JPH02188971A - Semiconductor photoreceptor element - Google Patents

Semiconductor photoreceptor element

Info

Publication number
JPH02188971A
JPH02188971A JP1008410A JP841089A JPH02188971A JP H02188971 A JPH02188971 A JP H02188971A JP 1008410 A JP1008410 A JP 1008410A JP 841089 A JP841089 A JP 841089A JP H02188971 A JPH02188971 A JP H02188971A
Authority
JP
Japan
Prior art keywords
layer
light
gaas
semiconductor
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1008410A
Other languages
Japanese (ja)
Inventor
Tetsuo Shiba
哲夫 芝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1008410A priority Critical patent/JPH02188971A/en
Publication of JPH02188971A publication Critical patent/JPH02188971A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To obtain a semiconductor photoreceptor element which can detect rays of light of various wavelengths in a multiplexed state by epitaxially growing materials having different lattice constants after piling up them on the same substrate. CONSTITUTION:This semiconductor photoreceptor element is provided with at least one set of a laminated structure composed of the first semiconductor layer 1 of the first conductivity type, first semiconductor layer 2 of the second conductivity type, second semiconductor layer 4 of the first or second conductivity type, and second semiconductor layer 5 of the second or first conductivity type and the first and second semiconductor layers 1 and 2 and 4 and 5 are made to have different lattice constants. For example, a laminated structure composed of an n-GaAs layer 5, p-GaAs layer 4, GaAs buffer layer 3, p-InGaAs layer 2, and n-InGaAs layer 1 is formed on an n-GaAs substrate 6. When signal rays of light having wavelengths of lambda=0.8mum and lambda=0.13mum are made incident on the structure as incident light 10, the light having the wavelength lambda=1.3mum is absorbed into the InGaAs layers 1 and 2 after passing through the GaAs layers 3-6, while the light having the wavelength of lambda=0.8mum is absorbed into the GaAs layers 4-6.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は波長多重半導体受光素子に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a wavelength multiplexing semiconductor light receiving element.

〔従来の技術〕[Conventional technology]

第2図は例えばアプライド、フィジックス、レター35
 PP、 588に示された従来の波長多重半導体受光
素子を示す断面図で1図において、(ロ)はn−1nG
aAsP層、斡はP−1nGaAsP層で、ともに禁制
帯幅はAlが1.55μmである。時はP−1nP、Q
4はP−I nGaAs P層、四はn−1nGaAs
P層で、ともに禁。
Figure 2 shows, for example, Applied, Physics, Letter 35
PP, 588 is a cross-sectional view showing a conventional wavelength multiplexing semiconductor light receiving element.
The aAsP layer and the square are P-1nGaAsP layers, and both have a forbidden band width of 1.55 μm for Al. Time is P-1nP, Q
4 is P-I nGaAs P layer, 4 is n-1nGaAs
Both are prohibited in the P layer.

制得幅はAlが1.3μm である。aQはn−1nP
基板である。
The obtained width is 1.3 μm for Al. aQ is n-1nP
It is a board.

次に動作について説明する。波長λ=1.3μm、1.
55μmの混在した発明が入射した場合を考える。
Next, the operation will be explained. Wavelength λ=1.3 μm, 1.
Let us consider the case where a mixture of 55 μm diameters is incident.

lnP基板αQ及びlnP層曹は両波長の光に対して透
明であるので透過する。InGaAsP層a4.U及び
1nGaAsP層uXlaは、その禁制帯幅がλp=1
.3μm。
Since the lnP substrate αQ and the lnP layer are transparent to light of both wavelengths, the light passes through. InGaAsP layer a4. The forbidden band width of U and 1nGaAsP layer uXla is λp=1
.. 3 μm.

1.55μmに各々選んであるので、λ=1.3μmの
光は1nGaAsP層a4) 、 ofjで吸収され、
λ=1.55μmの光は1nGaAsP Jl(14、
Cmを透過した後on 、 aにおいて吸収される。電
極(7) 、 (8)間にP−1nGaAsP層(ロ)
Since 1.55 μm is selected for each, the light of λ = 1.3 μm is absorbed by the 1nGaAsP layer a4) and ofj,
The light of λ=1.55μm is 1nGaAsP Jl (14,
After passing through Cm, it is absorbed at a. P-1nGaAsP layer (b) between electrodes (7) and (8)
.

n−1nGaAsPJl東が逆バイアスとなる様に電圧
を加え、また電極(8) 、 (97間にP−1nGa
AsP層(ロ)、n−InGaAsP111QIiが逆
バイアスとなる様に電圧を加えると、出力端0UTI 
、 OUT 2間にはλ−155#m光からの信号出力
が、出力端OUT 2、OUT 3間にはλ=1.3μ
m光からの信号出力が各々得られる。従って、仁の構造
の半導体受光素子によりλ=1.3μm。
A voltage was applied so that the n-1nGaAsPJl east was reverse biased, and the P-1nGaAs
When a voltage is applied so that the AsP layer (b) and n-InGaAsP111QIi are reverse biased, the output terminal becomes 0UTI.
, The signal output from λ-155#m light is between OUT 2, and λ = 1.3μ between output terminals OUT 2 and OUT 3.
Signal outputs from m lights are obtained, respectively. Therefore, λ=1.3 μm due to the semiconductor photodetector with the cylindrical structure.

1.55μmの2波長の信号光を独立に検出できる。Signal light of two wavelengths of 1.55 μm can be detected independently.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の半導体受光素子は以上のように構成されていたの
で、基板と格子層が整合する結晶組成で決まる禁制帯幅
の波長しか検出ができず、信号の波長選択にも制約があ
った。例えば基板としてGa Asを選ぶと受光可能な
波長範囲としては0.87μm以下の波長しか選べない
という問題点があった。
Conventional semiconductor light-receiving devices were configured as described above, so they could only detect wavelengths within the forbidden band determined by the crystal composition that matches the substrate and lattice layer, and there were also restrictions on the selection of signal wavelengths. For example, if GaAs is selected as the substrate, there is a problem in that the wavelength range in which light can be received is only a wavelength of 0.87 μm or less.

この発明は上記のような問題点を解消するためになされ
たもので、半導体受光素子に用いる材料として異種の材
料を組み合わせることにより、信号の波長の選択比を多
(することを目的とする。
This invention was made to solve the above-mentioned problems, and aims to increase the selection ratio of signal wavelengths by combining different materials for use in semiconductor light-receiving elements.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る半導体受光素子は格子定数の異なる薄膜
を緩衝層を介してエピタキシアルに成長することにより
、光吸収層の材料として異種の半導体層の組み合わせを
可能にしたものである。
The semiconductor light-receiving device according to the present invention allows the combination of different types of semiconductor layers as materials for the light absorption layer by epitaxially growing thin films with different lattice constants via a buffer layer.

〔作用〕[Effect]

この発明]こおける異種の半導体層の組み合わせは光吸
収層に用いる材料の種類が増え信号の波手も多種に選べ
る。
In this invention, the combination of different types of semiconductor layers increases the variety of materials used for the light absorption layer and allows a wide variety of signal waveforms to be selected.

〔実施例J 以下、この発明の一実施例を図について説明する。第1
図において、(1)はn−InGaAs層、(2,1は
P−InGaAs層で、その禁制帯幅はともにλII 
= 1.65μmである。(3)はGaAsバッファ層
、(4)はP−GaAs 層(5)はn−GaAs層、
(6J n−GaAs基板、(7) 、 (8)、(9
]は各々バイアス電圧を加えるとともに信号を取り出す
ための電極である。
[Embodiment J Hereinafter, one embodiment of the present invention will be described with reference to the drawings. 1st
In the figure, (1) is an n-InGaAs layer, (2, 1 is a P-InGaAs layer, and both have a forbidden band width of λII
= 1.65 μm. (3) is a GaAs buffer layer, (4) is a P-GaAs layer, (5) is an n-GaAs layer,
(6J n-GaAs substrate, (7), (8), (9
] are electrodes for applying a bias voltage and extracting a signal.

ここでGaAsバッファ層(3)はGa AsとInG
aAsの間にある約4%の格子不整合を緩和するために
形成された層であり、このバッファ層(3)によりGa
AsとI nGaAsのエピタキシアル成長が可能とな
る。
Here, the GaAs buffer layer (3) is made of GaAs and InG.
This layer was formed to alleviate the approximately 4% lattice mismatch between aAs, and this buffer layer (3)
Epitaxial growth of As and InGaAs becomes possible.

次に動作について説明する。入射光αqとしてλ=0.
8μm、1.3μmの2波長の信号光を考える。
Next, the operation will be explained. As incident light αq, λ=0.
Consider signal light with two wavelengths of 8 μm and 1.3 μm.

Ga Asは1.3μmの光に対しては透明であるため
人=1.3μmの光はG a A s層(3) 、 (
4) 、 (5) 、 (13−を透過し、InGaA
s層(11、(2)で吸収される。一方、λ=0.8μ
mの光はGaAs層(4J 、 (5) 、 (61で
吸収される。電極(7)。
Since GaAs is transparent to light of 1.3 μm, light of 1.3 μm is exposed to the GaAs layer (3), (
4), (5), (13-, transmitted through InGaA
It is absorbed in the s layer (11, (2). On the other hand, λ = 0.8μ
The light of m is absorbed by the GaAs layer (4J, (5), (61). Electrode (7).

(8]間にn−InGaAs層(1)、P−InGaA
s層(2)が逆バイアスとなる様に電圧を加え、電極(
8) 、 (9)間にP−Cy a A 8層(4) 
%n−GaAs層(5)間が逆バイアスとなる。
(8) n-InGaAs layer (1) between, P-InGaA
A voltage is applied so that the s-layer (2) becomes reverse biased, and the electrode (
8), (9) 8 layers of P-Cy a A (4)
A reverse bias is applied between the %n-GaAs layers (5).

様に電圧を加える。この様にす・ることにより出力端0
UTI 、 0UT2間にλ=1.3μmの光からの信
号が検出され、また出力端0UT2 、0UT3間には
λ=0.8μmの光からの信号が検出される。この様に
InGaAs層を新たに光吸収層として導入することに
よりGa As基板を用いた時の受光波長帯としては従
来の0.87μm以下から1.65μm以下まで広がり
、現在商用化されている0、8μm帯と1μm帯の半導
体発光素子の光が同時に受光可能となる。
Apply voltage accordingly. By doing this, the output end becomes 0.
A signal from light with λ=1.3 μm is detected between UTI and 0UT2, and a signal from light with λ=0.8 μm is detected between output ends 0UT2 and 0UT3. In this way, by newly introducing the InGaAs layer as a light absorption layer, the light reception wavelength band when using a GaAs substrate is expanded from the conventional 0.87 μm or less to 1.65 μm or less, and the currently commercialized 0. , it becomes possible to simultaneously receive light from the semiconductor light emitting device in the 8 μm band and the 1 μm band.

尚、上記実施例では材料としてl nG a As層と
Ga As層を選んだ場合を示したが、この組合せはエ
ピタキシアル成長が可能な限りあらゆる結晶に対しても
適用可能で、また材料として2種類のものを選んだ場合
を示したが3種類以上の材料を積層構造に重ねてもよく
同様の効果を奏する。
In the above example, the case where the lnGaAs layer and the GaAs layer were selected as the materials was shown, but this combination can be applied to any crystal that can be grown epitaxially, and Although the case where different types of materials are selected is shown, the same effect can be obtained by stacking three or more types of materials in a laminated structure.

また、第1の半導体層と第2の半導体層の間に緩衝層を
設けても同様の効果を奏する。
Further, the same effect can be obtained even if a buffer layer is provided between the first semiconductor layer and the second semiconductor layer.

〔発明の効果」 以上のようにこの発明によれば、格子定数の異なる材料
を同一基板上にエピタキシアルに成長したため、多種の
波長の光を多重に検出できる半導体受光素子が得られる
効果がある。
[Effects of the Invention] As described above, according to the present invention, since materials with different lattice constants are epitaxially grown on the same substrate, it is possible to obtain a semiconductor light-receiving element that can multiplexly detect light of various wavelengths. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による半導体受光素子を示
す断面図、第2図は従来の半導体受光素子の断面図であ
る。図において、(1)はn−InGaAs層i21は
P−InGaAs t’fl、(3]はGaAs層、(
3)はGaAsバッファ層、(4)はP−GaAs層、
(5)はn GaAs rm、(6)はn −G aA
 s基板、(7)は第1の電極、(8)は第2の電極、
(9)は第3の電極、慶は入射光を示す。 なお、図中、同一符号は同一、又は相当部分を示す。
FIG. 1 is a cross-sectional view showing a semiconductor light-receiving device according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view of a conventional semiconductor light-receiving device. In the figure, (1) is an n-InGaAs layer i21 is a P-InGaAs t'fl, (3] is a GaAs layer, (
3) is a GaAs buffer layer, (4) is a P-GaAs layer,
(5) is n GaAs rm, (6) is n -GaA
s substrate, (7) is the first electrode, (8) is the second electrode,
(9) indicates the third electrode, and Kei indicates the incident light. In addition, in the figures, the same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 第1導電型の第1の半導体層、第2導電型の第1の半導
体層、第1または第2導電型の第2の半導体層、第2ま
たは第1導電型の第2の半導体層から成る積層構造の内
少なくとも1組の半導体層を備え、第1の半導体層と第
2の半導体層との格子定数が異なるようにしたことを特
徴とする半導体受光素子。
From a first semiconductor layer of a first conductivity type, a first semiconductor layer of a second conductivity type, a second semiconductor layer of the first or second conductivity type, a second semiconductor layer of the second or first conductivity type. 1. A semiconductor light-receiving device comprising at least one set of semiconductor layers in a laminated structure comprising a first semiconductor layer and a second semiconductor layer having different lattice constants.
JP1008410A 1989-01-17 1989-01-17 Semiconductor photoreceptor element Pending JPH02188971A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1008410A JPH02188971A (en) 1989-01-17 1989-01-17 Semiconductor photoreceptor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1008410A JPH02188971A (en) 1989-01-17 1989-01-17 Semiconductor photoreceptor element

Publications (1)

Publication Number Publication Date
JPH02188971A true JPH02188971A (en) 1990-07-25

Family

ID=11692377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1008410A Pending JPH02188971A (en) 1989-01-17 1989-01-17 Semiconductor photoreceptor element

Country Status (1)

Country Link
JP (1) JPH02188971A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0567769A (en) * 1991-09-05 1993-03-19 Sony Corp Three-dimensional photoelectronic integrated circuit device
JP2008500723A (en) * 2004-05-27 2008-01-10 フォブオン・インク Amorphous silicon vertical color filter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0567769A (en) * 1991-09-05 1993-03-19 Sony Corp Three-dimensional photoelectronic integrated circuit device
JP2008500723A (en) * 2004-05-27 2008-01-10 フォブオン・インク Amorphous silicon vertical color filter

Similar Documents

Publication Publication Date Title
KR950006963A (en) Semiconductor Crystal Laminate, Formation Method thereof, and Semiconductor Device
JPS6259895B2 (en)
US4297720A (en) Multi-photodiodes
JPS63177114A (en) Optical switch
JP3285981B2 (en) Semiconductor light receiving element
JPH02188971A (en) Semiconductor photoreceptor element
JPS5593275A (en) Semiconductor light wave separating detector
JP2758472B2 (en) Light modulator
JPS6324218A (en) Voltage control type light modulator
JPS62291184A (en) Semiconductor light-receiving device
JP2000174322A (en) Optical detector
JPS6235682A (en) Photodetector
JPH08195504A (en) Photodetector
JPH06204549A (en) Waveguide type photodetector, manufacture thereof and driving method thereof
JPS63177487A (en) Semiconductor device
JPH07106621A (en) Semiconductor light receiving element
JPS61144015A (en) Semiconductor device without substrate and manufacture thereof
JPH01204018A (en) Optical modulator
JP2657288B2 (en) Optical gate array
Cartland et al. High Contrast, 2D Spatial Light Modulators (SLMs) Using InGaAs/AlGaAs Quantum Wells Operating at 980nm
JPH0294573A (en) Photodetector
JPH08139407A (en) Optical semiconductor device having semiconductor quantum well structure
JPS60130184A (en) Semiconductor laser array device
JPH0148663B2 (en)
JP2988153B2 (en) Wavelength-selective semiconductor photo detector