18 | Paste type cadmium electrode for alkaline storage battery and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02189862A true JPH02189862A (en) | 1990-07-25 |
JP2840270B2 JP2840270B2 (en) | 1998-12-24 |
Family
ID=11746646
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1010309A Expired - Fee Related JP2840270B2 (en) | 1989-01-18 | 1989-01-18 | Paste type cadmium electrode for alkaline storage battery and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2840270B2 (en) |
-
1989
- 1989-01-18 JP JP1010309A patent/JP2840270B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2840270B2 (en) | 1998-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4614696A (en) | Negative electrode plate for alkaline storage cells of sealed type | |
JPH117948A (en) | Nickel-hydrogen battery anode and manufacture thereof | |
JPH02189862A (en) | Paste type cd electrode for alkaline storage battery and manufacture thereof | |
JP3573925B2 (en) | Metal-hydride alkaline storage battery and method of manufacturing the same | |
JP3729815B2 (en) | Negative electrode plate for nickel-hydrogen storage battery, method for producing the same, and nickel-hydrogen storage battery using the same | |
JPH11307092A (en) | Nickel hydroxide powder for alkaline storage battery positive electrode active material and its manufacture | |
JPS61208755A (en) | Pasted negative cadmium plate for sealed alkaline storage battery | |
JP3269123B2 (en) | Electrode substrate for alkaline storage battery, method for producing the same, and electrode for alkaline storage battery using the substrate | |
JP2001093520A (en) | Hydrogen storage alloy electrode and preparation thereof | |
JP2797554B2 (en) | Nickel cadmium storage battery | |
JPS5935360A (en) | Zinc electrode | |
JPH0234434B2 (en) | ||
JPH04262367A (en) | Hydrogen storage electrode | |
JP2623413B2 (en) | Paste nickel electrode for alkaline storage batteries | |
JPS63126163A (en) | Alkaline storage battery | |
JPH01107453A (en) | Alkaline secondary battery | |
JP2007095334A (en) | Hydrogen storage alloy electrode, method of manufacturing same and alkaline storage battery | |
JP2734149B2 (en) | Manufacturing method of paste-type cadmium negative electrode | |
JPH0234433B2 (en) | ||
JPH0217910B2 (en) | ||
JPH03745B2 (en) | ||
JPH0737580A (en) | Pasted cadmium negative plate for alkaline storage battery | |
JPH044558A (en) | Manufacture of positive electrode plate for alkaline storage battery | |
JPH06267535A (en) | Hydrogen storage alloy electrode | |
JP2000173605A (en) | Manufacture of negative electrode for battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |