JP2762004B2 - Light receiving element - Google Patents

Light receiving element

Info

Publication number
JP2762004B2
JP2762004B2 JP4251854A JP25185492A JP2762004B2 JP 2762004 B2 JP2762004 B2 JP 2762004B2 JP 4251854 A JP4251854 A JP 4251854A JP 25185492 A JP25185492 A JP 25185492A JP 2762004 B2 JP2762004 B2 JP 2762004B2
Authority
JP
Japan
Prior art keywords
light
wavelength
layer
concentration
photoconductive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4251854A
Other languages
Japanese (ja)
Other versions
JPH0685311A (en
Inventor
敏巳 明利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yupiteru Industries Co Ltd
Original Assignee
Yupiteru Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yupiteru Industries Co Ltd filed Critical Yupiteru Industries Co Ltd
Priority to JP4251854A priority Critical patent/JP2762004B2/en
Publication of JPH0685311A publication Critical patent/JPH0685311A/en
Application granted granted Critical
Publication of JP2762004B2 publication Critical patent/JP2762004B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は可視から赤外光域におけ
る多層型半導体受光素子に関する。さらに詳しくは、特
定波長の近傍に強い光吸収性を有する層を光導電層
(A)とし、特定波長近傍から離れた波長域は他の光吸
収層(B)により吸収除去する二層よりなり、入射光は
光吸収層(B)で特定波長を除き選択吸収され、透過
後、光導電層(A)に吸収されるため、特定波長近傍で
のみ強い光感度を有する波長選択性の優れた受光素子に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multilayer semiconductor light receiving device in a visible to infrared light region. More specifically, a layer having strong light absorption near a specific wavelength is defined as a photoconductive layer (A), and a wavelength region apart from the vicinity of the specific wavelength is composed of two layers that absorb and remove the other light absorption layer (B). Since the incident light is selectively absorbed in the light absorbing layer (B) except for a specific wavelength, and is transmitted and then absorbed in the photoconductive layer (A), the wavelength selectivity having strong light sensitivity only near the specific wavelength is excellent. It relates to a light receiving element.

【0002】[0002]

【従来の技術】従来、波長選択性を実現するには、入射
光からバンドパスフィルターやモノクロメーター等で特
定波長(λ1)を含む狭い波長帯域の光のみ取り出し
(図1)、広い帯域に受光感度を有する通常の受光素子
(図2)に照射することにより、図1の透過波長域での
み受光感度を有するようにしている。
2. Description of the Related Art Conventionally, in order to realize wavelength selectivity, only light in a narrow wavelength band including a specific wavelength (λ1) is extracted from incident light using a band-pass filter or a monochromator (FIG. 1), and light is received in a wide band. By irradiating a normal light-receiving element having sensitivity (FIG. 2), the light-receiving sensitivity is obtained only in the transmission wavelength region shown in FIG.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、受光素
子よりもフィルター寸法やモノクロメーターの寸法が遥
かに大きく、小型化が困難である。従って、多波長ハイ
ブリット化も困難であり、IC化は絶望的である。ま
た、波長選択型受光系が高価であり、その中でも、フィ
ルターやモノクロメーターの価格に占める割合が殆どで
ある。
However, the size of the filter and the size of the monochromator are much larger than those of the light receiving element, and it is difficult to reduce the size. Therefore, it is difficult to make a multi-wavelength hybrid, and IC is hopeless. Further, the wavelength-selective light-receiving system is expensive, and among them, the ratio of the filter and the monochromator to the price is almost the same.

【0004】さらには、フィルターやモノクロメータを
透過した光は強度減衰を受けており、実効受光感度が低
下する。従って、特定波長でも受光感度を低下させるこ
となく、小型化が可能で、しかも安価な受光素子は未だ
得られていない。
Further, light transmitted through a filter or a monochromator is subjected to intensity attenuation, and the effective light receiving sensitivity is reduced. Therefore, an inexpensive light-receiving element that can be miniaturized without lowering the light-receiving sensitivity even at a specific wavelength has not yet been obtained.

【0005】本発明の目的は、特定波長における受光感
度を低下させることなく、特定波長を含む狭帯域でのみ
受光感度を有し、かつ小型で安価な受光素子を提供する
ことにある。
An object of the present invention is to provide a small and inexpensive light receiving element which has a light receiving sensitivity only in a narrow band including a specific wavelength without lowering the light receiving sensitivity at a specific wavelength.

【0006】[0006]

【課題を解決するための手段】本発明は、特定波長でキ
ャリア発生を伴なう強い光吸収特性を有する光導電性層
(A)と特定波長近傍を除いて強い光吸収特性を有する
光吸収層(B)との互いに相補的関係にある組み合わせ
からなり、特定波長でのみ受光感度特性を生ずる波長選
択型受光素子である。
According to the present invention, there is provided a photoconductive layer (A) having a strong light absorption characteristic accompanied by carrier generation at a specific wavelength, and a light absorption layer having a strong light absorption characteristic except near a specific wavelength. This is a wavelength-selective light-receiving element made of a combination having a complementary relationship with the layer (B) and producing light-receiving sensitivity characteristics only at a specific wavelength.

【0007】すなわち、本発明の受光素子は、高濃度基
板の上に、低濃度光導電層(A)を積層するとともに、
その低濃度光導電層の上に高濃度光吸収層(B)を積層
し、前記高濃度光吸収層側から光を受光するようにして
なる受光素子であって、前記低濃度光導電層の光吸収端
波長がλ1で、前記高濃度光導電層の光吸収端波長がλ
2とした場合に、両光吸収端波長λ1,λ2が、以下の
条件,を満たすようにした。 λ1>λ2 0.006<(λ1−λ2)/λ1<0.072
That is, the light receiving element of the present invention has a low concentration photoconductive layer (A) laminated on a high concentration substrate,
A light-receiving element in which a high-concentration light-absorbing layer (B) is laminated on the low-concentration photoconductive layer, and receives light from the high-concentration light-absorbing layer side. The light absorption end wavelength is λ1, and the light absorption end wavelength of the high concentration photoconductive layer is λ1.
In the case of 2, both light absorption edge wavelengths λ1 and λ2 are set to satisfy the following conditions. λ1> λ2 0.006 <(λ1−λ2) / λ1 <0.072

【0008】すなわち、本発明の受光素子は、光導電層
(A)と光吸収層(B)との2種の半導体層の組み合わ
せからなる。この2種の半導体層は、各々均一な組成、
超格子構造または多層構造のいずれであってもよい。
That is, the light receiving element of the present invention comprises a combination of two types of semiconductor layers, a photoconductive layer (A) and a light absorbing layer (B). These two types of semiconductor layers each have a uniform composition,
Any of a super lattice structure and a multilayer structure may be used.

【0009】ここでいう光導電層(A)とは、受光素子
の受光感度を発現させたい光波長において、光吸収を行
ない、発生したキャリア対(電子・ホール)により素子
電極端子間の電流変化または抵抗変化等が大きく生じる
ようにした素子の主要層であり、通常、低キャリア濃度
の高純度層を指す。そして、光吸収端波長がλ1である
ので、λ1以下の波長を吸収する。換言すると、λ1よ
りも大きい波長に対しては、光吸収がなく、感度がな
い。
The photoconductive layer (A) as used herein means a light absorption at a light wavelength at which light-receiving sensitivity of the light-receiving element is desired to be exhibited, and a change in current between the electrode terminals of the element due to the generated carrier pair (electron / hole). Alternatively, it is a main layer of an element in which a large change in resistance or the like occurs, and usually indicates a high-purity layer having a low carrier concentration. Since the light absorption end wavelength is λ1, wavelengths equal to or shorter than λ1 are absorbed. In other words, for wavelengths longer than λ1, there is no light absorption and no sensitivity.

【0010】また、光吸収層(B)とは、受光素子の受
光感度を発現させたくない光波長において、光吸収を行
なうが、素子電極端子間の電流変化または抵抗変化等
が、受光感度を得たい光波長に比べ微少となるように付
加した層であり、p型またn型の不純物を高濃度にドー
ピングした低抵抗層や吸収光エネルギーを熱エネルギー
等に変換する層を指す。そして、光吸収端波長がλ2で
あるので、λ2以下の波長を吸収する。換言すると、λ
2よりも大きい波長に対しては、光吸収がなく、感度が
ない。
The light-absorbing layer (B) absorbs light at a light wavelength at which light-receiving sensitivity of the light-receiving element is not desired to be exhibited. This layer is added so as to be slightly smaller than the light wavelength to be obtained, and refers to a low resistance layer doped with p-type or n-type impurities at a high concentration or a layer that converts absorbed light energy into heat energy or the like. Then, since the light absorption end wavelength is λ2, wavelengths equal to or shorter than λ2 are absorbed. In other words, λ
For wavelengths greater than 2, there is no light absorption and no sensitivity.

【0011】この2種の半導体層(光導電層及び光吸収
層)を構成する化合物としては、GaAs,AlAs,
AlGa1−xAs,InGa1−xAs等の周期
律表第III族と第V族の組み合わせからなる化合物半
導体が好ましく用いられる。また、ZnSe,ZnTe
等の周期律表第II族と第VI族の組合わせからなる化
合物半導体、GeSe,PbTe等の周期律表第IV族
と第VI族の組み合わせからなる化合物半導体も使用可
能である。
The compounds constituting the two types of semiconductor layers (photoconductive layer and light absorbing layer) include GaAs, AlAs,
Al x Ga 1-x As, In x Ga 1-x periodic table group III, such as As and compound semiconductor consisting of a combination of Group V are preferred. Also, ZnSe, ZnTe
Compound semiconductors composed of a combination of groups II and VI of the periodic table, such as GeSe, PbTe, etc., may also be used.

【0012】本発明においては、光導電層(A)の光吸
収端波長(λ1)と光吸収層(B)の光吸収端波長(λ
2)とが、λ1>λ2であり、かつ0.006<(λ1
−λ2)/λ1<0.072となるような2種の半導体
層を用いることが必要である。この範囲を逸脱した場合
には、特定波長における受光感度を低下させることな
く、特定波長を含む狭帯域でのみ受光感度を有すること
ができない。例えば、InGa1−xAsでは光吸収
端波長(λ)は0.87〜3.5μm,GaAsでは光
吸収端波長(λ)は0.87nm,AlGa1−x
sでは光吸収端波長(λ)は0.87〜0.60μmを
それぞれ示す。
In the present invention, the light absorption edge wavelength (λ1) of the photoconductive layer (A) and the light absorption edge wavelength (λ) of the light absorption layer (B) are used.
2) is λ1> λ2 and 0.006 <(λ1
It is necessary to use two types of semiconductor layers such that -λ2) / λ1 <0.072. If the ratio deviates from this range, the light receiving sensitivity cannot be obtained only in a narrow band including the specific wavelength without lowering the light receiving sensitivity at the specific wavelength. For example, for In x Ga 1-x As, the light absorption edge wavelength (λ) is 0.87 to 3.5 μm, for GaAs, the light absorption edge wavelength (λ) is 0.87 nm, and Al x Ga 1-x A is used.
In s, the light absorption edge wavelength (λ) indicates 0.87 to 0.60 μm, respectively.

【0013】[0013]

【作用】入射光は、まず光吸収層(B)に入射する。す
ると、波長λ2以下の光は、その光吸収層で吸収され
る。その光吸収に伴い、キャリアが発生するが、高濃度
層のためこれにより導電率の変化は微少であり、電気信
号への寄与も微々たるものとなる。よって、λ2以下の
波長に対する感度は低くなる。
The incident light first enters the light absorbing layer (B). Then, light having a wavelength of λ2 or less is absorbed by the light absorbing layer. Carriers are generated along with the light absorption, but due to the high-concentration layer, the change in conductivity is small, and the contribution to the electric signal is also negligible. Therefore, the sensitivity to wavelengths of λ2 or less decreases.

【0014】その光吸収層で吸収されずに透過した光
(波長λ2よりも大きい)は、光導電層(A)に至る。
光導電層は、波長λ1以下の光を吸収するため、入射光
がその波長領域にあると、そこで吸収され、キャリアが
発生する。この時、光導電層は低濃度であるので、その
キャリア発生に伴う導電率の変化が大きく、電気信号と
して取り扱うことができる。
The light transmitted through the light absorbing layer without being absorbed (larger than the wavelength λ2) reaches the photoconductive layer (A).
Since the photoconductive layer absorbs light having a wavelength of λ1 or less, if the incident light is in that wavelength region, it is absorbed there and carriers are generated. At this time, since the concentration of the photoconductive layer is low, the change in conductivity accompanying the generation of carriers is large, and the photoconductive layer can be handled as an electric signal.

【0015】また、λ1よりも大きい波長の光は、この
光導電層でも吸収されない。そして、λ2以下の光は、
光吸収層ですでに吸収されているため、光導電層までは
到達しない。従って、光導電層で吸収されるのは、λ2
より大きく、λ1以下の波長領域のものとなる。よっ
て、λ2〜λ1の範囲の波長の光が選択的に受光できる
ようになる。
Light having a wavelength larger than λ1 is not absorbed by this photoconductive layer. And the light below λ2 is
Since it has already been absorbed by the light absorbing layer, it does not reach the photoconductive layer. Therefore, what is absorbed by the photoconductive layer is λ2
It is larger and in the wavelength range of λ1 or less. Therefore, light having a wavelength in the range of λ2 to λ1 can be selectively received.

【0016】つまり、特定波長の近傍に強い光吸収性を
有する層を光導電層(A)とし、特定波長近傍から離れ
た波長域は他の光吸収層(B)により吸収除去する二層
よりなり、入射光は光吸収層(B)で特定波長を除き選
択吸収され、透過後、光導電層(A)に吸収されるた
め、特定波長近傍でのみ強い光感度を有する波長選択性
の優れた受光素子となる。
That is, a layer having strong light absorption near a specific wavelength is defined as a photoconductive layer (A), and a wavelength region apart from the vicinity of the specific wavelength is separated from the two layers absorbed and removed by another light absorption layer (B). The incident light is selectively absorbed by the light absorbing layer (B) except for a specific wavelength, and after transmission, is absorbed by the photoconductive layer (A). Therefore, excellent wavelength selectivity having strong light sensitivity only in the vicinity of the specific wavelength. Light receiving element.

【0017】次に、光導電層(A)としてInGa
1−xAsエピタキシャル単結晶、光吸収層(B)とし
てGaAsを用いた例を示す。
Next, In x Ga is used as the photoconductive layer (A).
An example in which GaAs is used as the 1- xAs epitaxial single crystal and the light absorption layer (B) will be described.

【0018】図3は、GaAs基板上に形成した光導電
層(A)となるInGa1−xAs(x<0.05)
単結晶層の光導電性であり、xを0より増加すると図3
のピーク波長が増加する。
FIG. 3 shows In x Ga 1-x As (x <0.05) to be a photoconductive layer (A) formed on a GaAs substrate.
The photoconductivity of the single crystal layer is shown in FIG.
Peak wavelength increases.

【0019】図4に光吸収層(B)となるGaAsの光
吸収特性を例示する。図よりp型キャリア濃度1.2×
1018cm−3の場合に、光子エネルギー1.42e
V以上(波長0.87μm以下)にて3×10cm
−1以上の光吸収係数を有し、エネルギー1.37eV
以下(波長0.905μm以上)では8×10cm−1
以下の光吸収係数となる。
FIG. 4 illustrates the light absorption characteristics of GaAs to be the light absorption layer (B). From the figure, the p-type carrier concentration is 1.2 ×
At 10 18 cm −3 , the photon energy is 1.42 e
3 × 10 3 cm at V or more (wavelength 0.87 μm or less)
It has a light absorption coefficient of -1 or more and an energy of 1.37 eV.
8 × 10 cm −1 below (wavelength 0.905 μm or more)
The following light absorption coefficient is obtained.

【0020】光吸収層(B)であるGaAsの光吸収端
波長(λ2)は0.87μmと一定であるから、上記式
0.006<(λ1−λ2)/λ1<0.072を満足
するには、光導電層(A)であるInGa1−xAs
の光吸収端波長(λ1)を0.875〜0.938とす
る必要がある。このためには、InとGaの割合が適当
となるようにxを調整する必要がある。例えば、xを
0.01とし、In0.01Ga0.99Asの光吸収
端波長(λ1)は0.905μmとなる。この場合に
は、(λ1−λ2)/λ1=0.0387となり、上記
要件を満足することとなる。
Since the light absorption edge wavelength (λ2) of GaAs as the light absorption layer (B) is constant at 0.87 μm, the above expression 0.006 <(λ1−λ2) / λ1 <0.072 is satisfied. in is a photoconductive layer (a) in x Ga 1- x as
Is required to be 0.875 to 0.938. For this purpose, it is necessary to adjust x so that the ratio of In and Ga becomes appropriate. For example, when x is set to 0.01, the light absorption edge wavelength (λ1) of In0.01Ga0.99As is 0.905 μm. In this case, (λ1−λ2) /λ1=0.0387, which satisfies the above requirements.

【0021】図5は、GaAs基板上に、バッファ層を
介して、InGaAs光導電層(A)を設け、その上に
GaAs光吸収層(B)を積層した構造を示す。入射光
は光吸収層(B)で0.87μm以下の波長光を吸収さ
れ、透過後、光導電層(A)で0.87μm以上の波長
光として吸収され、光導電層(A)にキャリアを発生す
る。光吸収層(B)とn−GaAs基板間に電池を接続
すると、光照射時に大きな電流変化分として計測され
る。
FIG. 5 shows a structure in which an InGaAs photoconductive layer (A) is provided on a GaAs substrate via a buffer layer, and a GaAs light absorbing layer (B) is stacked thereon. Incident light is absorbed by the light absorbing layer (B) at a wavelength of 0.87 μm or less, and after transmission, is absorbed by the photoconductive layer (A) as light of a wavelength of 0.87 μm or more. Occurs. When a battery is connected between the light absorbing layer (B) and the n-GaAs substrate, a large current change is measured during light irradiation.

【0022】[0022]

【実施例】以下、実施例に基づき本発明を具体的に説明
する。 *実施例1 図6(a)〜(c)は、受光素子デバイスの製造工程を
示す断面図である。同図(a)に示されるごとく、n−
GaAs基板(キャリア濃度1×1018cm−3)上
にSiドープ(キャリア濃度1.5×1018
−3)のn−In0.001Ga0.999As(3
0オングストローム)/Al0.2Ga0.8As(3
1オングストローム)超格子約30ペアを積層しバッフ
ァ層とした。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below based on embodiments. * Example 1 FIGS. 6A to 6C are cross-sectional views illustrating a manufacturing process of a light receiving element device. As shown in FIG.
On a GaAs substrate (carrier concentration 1 × 10 18 cm −3 ), Si-doped (carrier concentration 1.5 × 10 18 c)
m- 3 ) n-In 0.001 Ga 0.999 As (3
0 angstrom) / Al 0.2 Ga 0.8 As (3
Approximately 30 pairs of (1 angstrom) superlattices were stacked to form a buffer layer.

【0023】その上に高純度のアンドープ−InGa
1−xAs光導電層(A)(x=0.01、光吸収端波
長(λ1)=0.905、キャリア濃度5×1016
−3以下)を1.5μm積層した。
On top of that, high-purity undoped In x Ga
1-x As photoconductive layer (A) (x = 0.01, light absorption edge wavelength (λ1) = 0.905, carrier concentration 5 × 10 16 c
m -3 or less) was laminated at 1.5 μm.

【0024】最上層は2層からなり、まず、Beドープ
(キャリア濃度1.2×1018cm−3)のp−Ga
As(30オングストローム)/Al0.2Ga0.8
As(31オングストローム)の超格子層を約10〜3
0ペア積層し、表面の平滑性を得た後、キャリア濃度
1.2×1018cm−3のp−GaAs光吸収層
(B)(光吸収端波長(λ2)=0.87)を1μm積
層した。
The uppermost layer is composed of two layers. First, Be-doped (carrier concentration: 1.2 × 10 18 cm −3 ) p-Ga
As (30 Å) / Al 0.2 Ga 0.8
A superlattice layer of As (31 Å) is
After stacking 0 pairs and obtaining surface smoothness, the p-GaAs light absorbing layer (B) having a carrier concentration of 1.2 × 10 18 cm −3 (light absorption edge wavelength (λ2) = 0.87) is 1 μm. Laminated.

【0025】次に、図6(b)に示すように、エピタキ
シャル成長層側をフォトレジスト法によりマスキング
し、0.8mm□のメサ型にエッチングをした。さら
に、図6(c)のように、メサ傾斜部にSiO保護膜
を、エピタキシャル面上には、SiOの無反射(A
R)コート膜を各々スパッタリングにより形成し、最後
に、n−GaAs基板側及びp−GaAs層側に、Au
やAl等の電極をそれぞれ蒸着し、420℃/分間(N
ガス中)の合金化処理を施した。
Next, as shown in FIG. 6B, the epitaxial growth layer side was masked by a photoresist method and etched into a 0.8 mm square mesa. Furthermore, as shown in FIG. 6 (c), the SiO 2 protective film on the mesa sloped portion, on the epitaxial surface, non-reflective SiO 2 (A
R) A coat film is formed by sputtering, and finally, Au is formed on the n-GaAs substrate side and the p-GaAs layer side.
And electrodes such as Al are vapor-deposited at 420 ° C./min (N
(In two gases).

【0026】得られた受光素子デバイスの受光感度と波
長との関係を図7に示す。同図より特定波長を含む狭帯
域でのみ受光感度を有していることが判る。
FIG. 7 shows the relationship between the light receiving sensitivity and the wavelength of the obtained light receiving element device. It can be seen from the figure that the light receiving sensitivity is obtained only in a narrow band including a specific wavelength.

【0027】*実施例2 半絶縁性Si−GaAs基板上に図6と同様にバッファ
層からGaAs光吸収層までを積層し、メサ形成後、エ
ピタキシャル面上にAuやAl等の電極を形成し、図8
に示すような受光素子デバイスを得た。
* Example 2 A buffer layer to a GaAs light absorbing layer are stacked on a semi-insulating Si-GaAs substrate in the same manner as in FIG. 6, and after forming a mesa, electrodes such as Au and Al are formed on the epitaxial surface. , FIG.
The light receiving device shown in FIG.

【0028】この受光素子デバイスの受光感度は、実施
例1による測定結果である図7と同等以上であった。本
実施例は、PIN型受光素子に類似しているが、実施例
1による縦電流型、実施例2による横電流型いずれの場
合にも高い受光感度を有する点に特徴がある。
The light receiving sensitivity of this light receiving device was equal to or higher than that of FIG. The present embodiment is similar to the PIN type light receiving element, but is characterized in that both the vertical current type according to the first embodiment and the horizontal current type according to the second embodiment have high light receiving sensitivity.

【0029】[0029]

【発明の効果】以上のような本発明によって、次のよう
な効果を奏する。 バンドパスフィルターまたはモノクロメータと受光素
子の組み合わせによる狭帯域型(波長選択型)受光素子
が、本発明により単一半導体チップにより実現する。感
度と波長特性の立ち上がり(下がり)は干渉型多層膜ガ
ラスフィルターのオーダー以下(半値減衰に10nm以
下)である。 光導電層(A)及び光吸収層(B)を高品位の半導体
結晶とすることにより、半導体固有の光吸収バンド端で
の急峻な吸収係数変化を利用でき、再現性の良い製作が
可能である。 小型、軽量、低価格化が可能であり、多波長光分光分
析用のIC化の用途への利用が可能である。
According to the present invention as described above, the following effects can be obtained. According to the present invention, a narrow band type (wavelength selective type) light receiving element using a combination of a band pass filter or a monochromator and a light receiving element is realized by a single semiconductor chip. The rise (fall) of the sensitivity and the wavelength characteristic is less than or equal to the order of the interference type multilayer glass filter (10 nm or less for half-value attenuation). Since the photoconductive layer (A) and the light absorbing layer (B) are made of a high-quality semiconductor crystal, a steep absorption coefficient change at an edge of a light absorption band inherent to the semiconductor can be used, and production with good reproducibility is possible. is there. It can be reduced in size, weight, and cost, and can be used for IC applications for multi-wavelength optical spectroscopy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来技術における光透過率と波長との関係を示
すグラフである。
FIG. 1 is a graph showing a relationship between light transmittance and wavelength in a conventional technique.

【図2】従来技術における受光感度と波長との関係を示
すグラフである。
FIG. 2 is a graph showing a relationship between a light receiving sensitivity and a wavelength in a conventional technique.

【図3】InGaAsの抵抗変化出力と波長との関係を
示すグラフである。
FIG. 3 is a graph showing a relationship between a resistance change output of InGaAs and a wavelength.

【図4】GaAsの光子エネルギーと吸収係数の関係を
示すグラフである。
FIG. 4 is a graph showing the relationship between the photon energy of GaAs and the absorption coefficient.

【図5】本発明の受光素子チップの構造の一例を示す断
面図である。
FIG. 5 is a sectional view showing an example of the structure of a light receiving element chip of the present invention.

【図6】実施例1の受光素子デバイスの製造工程を示す
断面図である。
FIG. 6 is a cross-sectional view illustrating a manufacturing process of the light receiving element device according to the first embodiment.

【図7】実施例1における受光感度と波長との関係を示
すグラフである。
FIG. 7 is a graph showing the relationship between light receiving sensitivity and wavelength in Example 1.

【図8】実施例2における受光素子デバイスを示す断面
図である。
FIG. 8 is a cross-sectional view illustrating a light receiving element device according to a second embodiment.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 高濃度基板の上に、低濃度光導電層を積
層するとともに、その低濃度光導電層の上に高濃度光吸
収層を積層し、前記高濃度光吸収層側から光を受光する
ようにしてなる受光素子であって、 前記低濃度光導電層の光吸収端波長がλ1で、前記高濃
度光導電層の光吸収端波長がλ2とした場合に、両光吸
収端波長λ1,λ2が、 λ1>λ2で、かつ0.006<(λ1−λ2)/λ1<0.072 となるようにし、 前記高濃度光吸収層にて導電率の変化を抑えつつ波長λ
2以下の光を吸収させ、その高濃度光吸収層で吸収され
ずに透過した波長λ2より大きい光のうち、波長λ1以
下の光を前記低濃度光導電層で吸収させることにより導
電率を大きく変化させるようにしてなることを特徴とす
る受光素子。
1. A low-concentration photoconductive layer is laminated on a high-concentration substrate, and a high-concentration light-absorbing layer is laminated on the low-concentration photoconductive layer. A light-receiving element adapted to receive light, wherein the light absorption edge wavelength of the low-concentration photoconductive layer is λ1 and the light absorption edge wavelength of the high-concentration photoconductive layer is λ2. λ1 and λ2 are such that λ1> λ2 and 0.006 <(λ1−λ2) / λ1 <0.072, and the wavelength λ is suppressed while suppressing the change in conductivity in the high concentration light absorbing layer.
2 is absorbed by the low-concentration photoconductive layer, and the light having a wavelength of λ1 or less is absorbed by the low-concentration photoconductive layer. A light receiving element characterized by being changed.
JP4251854A 1992-08-28 1992-08-28 Light receiving element Expired - Fee Related JP2762004B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4251854A JP2762004B2 (en) 1992-08-28 1992-08-28 Light receiving element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4251854A JP2762004B2 (en) 1992-08-28 1992-08-28 Light receiving element

Publications (2)

Publication Number Publication Date
JPH0685311A JPH0685311A (en) 1994-03-25
JP2762004B2 true JP2762004B2 (en) 1998-06-04

Family

ID=17228913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4251854A Expired - Fee Related JP2762004B2 (en) 1992-08-28 1992-08-28 Light receiving element

Country Status (1)

Country Link
JP (1) JP2762004B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6157042A (en) * 1998-11-03 2000-12-05 Lockheed Martin Corporation Optical cavity enhancement infrared photodetector
TWI250659B (en) * 2003-07-31 2006-03-01 Osram Opto Semiconductors Gmbh Radiation-receiving semiconductor-body with an integrated filter-layer

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS597233B2 (en) * 1978-05-11 1984-02-17 シャープ株式会社 Narrow wavelength band photodetector
JP3071658U (en) * 2000-03-10 2000-09-14 株式会社ひかり Portable butts

Also Published As

Publication number Publication date
JPH0685311A (en) 1994-03-25

Similar Documents

Publication Publication Date Title
US7659536B2 (en) High performance hyperspectral detectors using photon controlling cavities
US4772924A (en) Device having strain induced region of altered bandgap
WO2012073539A1 (en) Light-receiving element, detector, semiconductor epitaxial wafer, and method for producing these
US5121181A (en) Resonant tunneling photodetector for long wavelength applications
JPH06350123A (en) Composition-modulated avalanche photodiode
JP6471120B2 (en) Photoelectric conversion element and photoelectric conversion device including the same
EP0477729B1 (en) Avalanche photodiode
JP2007227744A (en) Quantum-dot optical semiconductor device, and its process for fabrication
JP3285981B2 (en) Semiconductor light receiving element
EP0470783B1 (en) Photodiode
US20210210646A1 (en) Broadband uv-to-swir photodetectors, sensors and systems
JPH0243777A (en) Quantum well radiation detecor
JPH0773131B2 (en) Silicon germanium photodetector
JP2762004B2 (en) Light receiving element
US20020094597A1 (en) Quantum dot infrared photodetector and method for fabricating the same
JP2844822B2 (en) Avalanche photodiode
JP2590817B2 (en) Photo Detector
JP6660358B2 (en) Quantum dot type infrared detector
US20180308999A1 (en) Semiconductor light receiving device
JPH0567802A (en) Semiconductor photo detector
JP3157509B2 (en) Semiconductor light receiving element
JPH051629B2 (en)
JPH04241473A (en) Avalanche photo diode
JP2671569B2 (en) Avalanche photodiode
US20210305442A1 (en) Dilute nitride optoelectronic absorption devices having graded or stepped interface regions

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980210

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees