JPH07106621A - Semiconductor light receiving element - Google Patents

Semiconductor light receiving element

Info

Publication number
JPH07106621A
JPH07106621A JP5245484A JP24548493A JPH07106621A JP H07106621 A JPH07106621 A JP H07106621A JP 5245484 A JP5245484 A JP 5245484A JP 24548493 A JP24548493 A JP 24548493A JP H07106621 A JPH07106621 A JP H07106621A
Authority
JP
Japan
Prior art keywords
layer
receiving element
light receiving
quantum well
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5245484A
Other languages
Japanese (ja)
Inventor
Norihiro Iwai
則広 岩井
Norio Okubo
典雄 大久保
Tetsuro Ijichi
哲朗 伊地知
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP5245484A priority Critical patent/JPH07106621A/en
Publication of JPH07106621A publication Critical patent/JPH07106621A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a semiconductor light receiving element exhibiting excellent absorption characteristics for a specific laser light, while realizing monolithic structure with an electronic device easily, by laminating an InGaAs quantum well layer having compressive strain and a GaAsP or InGaP barrier layer having tensile strain alternately to form a light absorption layer. CONSTITUTION:A buffer layer 2, a strained quantum well light absorption layer 3, and a window layer 4 are laminated on an n-GaAs substrate 1. The strained quantum well light absorption layer comprises an alternate laminate of 100 layers of In0.28Ga0.72As well layer 3a and GaAs0.44P0.5 barrier layer 3b. The In0.28Ga0.72As well layer 3a is epitaxially grown on the GaAs substrate as a crystal having grating constant higher than that of GaAs. The well layer 3a is applied with compressive strain of 0.2% thus setting the center of absorption band of light receiving element at 1mum or thereabout. On the other hand, the GaAs0.44P0.5 barrier layer 3b is grown epitaxially on the GaAs substrate as a crystal having grating constant lower than that of GaAs and applied with tensile strain of 0.2%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、1μm近傍の波長の光
通信用レーザに使用する半導体受光素子に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor light receiving element used for a laser for optical communication having a wavelength near 1 μm.

【0002】[0002]

【従来の技術】工場内LANや屋内通信等の短距離光通
信においては、伝送効率が低下しても使用上の支障が少
ないことから、しきい値、消費電力等の特性に優れる1
μm近傍の短波長帯レーザが使用される場合が多い。
2. Description of the Related Art In short-distance optical communication such as in-plant LAN and indoor communication, there is little trouble in use even if the transmission efficiency is lowered, and therefore, characteristics such as threshold value and power consumption are excellent.
In many cases, a short wavelength band laser in the vicinity of μm is used.

【0003】この周波数帯における受光素子は、一般に
は価格が低廉なSi系の受光素子が多く用いられている
が、Siの光吸収帯の中心波長は0.7μm前後であり
1μm近傍のレーザ光に対する受光感度は必ずしも十分
ではない。また、Si系の受光素子をGaAs基板上に
作製することは困難であるため、GaAs基板上に形成
される電子デバイスとモノリシック化してOEICを作
製することができないという欠点がある。
As the light receiving element in this frequency band, generally, a cheap Si type light receiving element is often used, but the central wavelength of the Si light absorption band is around 0.7 μm, and the laser light in the vicinity of 1 μm is used. The light receiving sensitivity to is not always sufficient. Further, since it is difficult to fabricate the Si-based light receiving element on the GaAs substrate, there is a drawback that it is not possible to fabricate the OEIC by making it monolithic with the electronic device formed on the GaAs substrate.

【0004】一方、InGaAs/GaAsP系あるい
は、InGaAs/InGaP系の量子井戸受光素子
は、井戸層であるInGaAsに0.2%程度の圧縮歪
を加えることにより、光吸収帯の中心波長を1μm前後
とすることが可能であるとともに、GaAs基板上に形
成される電子デバイスとのモノリシック化が容易である
ことから、1μm近傍の波長帯レーザの受信素子への適
用が検討されている。
On the other hand, in the InGaAs / GaAsP-based or InGaAs / InGaP-based quantum well photodetector, the center wavelength of the optical absorption band is about 1 μm by applying a compressive strain of about 0.2% to InGaAs which is a well layer. In addition to the above, it is possible to make it monolithic with an electronic device formed on a GaAs substrate, and its application to a receiving element of a wavelength band laser near 1 μm is under study.

【0005】[0005]

【発明が解決しようとする課題】ところが、上記量子井
戸受光素子の光吸収強度を十分なものにするためには光
吸収層の膜厚を少なくとも1μm程度とすることが必要
であるが、歪を加えたInGaAs等の結晶を積層する
とストレスの累積により結晶欠陥、結晶破壊を生じるた
め、光吸収強度を十分なものにできる膜厚を得ることが
出来なかった。
However, in order to make the light absorption intensity of the quantum well light receiving element sufficient, it is necessary that the thickness of the light absorption layer is at least about 1 μm. When the added crystals of InGaAs or the like are laminated, crystal defects and crystal destruction occur due to the accumulation of stress, so that it is not possible to obtain a film thickness that can achieve a sufficient light absorption intensity.

【0006】例えば、GaAs基板上に0.2%の圧縮
歪を有する膜厚6nmのInGaAs井戸層と、歪を有
さない膜厚6nmのGaAsP障壁層を交互に成長させ
た場合、井戸層と障壁層を各3〜5層積層すると、TE
Mで確認できる程度の大きい結晶欠陥が生じ、それ以上
の結晶成長は不可能となる。このため、従来の検討では
歪量子井戸光吸収層の膜厚はせいぜい100nmが上限
であり、十分な光吸収強度を得ることはできなかったも
のである。
For example, when an InGaAs well layer having a thickness of 6 nm having a compressive strain of 0.2% and a GaAsP barrier layer having a thickness of 6 nm having no strain are alternately grown on a GaAs substrate, a well layer is formed. When 3 to 5 barrier layers are laminated, TE
Large crystal defects that can be confirmed by M occur, and further crystal growth is impossible. Therefore, in the conventional studies, the upper limit of the film thickness of the strained quantum well light absorption layer is 100 nm, and a sufficient light absorption intensity cannot be obtained.

【0007】[0007]

【課題を解決するための手段】本発明は上記の問題に鑑
みてなされたものであって、GaAs基板上に形成され
る、1μm近傍のレーザ光に対する受光感度に優れると
ともに吸収強度が十分高い受光素子であって、該光吸収
層が圧縮歪を有するInGaAs量子井戸層と、引張歪
を有するGaAsP障壁層叉は、引張歪を有するInG
aP障壁層との繰り返し構造により形成されていること
を特徴とする半導体受光素子である。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and is excellent in the light receiving sensitivity for a laser beam in the vicinity of 1 .mu.m formed on a GaAs substrate and has a sufficiently high absorption intensity. In the device, the light absorption layer is an InGaAs quantum well layer having a compressive strain, a GaAsP barrier layer having a tensile strain, or an InG having a tensile strain.
A semiconductor light receiving element characterized by being formed by a repeating structure with an aP barrier layer.

【0008】本発明において、井戸層に圧縮歪を加える
のは、受光素子の吸収帯中心を1μm近傍にするためで
あり、例えば、膜厚6nmのIn0.20Ga0.80As井戸
層を用いれば吸収帯中心は0.95μmとなり、膜厚6
nmのIn0.28Ga0.72As井戸層を用いれば吸収帯中
心は0.98μmとすることができる。
In the present invention, the compressive strain is applied to the well layer so that the center of the absorption band of the light receiving element is in the vicinity of 1 μm. For example, if an In 0.20 Ga 0.80 As well layer having a film thickness of 6 nm is used, The center is 0.95 μm, and the film thickness is 6
If the In 0.28 Ga 0.72 As well layer of nm is used, the absorption band center can be set to 0.98 μm.

【0009】また、障壁層に引張歪を加えるのは、井戸
層層数の増加による歪のストレスの累積を緩和すること
を目的とするものであり、これにより結晶欠陥、結晶破
壊を生じることなく光吸収層の膜厚を大きくすることが
でき、光吸収強度を高めることができるものである。
The purpose of applying tensile strain to the barrier layer is to alleviate the accumulation of strain stress due to the increase in the number of well layer layers, and thereby to prevent crystal defects and crystal destruction. The thickness of the light absorption layer can be increased, and the light absorption intensity can be increased.

【0010】[0010]

【実施例】以下、本発明の実施例を図1、図2を用いて
説明する。図1は本発明に係る受光素子の構成を示す断
面図であり、図2は本発明の特徴である歪量子井戸光吸
収層の構成を示す拡大断面図である。図1中、歪量子井
戸光吸収層3を除く部分は、公知のPIN受光素子と同
一の構造である。
Embodiments of the present invention will be described below with reference to FIGS. 1 and 2. FIG. 1 is a sectional view showing a structure of a light receiving element according to the present invention, and FIG. 2 is an enlarged sectional view showing a structure of a strained quantum well light absorption layer which is a feature of the present invention. In FIG. 1, the portion excluding the strained quantum well light absorption layer 3 has the same structure as a known PIN light receiving element.

【0011】即ち、1はn−GaAs基板であり、2は
膜厚1μmのn−InGaPバッファー層であり、4は
膜厚0.5μmのn−InGaPウインド層であり、5
はSiNx 絶縁膜(x は自然数)であり、8はSiNx
膜5をマスクとしてZnを拡散させて形成した、厚さ
0.8μmのp+ 拡散層であり、6及び7はそれぞれp
側電極、n側電極であり、9はSiNx 反射防止膜であ
る。
That is, 1 is an n-GaAs substrate, 2 is an n-InGaP buffer layer having a thickness of 1 μm, 4 is an n-InGaP window layer having a thickness of 0.5 μm, and 5
Is a SiNx insulating film (x is a natural number), 8 is SiNx
A p + diffusion layer having a thickness of 0.8 μm and formed by diffusing Zn using the film 5 as a mask, and 6 and 7 are p
A side electrode and an n-side electrode, and 9 is a SiNx antireflection film.

【0012】また、図2中、3aは厚さ6nmのIn
0.28Ga0.72As井戸層であり、3bは厚さ6nmのG
aAs0.440.56障壁層であり、井戸層3aおよび障壁
層3bが交互に各100層積層され、歪量子井戸光吸収
層3の全体の膜厚が1.2μmに構成されている。
Further, in FIG. 2, 3a is In having a thickness of 6 nm.
0.28 Ga 0.72 As well layer 3b is 6 nm thick G
This is an aAs 0.44 P 0.56 barrier layer, in which 100 well layers 3a and 3 barrier layers are alternately laminated, and the total thickness of the strained quantum well light absorption layer 3 is 1.2 μm.

【0013】ここで、井戸層3aを構成するIn0.28
0.72AsはGaAsよりも格子定数の大きい結晶であ
り、GaAs基板上にエピタキシャル成長させることに
より、井戸層3aには0.2%の圧縮歪が加えられてお
り、一方、障壁層3bを構成するGaAs0.440.56
GaAsよりも格子定数の小さい結晶であり、GaAs
基板上にエピタキシャル成長させることにより、障壁層
3bには0.2%の引張歪が加えられている。
Here, In 0.28 G forming the well layer 3a
a 0.72 As is a crystal having a larger lattice constant than GaAs, and by epitaxially growing it on a GaAs substrate, a compressive strain of 0.2% is applied to the well layer 3a, while forming a barrier layer 3b. GaAs 0.44 P 0.56 is a crystal having a smaller lattice constant than GaAs.
Due to the epitaxial growth on the substrate, a tensile strain of 0.2% is applied to the barrier layer 3b.

【0014】この様に、井戸層に圧縮歪を加えるのは、
受光素子の吸収帯中心を1μm近傍にするためであり、
本実施例においては吸収帯中心は0.98μmであっ
た。また、TEMによる断面観察を行ったところ、量子
井戸光吸収層3には結晶欠陥や結晶破壊を生じていない
ことが確認された。これは、井戸層にのみ圧縮歪を加え
る従来の歪量子井戸受光素子と異なり、井戸層と障壁層
にそれぞれ反対方向の歪を加えているため、歪によるス
トレスが相互に緩和されていることによるものである。
In this way, the compressive strain is applied to the well layer as follows.
This is because the absorption band center of the light receiving element is set to be near 1 μm,
In this example, the center of the absorption band was 0.98 μm. Further, when a cross-section was observed by TEM, it was confirmed that the quantum well light absorption layer 3 did not have crystal defects or crystal destruction. This is because, unlike the conventional strained quantum well photo detector in which compressive strain is applied only to the well layer, strains in opposite directions are applied to the well layer and the barrier layer, so that stress due to strain is mutually relaxed. It is a thing.

【0015】なお、上記した実施例においては障壁層と
してGaAsP系の結晶を用いた場合を示したが、引張
歪を加えたInGaP系の結晶を用いても同様の効果を
得ることができる。また、上記した実施例ではPIN受
光素子により説明を行ったが、アバランシフォトダイオ
ード(APD)等、他のタイプの受光素子についても同
様に本発明を適用することができる。更に、本発明の要
点は井戸層と障壁層にそれぞれ逆方向の歪を加えること
により歪のストレスを相互に緩和するところにあり、井
戸層及び障壁層の膜厚、歪の程度、あるいは各層の繰り
返し数等、レーザ光の波長や強度等に応じて適宜変更す
べき数値は上記実施例における記載に限定されるもので
はない。
Although the GaAsP type crystal is used as the barrier layer in the above-mentioned embodiment, the same effect can be obtained by using the tensile strained InGaP type crystal. Although the PIN light receiving element has been described in the above embodiments, the present invention can be similarly applied to other types of light receiving elements such as an avalanche photodiode (APD). Further, the gist of the present invention is to mutually relax strain stress by applying strains in opposite directions to the well layer and the barrier layer, respectively. The film thickness of the well layer and the barrier layer, the degree of strain, or Numerical values such as the number of repetitions that should be appropriately changed according to the wavelength and intensity of the laser light are not limited to those described in the above embodiment.

【0016】[0016]

【発明の効果】上記した説明から明かな様に、本発明に
係る受光素子は、光吸収層が圧縮歪を有するInGaA
s量子井戸層と引張歪を有するGaAsP障壁層叉は引
張歪を有するInGaP障壁層との繰り返し構造により
形成されているため、1μm近傍のレーザ光に対して優
れた吸収特性を有し、また、GaAs基板上に形成する
ものであることから、電子デバイスとのモノリシック化
が容易となるという利点がある。
As is apparent from the above description, in the light receiving element according to the present invention, the light absorbing layer is made of InGaA having a compressive strain.
Since it is formed by a repeating structure of an s quantum well layer and a tensile strained GaAsP barrier layer or a tensile strained InGaP barrier layer, it has excellent absorption characteristics for laser light in the vicinity of 1 μm, and Since it is formed on a GaAs substrate, it has an advantage that it can be easily monolithic with an electronic device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る受光素子の一実施例を示す断面図
である。
FIG. 1 is a sectional view showing an embodiment of a light receiving element according to the present invention.

【図2】本発明の特徴である光量子井戸光吸収層の構成
を示す拡大断面図である。
FIG. 2 is an enlarged cross-sectional view showing a structure of a photonic quantum well light absorption layer which is a feature of the present invention.

【符号の説明】[Explanation of symbols]

1はn−GaAs基板 2はn−InGaPバッファー層 3は歪量子井戸光吸収層 3aはInGaAs井戸層 3bはGaAsP障壁層 4はn−InGaPウインド層 5はSiNx 絶縁膜 6はp側電極 7はn側電極 8はp+ 拡散層 9はSiNx 反射防止膜1 is an n-GaAs substrate 2 is an n-InGaP buffer layer 3 is a strained quantum well light absorption layer 3a is an InGaAs well layer 3b is a GaAsP barrier layer 4 is an n-InGaP window layer 5 is a SiNx insulating film 6 is a p-side electrode 7 n-side electrode 8 is p + diffusion layer 9 is SiNx antireflection film

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 GaAs基板上に光吸収層を設けた受光
素子であって、該光吸収層が圧縮歪を有するInGaA
s量子井戸層と、引張歪を有するGaAsP障壁層叉は
引張歪を有するInGaP障壁層との繰り返し構造によ
り形成されていることを特徴とする半導体受光素子。
1. A light-receiving element having a light absorption layer provided on a GaAs substrate, wherein the light absorption layer has a compressive strain of InGaA.
A semiconductor light-receiving element characterized by being formed by a repeating structure of an s quantum well layer and a tensile strained GaAsP barrier layer or a tensile strained InGaP barrier layer.
JP5245484A 1993-09-30 1993-09-30 Semiconductor light receiving element Pending JPH07106621A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5245484A JPH07106621A (en) 1993-09-30 1993-09-30 Semiconductor light receiving element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5245484A JPH07106621A (en) 1993-09-30 1993-09-30 Semiconductor light receiving element

Publications (1)

Publication Number Publication Date
JPH07106621A true JPH07106621A (en) 1995-04-21

Family

ID=17134351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5245484A Pending JPH07106621A (en) 1993-09-30 1993-09-30 Semiconductor light receiving element

Country Status (1)

Country Link
JP (1) JPH07106621A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006344885A (en) * 2005-06-10 2006-12-21 Seiko Epson Corp Light receiving element and manufacturing method thereof
JP2011155291A (en) * 2011-04-01 2011-08-11 Sumitomo Electric Ind Ltd Gas monitoring device, combustion state monitoring device, secular change monitoring device, and impurity concentration monitoring device
JP2011193024A (en) * 2008-02-01 2011-09-29 Sumitomo Electric Ind Ltd Light-receiving element, light-receiving element array, and manufacturing methods thereof
CZ303201B6 (en) * 2011-03-01 2012-05-23 Crytur Spol. S R. O. Scintillation detection unit for detecting electrons, ions and photons of sandwich structure

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006344885A (en) * 2005-06-10 2006-12-21 Seiko Epson Corp Light receiving element and manufacturing method thereof
JP2011193024A (en) * 2008-02-01 2011-09-29 Sumitomo Electric Ind Ltd Light-receiving element, light-receiving element array, and manufacturing methods thereof
US8729527B2 (en) 2008-02-01 2014-05-20 Sumitomo Electric Industries, Ltd. Light-receiving element, light-receiving element array, method for manufacturing light-receiving element and method for manufacturing light-receiving element array
CZ303201B6 (en) * 2011-03-01 2012-05-23 Crytur Spol. S R. O. Scintillation detection unit for detecting electrons, ions and photons of sandwich structure
JP2011155291A (en) * 2011-04-01 2011-08-11 Sumitomo Electric Ind Ltd Gas monitoring device, combustion state monitoring device, secular change monitoring device, and impurity concentration monitoring device

Similar Documents

Publication Publication Date Title
US5574289A (en) Semiconductor optical integrated device and light receiver using said device
US5548128A (en) Direct-gap germanium-tin multiple-quantum-well electro-optical devices on silicon or germanium substrates
US5389797A (en) Photodetector with absorbing region having resonant periodic absorption between reflectors
US6897471B1 (en) Strain-engineered direct-gap Ge/SnxGe1-x heterodiode and multi-quantum-well photodetectors, laser, emitters and modulators grown on SnySizGe1-y-z-buffered silicon
JP3362356B2 (en) Optical semiconductor device
JP2724827B2 (en) Infrared light emitting device
JPH06350123A (en) Composition-modulated avalanche photodiode
US5432361A (en) Low noise avalanche photodiode having an avalanche multiplication layer of InAlAs/InGaAlAs
JPH07175025A (en) Electron absorbing optical modulator
JPH01264286A (en) Semiconductor quantum well laser
JPS63153887A (en) Semiconductor laser device
JPH07106621A (en) Semiconductor light receiving element
JPH05243551A (en) Semiconductor optical integrated element
JPH02130988A (en) Quantum well semiconductor laser element
US6835990B2 (en) Semiconductor light receiving element
Campbell et al. Buried heterojunction electroabsorption modulator
JPS62291184A (en) Semiconductor light-receiving device
JPH09298337A (en) Semiconductor distribution bragg reflecting mirror and surface light emitting type semiconductor laser
JPH051629B2 (en)
JPS63200586A (en) Semiconductor device
JP2762004B2 (en) Light receiving element
JPH08195504A (en) Photodetector
JPS63108783A (en) Semiconductor photodetector
JPH10190143A (en) Compressive-strain multiple quantum well structure
JPH06151940A (en) Semiconductor photodetector