JPH09298337A - Semiconductor distribution bragg reflecting mirror and surface light emitting type semiconductor laser - Google Patents

Semiconductor distribution bragg reflecting mirror and surface light emitting type semiconductor laser

Info

Publication number
JPH09298337A
JPH09298337A JP11456996A JP11456996A JPH09298337A JP H09298337 A JPH09298337 A JP H09298337A JP 11456996 A JP11456996 A JP 11456996A JP 11456996 A JP11456996 A JP 11456996A JP H09298337 A JPH09298337 A JP H09298337A
Authority
JP
Japan
Prior art keywords
semiconductor
refractive index
distributed bragg
light
bragg reflector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11456996A
Other languages
Japanese (ja)
Inventor
Kazunori Shinoda
和典 篠田
Misuzu Sagawa
みすず 佐川
Kiyohisa Hiramoto
清久 平本
Masahiko Kondo
正彦 近藤
Kazuhisa Uomi
和久 魚見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11456996A priority Critical patent/JPH09298337A/en
Publication of JPH09298337A publication Critical patent/JPH09298337A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor distribution Bragg reflecting mirror which has high reflectivity with a small number of layers, a surface light emitting semiconductor laser using the semiconductor distribution Bragg reflecting mirror as a reflecting mirror, and an application system such as an optical interconnection using the surface light emitting semiconductor laser as a light source. SOLUTION: A periodical structure (13 periods) wherein In0.42 Ga0.58 P layers 12 having a film thickness of 104nm and tensile strain of 0.3% and In0.05 Ga0.95 As layers 13 having a film thickness of 90nm, compression strain of 0.35% are alternately laminated is formed on a GaAs substrate 1 by using an organic metal vapor growth method. Therefore, a thin semiconductor distribution Bragg reflecting mirror having high reflectivity can be provided, and the performance of a surface light emitting type semiconductor laser, a surface light emitting type light emitting diode, a light receiving element, etc., can be improved. The light emitting type semiconductor laser can be used in an application system such as an optical interconnection.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は光素子及び光応用シ
ステムの技術分野に属し、これらに好適な半導体からな
る反射鏡、これを用いた半導体レーザ素子(特に、面発
光レーザと称するもの)、更にこれらを利用した光イン
ターコネクションシステム等の光応用装置に係る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention belongs to the technical field of optical devices and optical application systems, and a reflecting mirror made of a semiconductor suitable for them, a semiconductor laser device using the same (in particular, a surface emitting laser), Further, the present invention relates to an optical application device such as an optical interconnection system using these.

【0002】[0002]

【従来の技術】屈折率の異なる2種の格子整合する半導
体が交互に積層されて、ブラッグ反射として知られてい
る光波干渉により入射光を反射する半導体分布ブラッグ
反射鏡が、面発光型半導体レーザ等に用いられている。
例えば、GaAs基板に格子整合するInGaP層とG
aAs層を交互に積層した面発光型レーザ用反射鏡の反
射特性が、Japanese Journal of Applied Physics Part
1 Vol. 34 No. 2B (1995) pp. 1253-1256に報告されて
いる。
2. Description of the Related Art A semiconductor distributed Bragg reflector, which is formed by alternately stacking two types of semiconductors having different refractive indexes and having lattice matching, and which reflects incident light by light wave interference known as Bragg reflection, is a surface emitting semiconductor laser. It is used for etc.
For example, InGaP layer and G that are lattice-matched to a GaAs substrate
The reflection characteristics of a surface-emitting laser reflecting mirror in which aAs layers are alternately laminated are described in Japanese Journal of Applied Physics Part.
1 Vol. 34 No. 2B (1995) pp. 1253-1256.

【0003】[0003]

【発明が解決しようとする課題】半導体分布ブラッグ反
射鏡は半導体の周期的な屈折率分布に基づいて特定の波
長範囲の光を反射するものである。通常は半導体積層構
造の屈折率を反射すべき光の1/2波長の光学長で周期
的に変化させた構造を用いる。特に屈折率の異なる2種
類の半導体層を1/4波長の光学的厚みで交互に積層し
た構造がよく用いられる。しかしながら、上記従来技術
では、格子整合する2種の材料の組み合わせを用いるた
め、取り得る屈折率差に制限があった。このため高反射
率を得るには積層数を増やさねばならない。積層数が多
くなればなる程、半導体分布ブラッグ反射鏡の作製の難
しさが指数関数的に増大し、素子の歩留まりが悪くな
る。また、半導体分布ブラッグ反射鏡の直列抵抗は積層
数に比例して増加し、直列抵抗の増加は素子の消費電力
を増加させる。さらに、屈折率差が小さい場合、同じ反
射率を得る為に必要な積層数が大きく、光の侵入長が長
くなるため、光の自由キャリアによる吸収や、積層界面
での散乱による損失のため、いくら積層数を増やしても
必要な反射率が得られない場合もある。このように、従
来技術により形成した半導体分布ブラッグ反射鏡には、
構成する材料系の屈折率差が小さく積層数が多くならざ
るを得ないために、多くの欠点があった。
The semiconductor distributed Bragg reflector reflects light in a specific wavelength range based on the periodic refractive index distribution of the semiconductor. Usually, a structure in which the refractive index of the semiconductor laminated structure is periodically changed by the optical length of ½ wavelength of the light to be reflected is used. In particular, a structure in which two types of semiconductor layers having different refractive indexes are alternately laminated with an optical thickness of ¼ wavelength is often used. However, since the above-mentioned conventional technique uses a combination of two types of materials that are lattice-matched, there is a limit to the difference in refractive index that can be taken. For this reason, the number of layers must be increased to obtain high reflectance. As the number of stacked layers increases, the difficulty of manufacturing the semiconductor distributed Bragg reflector increases exponentially, and the yield of the device deteriorates. Further, the series resistance of the semiconductor distributed Bragg reflector increases in proportion to the number of stacked layers, and the increase of the series resistance increases the power consumption of the device. Furthermore, when the difference in refractive index is small, the number of layers required to obtain the same reflectance is large, and the penetration length of light is long, so that light is absorbed by free carriers and is lost due to scattering at the laminated interface. In some cases, the required reflectance may not be obtained no matter how many layers are stacked. Thus, in the semiconductor distributed Bragg reflector formed by the conventional technique,
There are many drawbacks because the difference in the refractive index of the material system to be composed is small and the number of layers must be large.

【0004】本発明の目的は、少ない層数で高い反射率
が得られる半導体分布ブラッグ反射鏡を提供する事であ
り、また該半導体分布ブラッグ反射鏡を利用した優れた
特性の面発光型半導体レーザを提供する事であり、また
該面発光型半導体レーザを光源として利用した光インタ
ーコネクションシステム等の光応用装置を提供する事で
ある。
It is an object of the present invention to provide a semiconductor distributed Bragg reflector which can obtain a high reflectance with a small number of layers, and a surface emitting semiconductor laser having excellent characteristics using the semiconductor distributed Bragg reflector. And an optical application device such as an optical interconnection system using the surface-emitting type semiconductor laser as a light source.

【0005】[0005]

【課題を解決するための手段】上記の目的は、屈折率が
周期的に変化し、入射光を光波干渉によって反射するよ
うに複数の半導体層で構成された反射鏡、所謂半導体分
布ブラッグ反射鏡において、高屈折率領域(第1の半導
体層)が圧縮歪みを有し、低屈折率領域(第2の半導体
層)が引っ張り歪みを有する構造とすることにより達成
される。また、半導体基板上に形成された、屈折率が周
期的に変化し入射光を光波干渉によって反射する半導体
分布ブラッグ反射鏡において、高屈折率部分を形成する
半導体の少なくとも一部が前記半導体基板の格子定数よ
りも大きな格子定数の半導体により構成され、尚且つ低
屈折率部分を形成する半導体の少なくとも一部が前記半
導体基板の格子定数よりも小さな格子定数の半導体によ
り構成することにより達成される。
The above object is to provide a reflecting mirror constituted by a plurality of semiconductor layers so as to reflect incident light by light wave interference, in which the refractive index changes periodically, that is, a so-called semiconductor distributed Bragg reflecting mirror. In, the high refractive index region (first semiconductor layer) has a compressive strain, and the low refractive index region (second semiconductor layer) has a tensile strain. Further, in a semiconductor distributed Bragg reflector, which is formed on a semiconductor substrate and reflects incident light by light wave interference, in which the refractive index periodically changes, at least a part of the semiconductor forming the high refractive index portion is the semiconductor substrate. This is achieved by using a semiconductor having a lattice constant larger than the lattice constant, and at least a part of the semiconductor forming the low refractive index portion being formed of a semiconductor having a lattice constant smaller than the lattice constant of the semiconductor substrate.

【0006】また、本発明の半導体分布ブラッグ反射鏡
は、半導体レーザ、特に面発光型半導体レーザの反射鏡
として利用できる。即ち、本発明によれば半導体基板上
部(基板主面の上方)に光を発生する活性層と、活性層
から発生した光からレーザ光を得る為に活性層の上方並
びに下方を反射鏡で挟んだ共振器構造を有し、半導体基
板(正確にいえば基板の主面)に対し略垂直方向に光を
出射する面発光型半導体レーザを、当該反射鏡の少なく
とも一方は屈折率が周期的に変化し入射光を光波干渉に
よって反射する(即ち、屈折率の異なる2種の半導体層
を交互に積層してなる)半導体分布ブラッグ反射鏡を含
み、当該半導体分布ブラッグ反射鏡の高屈折率部分を形
成する半導体の少なくとも一部が圧縮歪みを有し、一方
の低屈折率部分を形成する半導体の少なくとも一部が引
っ張り歪みを有するように構成する。この半導体分布ブ
ラッグ反射鏡の仕様に関し、別の観点で規定すれば高屈
折率の半導体層の少なくとも一層を半導体の単結晶から
なる基板の格子定数よりも大きな格子定数を有する半導
体で、低屈折率の半導体層の少なくとも一層を半導体基
板の格子定数よりも小さな格子定数を有する半導体で夫
々構成する。
The semiconductor distributed Bragg reflector of the present invention can be used as a reflector of a semiconductor laser, particularly a surface emitting semiconductor laser. That is, according to the present invention, an active layer that emits light is provided above the semiconductor substrate (above the main surface of the substrate), and a reflector is provided above and below the active layer to obtain laser light from the light generated from the active layer. A surface-emitting type semiconductor laser that has a resonator structure and emits light in a direction substantially perpendicular to a semiconductor substrate (to be precise, the main surface of the substrate) is provided. The semiconductor distributed Bragg reflector including a semiconductor distributed Bragg reflector that changes and reflects incident light by light wave interference (that is, formed by alternately stacking two kinds of semiconductor layers having different refractive indices), and includes a high refractive index portion of the semiconductor distributed Bragg reflector. At least part of the semiconductor to be formed has compressive strain, and at least part of the semiconductor forming one of the low refractive index portions has tensile strain. Regarding the specifications of this semiconductor distributed Bragg reflector, if specified from another point of view, at least one of the high-refractive-index semiconductor layers is a semiconductor having a lattice constant larger than that of a substrate made of a semiconductor single crystal, and has a low refractive index. At least one of the semiconductor layers is made of a semiconductor having a lattice constant smaller than that of the semiconductor substrate.

【0007】さらに、本発明の半導体分布ブラッグ反射
鏡を利用した上述の面発光型半導体レーザは、光インタ
ーコネクション、光ファイバー通信等の応用システムで
利用できる。その場合、面発光型半導体レーザをそれを
駆動するIC(集積回路)や光ファイバの部品と共にパ
ッケージしたレーザ光送信モジュールとして利用でき
る。
Further, the above-mentioned surface-emitting type semiconductor laser utilizing the semiconductor distributed Bragg reflector of the present invention can be used in application systems such as optical interconnection and optical fiber communication. In that case, the surface-emitting type semiconductor laser can be used as a laser light transmission module in which it is packaged together with an IC (integrated circuit) for driving it and optical fiber components.

【0008】以下、本発明の作用について説明する。簡
単の為、半導体基板上に屈折率の異なる2種類の半導体
層を1/4波長の光学的厚みで交互に積層した周期構造
をもつ半導体分布ブラッグ反射鏡を例にとり説明する。
高屈折率層に基板材料より大きな格子定数を持つ材料を
用い、低屈折率層に基板材料より小さな格子定数を持つ
材料を用いて、これら2種の層を交互に積層すると、高
屈折率層は圧縮歪みを内在し、低屈折率層は引っ張り歪
みを内在する。この場合、高屈折率層の屈折率は基板材
料に格子整合する材料を用いる場合よりも大きくなり、
低屈折率層の屈折率は基板材料に格子整合する材料を用
いる場合よりも小さくなる。従って、大きな屈折率差が
得られるので、格子整合する材料を用いる場合よりも少
ない層数で高い反射率を得ることができる。また、高屈
折率層と低屈折率層はそれぞれ逆方向に歪むため、反射
鏡全体での平均的な歪み量は小さい(応力補償構造)。
このため、格子不整合転移等の欠陥は発生せず、良質な
結晶を得ることができる。
Hereinafter, the operation of the present invention will be described. For simplification, a semiconductor distributed Bragg reflector having a periodic structure in which two types of semiconductor layers having different refractive indexes are alternately laminated with an optical thickness of ¼ wavelength on a semiconductor substrate will be described as an example.
When these two layers are alternately laminated using a material having a lattice constant larger than that of the substrate material for the high refractive index layer and a material having a lattice constant smaller than that of the substrate material for the low refractive index layer, the high refractive index layer Has a compressive strain, and the low refractive index layer has a tensile strain. In this case, the refractive index of the high refractive index layer becomes larger than that when using a material that lattice-matches the substrate material,
The refractive index of the low refractive index layer is smaller than that when a material that lattice-matches the substrate material is used. Therefore, a large difference in refractive index can be obtained, and thus a high reflectance can be obtained with a smaller number of layers than in the case of using a material that lattice-matches. Further, since the high refractive index layer and the low refractive index layer are respectively distorted in opposite directions, the average distortion amount in the entire reflecting mirror is small (stress compensation structure).
Therefore, defects such as lattice mismatch transition do not occur, and a good quality crystal can be obtained.

【0009】一例として、図6に、従来技術のGaAs
基板に格子整合するIn0.5Ga0.5PとGaAsからな
る半導体分布ブラッグ反射鏡と、本発明の引っ張り歪
0.3%のIn0.42Ga0.58Pと圧縮歪0.35%のI
0.05Ga0.95Asとからなる半導体分布ブラッグ反射
鏡における積層数と反射率の関係を示す。半導体分布ブ
ラッグ反射鏡での損失が無い場合を実線で、損失が40
cm~1の場合を破線で示す。まず初めに損失が無い場合
について説明する。従来の格子整合型In0.5Ga0.5
/GaAs分布ブラッグ反射鏡では、99.5%の反射
率を得るのに32対の積層数(即ち組成の異なる半導体
層を32層ずつ交互に積層した構成)が必要である。一
方、本発明の応力補償型In0.42Ga0.58P/In0.05
Ga0.95As分布ブラッグ反射鏡は13対の積層数でよ
く、必要積層数を約1/3に低減できる。次に損失が4
0cm~1の場合について説明する。本発明の応力補償型
In0.42Ga0.58P/In0.05Ga0.95As分布ブラッ
グ反射鏡は15対で99.5%の反射率が得られるが、
従来の格子整合型In0.5Ga0.5P/GaAs分布ブラ
ッグ反射鏡ではいくら積層数を増やしても反射率は9
9.3%で飽和してしまい99.5%に達しない。実際
の多層膜反射鏡で損失が無い場合と損失が40cm~1
場合の間になると考えられ、本発明の応力補償型In
0.42Ga0.58P/In0.05Ga0.95As分布ブラッグ反
射鏡が積層数を低減する事と高い反射率を得る事に非常
に有効である事が判る。
As an example, FIG. 6 shows a prior art GaAs.
A semiconductor distributed Bragg reflector made of In 0.5 Ga 0.5 P and GaAs that lattice-matches the substrate, and In 0.42 Ga 0.58 P with a tensile strain of 0.3% and I with a compressive strain of 0.35% according to the present invention.
The relationship between the number of layers and the reflectance in a semiconductor distributed Bragg reflector made of n 0.05 Ga 0.95 As is shown. The solid line shows the case where there is no loss in the semiconductor distributed Bragg reflector, and the loss is 40
The case of cm to 1 is indicated by a broken line. First, the case where there is no loss will be described. Conventional lattice matching type In 0.5 Ga 0.5 P
In the / GaAs distributed Bragg reflector, 32 pairs of stacked layers (that is, a structure in which 32 semiconductor layers having different compositions are alternately stacked) are required to obtain a reflectance of 99.5%. On the other hand, the stress-compensated In 0.42 Ga 0.58 P / In 0.05 of the present invention
The Ga 0.95 As distributed Bragg reflector may have 13 pairs of laminated layers, and the required number of laminated layers can be reduced to about 1/3. Then the loss is 4
The case of 0 cm to 1 will be described. The stress-compensated In 0.42 Ga 0.58 P / In 0.05 Ga 0.95 As distributed Bragg reflector of the present invention can obtain a reflectance of 99.5% with 15 pairs.
With the conventional lattice-matched In 0.5 Ga 0.5 P / GaAs distributed Bragg reflector, the reflectivity is 9 no matter how many layers are stacked.
It saturates at 9.3% and does not reach 99.5%. It is considered that there is a loss between the case where there is no loss in the actual multilayer film reflecting mirror and the case where the loss is 40 cm to 1 , and the stress compensation type In of the present invention is
It can be seen that the 0.42 Ga 0.58 P / In 0.05 Ga 0.95 As distributed Bragg reflector is very effective in reducing the number of layers and obtaining a high reflectance.

【0010】なお、上記説明では2種類の半導体層を交
互に積層した構造について述べたが、半導体膜中の屈折
率が1/2波長の周期性をもって連続的またはステップ
状に変化する場合でも、高屈折率部分に圧縮歪となる材
料を用い、低屈折率部分に引っ張り歪となる材料を用い
ることで、上記と同じ効果がある。
In the above description, the structure in which two types of semiconductor layers are alternately laminated is described, but even when the refractive index in the semiconductor film changes continuously or stepwise with a periodicity of ½ wavelength, By using a material having compressive strain in the high refractive index portion and a material having tensile strain in the low refractive index portion, the same effect as described above can be obtained.

【0011】[0011]

【発明の実施の形態】以下、本発明の望ましき実施の形
態を実施例1乃至3及び図1乃至図5を用いて説明す
る。
BEST MODE FOR CARRYING OUT THE INVENTION Preferred embodiments of the present invention will be described below with reference to Examples 1 to 3 and FIGS. 1 to 5.

【0012】<実施例1>図1は本発明の半導体分布ブ
ラッグ反射鏡の一実施例を示す構造図である。GaAs
基板1上に有機金属気相成長法により膜厚104nmで
引っ張り歪0.3%のn型In0.42Ga0.58P層12と
膜厚90nmで圧縮歪0.35%のn型In0.05Ga
0.95As層13を交互に積層した周期構造(13周期)
を形成した。両層の膜厚は、反射すべき光の波長を1.
3ミクロン(μm)とし、光学的1/4波長の厚みに設
定している。両層は逆方向の歪みを有するため、反射鏡
全体での平均的な歪み量は小さくなり、格子不整合転移
等の欠陥は発生せず、良質な結晶を得ることができた。
図2に試作した反射鏡の反射スペクトルを示す。反射す
べき光の波長1.3ミクロンにおける反射率は99.5
%であった。この結果、従来の半導体分布ブラッグ反射
鏡に比べ、約1/3の層数で99.5%の高反射率を得
ることができた。
<Embodiment 1> FIG. 1 is a structural diagram showing an embodiment of a semiconductor distributed Bragg reflector of the present invention. GaAs
N-type strain of 0.3% tensile in thickness 104nm by organometallic vapor phase epitaxy on the substrate 1 In 0.42 Ga 0.58 P layer 12 and the film thickness 90nm with a compressive strain 0.35% n-type an In 0.05 Ga
Periodic structure in which 0.95 As layers 13 are alternately laminated (13 periods)
Was formed. The film thickness of both layers is 1.
The thickness is 3 μm (μm), and the thickness is set to an optical quarter wavelength. Since both layers have strains in opposite directions, the average amount of strain in the entire reflecting mirror was small, defects such as lattice mismatch transition did not occur, and good quality crystals could be obtained.
Figure 2 shows the reflection spectrum of the prototype reflector. The reflectance of the light to be reflected at a wavelength of 1.3 microns is 99.5.
%Met. As a result, it was possible to obtain a high reflectance of 99.5% with about 1/3 the number of layers as compared with the conventional semiconductor distributed Bragg reflector.

【0013】<実施例2>本発明の一実施例である1.
3ミクロン帯面発光型半導体レーザ(発振波長が1.3
μmの半導体レーザ)を光ファイバと結合した構成を図
3に示す。本素子はn−GaAs基板1上に以下の半導
体多層構造を有する。膜厚106nm、引っ張り歪0.
35%のn型In0.3Ga0.7As0.10.9と膜厚90n
m、圧縮歪0.4%のn型In0.06Ga0.94Asの組合
せを交互に積層した周期構造(16周期)からなる半導
体分布ブラッグ反射鏡2、膜厚500nmのn型InP
クラッド層3、膜厚300nmのp型InGaAsP活
性層(組成波長1.3ミクロン)4、膜厚580nmの
p型InPクラッド層5、膜厚300nmのp型InG
aAsPコンタクト層6。これらの層のうち、半導体分
布ブラッグ反射鏡2は有機金属気相成長法によりGaA
s基板上に成長した。また、n型InPクラッド層3か
らp型InGaAsPコンタクト層6までの各層は、I
nP基板(後の工程で除去する為、図3には示さず)上
に有機金属気相成長法により成長させた後、直接接着法
により半導体分布ブラッグ反射鏡2上に接合した。な
お、InP基板は接合後にウエットエッチングにより除
去した。CVD工程とホトレジスト工程により直径10
ミクロンの円形のSiO2膜を形成し、これをマスクと
してp型InPクラッド層5の途中までウエットエッチ
ングして凸状にする。その後、SiO2マスクを残した
ままポリイミド7を塗布し、硬化する。次に、RIE
(反応性イオンエッチング)工程によりSiO2マスク
が露出するまでポリイミド7をエッチングし、メサの上
部のSiO2マスクを図に示したように除去することで
平坦な面が得られる。この後、リフトオフ法によりリン
グ状のp側電極8を形成し、さらにスッパタ蒸着法によ
りSiO2膜とa−Si膜(アモルファスシリコン膜)
をそれぞれの媒質内における発振波長の1/4倍の厚み
で交互に積層した周期構造(4周期)からなる誘電体多
層膜反射鏡10を形成し、n側電極9を形成した。レー
ザ光11は誘電体多層膜反射鏡側から取り出し、光ファ
イバ14に結合する。
<Embodiment 2> This is one embodiment of the present invention.
3 micron surface emitting semiconductor laser (oscillation wavelength 1.3
FIG. 3 shows a configuration in which a (μm semiconductor laser) is coupled to an optical fiber. This device has the following semiconductor multilayer structure on the n-GaAs substrate 1. Film thickness 106 nm, tensile strain 0.
35% n-type In 0.3 Ga 0.7 As 0.1 P 0.9 and film thickness 90n
m, a semiconductor distributed Bragg reflector 2 having a periodic structure (16 periods) in which a combination of n-type In 0.06 Ga 0.94 As having a compressive strain of 0.4% is alternately laminated, and an n-type InP having a film thickness of 500 nm.
Clad layer 3, p-type InGaAsP active layer (composition wavelength: 1.3 μm) 4 having a thickness of 300 nm, p-type InP clad layer 5 having a thickness of 580 nm, p-type InG having a thickness of 300 nm
aAsP contact layer 6. Among these layers, the semiconductor distributed Bragg reflector 2 is made of GaA by metalorganic vapor phase epitaxy.
s on a substrate. Further, each layer from the n-type InP clad layer 3 to the p-type InGaAsP contact layer 6 is I
After growing on an nP substrate (not shown in FIG. 3 for removal in a subsequent step) by a metal organic chemical vapor deposition method, it was bonded on the semiconductor distributed Bragg reflector 2 by a direct bonding method. The InP substrate was removed by wet etching after joining. Diameter 10 by CVD process and photoresist process
A circular micron SiO 2 film is formed, and this is used as a mask to wet-etch the p-type InP clad layer 5 halfway to form a convex shape. After that, the polyimide 7 is applied and cured while leaving the SiO 2 mask. Next, RIE
In the (reactive ion etching) step, the polyimide 7 is etched until the SiO 2 mask is exposed, and the SiO 2 mask on the upper part of the mesa is removed as shown in the figure to obtain a flat surface. Then, the ring-shaped p-side electrode 8 is formed by the lift-off method, and the SiO 2 film and the a-Si film (amorphous silicon film) are further formed by the sputter deposition method.
A dielectric multi-layered film reflecting mirror 10 having a periodic structure (4 periods) in which each of the above materials was alternately laminated with a thickness of 1/4 times the oscillation wavelength was formed, and the n-side electrode 9 was formed. The laser light 11 is extracted from the dielectric multilayer film reflecting mirror side and coupled to the optical fiber 14.

【0014】本実施例による1.3ミクロン帯面発光型
半導体レーザは、少ない層数で高反射率の半導体分布ブ
ラッグ反射鏡が得られたことにより、室温での閾値電流
3mA、閾値電圧1.1V、スロープ効率0.5mW/
mA、最大出力10mWの素子特性が得られ、低しきい
値電流で且つ低しきい値電圧の面発光型半導体レーザが
得られた。本レーザは発振波長が1.3ミクロンであり
光ファイバー通信で用いられる波長帯と一致するので、
単体の素子で光ファイバー通信の光源として利用でき
た。
The 1.3 μm surface-emitting type semiconductor laser according to this embodiment has a threshold current of 3 mA at room temperature and a threshold voltage of 1. 1V, slope efficiency 0.5mW /
Device characteristics of mA and maximum output of 10 mW were obtained, and a surface-emitting type semiconductor laser having a low threshold current and a low threshold voltage was obtained. Since the oscillation wavelength of this laser is 1.3 microns, which matches the wavelength band used for optical fiber communication,
It could be used as a light source for optical fiber communication with a single element.

【0015】<実施例3>本実施例では、ポリイミド埋
め込み型0.98ミクロン帯面発光型半導体レーザダイ
オード(即ち、発振波長が0.98μm)の4×4二次
元レーザアレイモジュールを用いて光インターコネクシ
ョンシステムを作製した。図4に全体の構成図を示す。
送信ボードと受信ボードを装着した2つのコンピュータ
が光ファイバーアレイで接続され、光インターコネクシ
ョンシステムとなっている。送信ボードと受信ボードに
は、それぞれ8個のレーザ光送信モジュール及びレーザ
光受信モジュールが実装されている。レーザ光送信モジ
ュールは、4×4の面発光型半導体レーザ2次元アレイ
とそれらを駆動するIC及び光ファイバアレイ等の部品
で構成されている。レーザ光受信モジュールは、4×4
のフォトダイオード2次元アレイとそれらを駆動するI
C及び光ファイバアレイ等の部品で構成されている。本
システムでは、8×4×4=128チャンネルの信号を
並列伝送できる。各々の面発光型半導体レーザは200
Mb/秒(Mbは、メガビットの単位)の信号を伝送で
きるので、本光インターコネクションシステム全体では
25.6Gb/秒(Gbは、ギガビットの単位)の大容
量の信号を伝送できる。
<Embodiment 3> In this embodiment, light is emitted using a 4 × 4 two-dimensional laser array module of a polyimide-embedded 0.98 micron surface emitting semiconductor laser diode (that is, an oscillation wavelength of 0.98 μm). An interconnection system was created. FIG. 4 shows an overall configuration diagram.
Two computers equipped with a transmitting board and a receiving board are connected by an optical fiber array to form an optical interconnection system. Eight laser light transmitting modules and eight laser light receiving modules are mounted on the transmitting board and the receiving board, respectively. The laser light transmission module is composed of a 4 × 4 surface-emitting type semiconductor laser two-dimensional array, components for driving them, such as an IC and an optical fiber array. Laser light receiving module is 4 × 4
Two-dimensional array of photodiodes and their driving I
It is composed of components such as C and an optical fiber array. In this system, signals of 8 × 4 × 4 = 128 channels can be transmitted in parallel. Each surface emitting semiconductor laser has 200
Since a signal of Mb / sec (Mb is a unit of megabit) can be transmitted, a large capacity signal of 25.6 Gb / sec (Gb is a unit of gigabit) can be transmitted in the entire optical interconnection system.

【0016】この光インターコネクションシステムの作
製において面発光型半導体レーザ以外の部品は従来技術
により容易に作製できるので、以下面発光型半導体レー
ザの作製について詳細に説明する。図5に素子断面構造
を示す。1はn−GaAs基板(n型ドーパント濃度:
n=1×1018cm~3)、2はn型半導体分布ブラッグ
反射鏡(n=1×1018cm~3)、15はGaAsスペ
ーサ層、16はInGaAs/GaAs歪量子井戸活性
層、17はGaAs基板に格子整合したp−InGaP
クラッド層(p型ドーパント濃度:p=1×1018cm
~3)、18はp−GaAsコンタクト層(p=1×10
19cm~3)である。活性層16には、3層の7nm厚I
nGaAs井戸層を10nm厚のGaAs障壁層で隔て
て実効的に1.27eV(波長:0.98ミクロン)の
バンドギャップを持つ歪量子井戸層を用いた。半導体分
布ブラッグ反射鏡2は、高屈折率の引っ張り歪InGa
P層と低屈折率の圧縮歪InGaAsP層を1/4波長
の光学的厚みで交互に積層した。反射率を99.9%以
上にする為に積層数を25対とした。各半導体層は、化
学線エピタキシー装置を用いて1×10~5Torrの高
真空中で連続して結晶成長させた。III族の原料には有
機金属のアルシン、トリエチルガリュウム及びトリメチ
ルインジウムを、V族の原料にはフォスフィン及びアル
シンを用いた。n型ドーパント、p型ドーパントの原料
にはそれぞれSiとBeを用いた。成長温度は500℃
で行った。次に、化学気相堆積工程とホトレジスト工程
により直径3ミクロンの円形のSiO2膜(後の工程で
除去する為、図5には示さず)を形成し、これをマスク
としてn型の半導体分布ブラッグ反射鏡2の途中までウ
エットエッチングしてメサ状にする。その後、SiO2
マスクを残したまま化学気相堆積工程によりSiO2
護層19を形成し、ポリイミド7を塗布し、硬化する。
次に、反応性イオンビームエッチングによりSiO2
スクが露出するまでポリイミド7をエッチングし、メサ
の上部のSiO2マスクを図に示したように除去するこ
とで平坦な面が得られる。この後、リフトオフ法により
リング状のp側電極8を形成し、さらにスッパタ蒸着法
により誘電体多層膜反射鏡10を形成し、n側電極9を
形成した。誘電体多層膜反射鏡10は、誘電体中で1/
4波長厚さの高屈折率アモルファスSi層と誘電体中で
1/4波長厚さの低屈折率SiO2層を交互に積層して
作製した。反射率を99.9%以上にする為に積層数を
6対とした。
In the production of this optical interconnection system, parts other than the surface-emitting type semiconductor laser can be easily produced by the conventional technique. Therefore, the production of the surface-emitting type semiconductor laser will be described in detail below. FIG. 5 shows a cross sectional structure of the device. 1 is an n-GaAs substrate (n-type dopant concentration:
n = 1 × 10 18 cm 3 ), 2 an n-type semiconductor distributed Bragg reflector (n = 1 × 10 18 cm 3 ), 15 a GaAs spacer layer, 16 an InGaAs / GaAs strained quantum well active layer, 17 Is p-InGaP lattice-matched to a GaAs substrate
Cladding layer (p-type dopant concentration: p = 1 × 10 18 cm
~ 3 ) and 18 are p-GaAs contact layers (p = 1 × 10
It is 19 cm ~ 3 ). The active layer 16 has three layers of 7 nm thickness I.
A strained quantum well layer having a band gap of 1.27 eV (wavelength: 0.98 micron) was used by separating the nGaAs well layer with a GaAs barrier layer having a thickness of 10 nm. The semiconductor distributed Bragg reflector 2 has a high refractive index tensile strain InGa.
P layers and low-refractive-index compressive-strained InGaAsP layers were alternately laminated with an optical thickness of ¼ wavelength. The number of stacked layers was set to 25 in order to make the reflectance 99.9% or more. Crystals of each semiconductor layer were continuously grown in a high vacuum of 1 × 10 to 5 Torr using an actinic ray epitaxy apparatus. Organic metal arsine, triethylgallium and trimethylindium were used as the group III raw materials, and phosphine and arsine were used as the group V raw materials. Si and Be were used as raw materials for the n-type dopant and the p-type dopant, respectively. Growth temperature is 500 ℃
I went in. Next, a circular SiO 2 film having a diameter of 3 μm (not shown in FIG. 5 to be removed in a later step, not shown in FIG. 5) is formed by a chemical vapor deposition step and a photoresist step, and the n-type semiconductor distribution is used as a mask. The Bragg reflector 2 is wet-etched halfway to form a mesa shape. After that, SiO 2
The SiO 2 protective layer 19 is formed by a chemical vapor deposition process while leaving the mask, and the polyimide 7 is applied and cured.
Next, the polyimide 7 is etched by reactive ion beam etching until the SiO 2 mask is exposed, and the SiO 2 mask on the top of the mesa is removed as shown in the figure to obtain a flat surface. After that, the ring-shaped p-side electrode 8 was formed by the lift-off method, the dielectric multilayer reflecting mirror 10 was further formed by the sputter deposition method, and the n-side electrode 9 was formed. The dielectric multilayer film reflecting mirror 10 has
A high-refractive-index amorphous Si layer having a thickness of 4 wavelengths and a low-refractive-index SiO 2 layer having a thickness of ¼ wavelength were alternately laminated in the dielectric. The number of stacked layers was set to 6 in order to make the reflectance 99.9% or more.

【0017】本実施例の面発光型半導体レーザでは、極
めて高い反射率(99.9%)の半導体分布ブラッグ反
射鏡が得られたことにより、室温での閾値電流10マイ
クロアンペア、閾値電圧1.3Vが得られ、低消費電力
動作が実現できた。また、少ない層数で高反射率の半導
体分布ブラッグ反射鏡が得られたことにより素子の歩留
りが高く、安価に供する事ができた。因って、本光イン
ターコネクションシステムも安価で低消費電力なシステ
ムとして供給する事ができた。
In the surface emitting semiconductor laser of this embodiment, a semiconductor distributed Bragg reflector having an extremely high reflectance (99.9%) was obtained, so that the threshold current at room temperature was 10 microamps and the threshold voltage was 1. 3V was obtained and low power consumption operation was realized. Further, since the semiconductor distributed Bragg reflector having a high reflectance was obtained with a small number of layers, the device yield was high and the device could be provided at low cost. Therefore, this optical interconnection system could be supplied as an inexpensive and low power consumption system.

【0018】本実施例では面発光レーザのp側反射鏡に
誘電体多層膜を用いたが、もちろん半導体分布ブラッグ
反射鏡など他の反射鏡を用いてもよい。また、本実施例
では面発光レーザの誘電体多層膜反射鏡にアモルファス
Si層とSiO2層の材料系を用いたが、誘電体多層膜
反射鏡は高屈折率層と低屈折率層が交互に積層されてい
れば良いので、SiNとSiO2、アモルファスSiと
SiN、或いはTiO2とSiO2等の他の材料系を用い
ても良い。また、本実施例で示した面発光レーザは単独
の素子としても動作する事は言うまでもない。
In this embodiment, the dielectric multilayer film is used for the p-side reflecting mirror of the surface emitting laser, but of course, other reflecting mirrors such as a semiconductor distributed Bragg reflecting mirror may be used. Further, in the present embodiment, the material system of the amorphous Si layer and the SiO 2 layer was used for the dielectric multilayer mirror of the surface emitting laser, but the dielectric multilayer mirror has a high refractive index layer and a low refractive index layer alternately. Therefore, other material systems such as SiN and SiO 2 , amorphous Si and SiN, or TiO 2 and SiO 2 may be used. Further, it goes without saying that the surface emitting laser shown in this embodiment can also operate as a single element.

【0019】[0019]

【発明の効果】本発明によれば、少ない層数で高反射率
の半導体分布ブラッグ反射鏡を提供することができるの
で、面発光型半導体レーザ、レーザ光送信モジュール或
いは光インターコネクション、光ファイバー通信などの
応用システムで利用できる。
According to the present invention, since it is possible to provide a semiconductor distributed Bragg reflector having a high reflectance with a small number of layers, a surface emitting semiconductor laser, a laser light transmission module or an optical interconnection, an optical fiber communication, etc. Can be used in the application system of.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す構造図。FIG. 1 is a structural diagram showing an embodiment of the present invention.

【図2】本発明の半導体分布ブラッグ反射鏡の反射特性
を示す図。
FIG. 2 is a diagram showing the reflection characteristics of the semiconductor distributed Bragg reflector of the present invention.

【図3】本発明の一実施例である半導体分布ブラッグ反
射鏡を有する面発光型半導体レーザの構造図。
FIG. 3 is a structural diagram of a surface emitting semiconductor laser having a semiconductor distributed Bragg reflector which is an embodiment of the present invention.

【図4】本発明の実施例3における光インターコネクシ
ョンシステムの構成図。
FIG. 4 is a configuration diagram of an optical interconnection system according to a third embodiment of the present invention.

【図5】本発明の実施例3における面発光レーザの断面
図。
FIG. 5 is a sectional view of a surface emitting laser according to a third embodiment of the present invention.

【図6】従来の半導体分布ブラッグ反射鏡と本発明の半
導体分布ブラッグ反射鏡における積層数と反射率の関係
を示す図。
FIG. 6 is a diagram showing the relationship between the number of stacked layers and the reflectance in the conventional semiconductor distributed Bragg reflector and the semiconductor distributed Bragg reflector of the present invention.

【符号の説明】[Explanation of symbols]

1…GaAs基板、2…n型半導体分布ブラッグ反射
鏡、3…n−InPクラッド層、4…p−InGaAs
P活性層、5…p−InPクラッド層、6…p−InG
aAsPコンタクト層、7…ポリイミド埋め込み層、8
…n電極、9…n電極、10…誘電体多層膜反射鏡、1
1…レーザ光、12…In0.35Ga0.65P層、13…I
0.14Ga0.86As層、14…光ファイバ、15…Ga
Asスペーサ層、16…InGaAs/GaAs歪量子
井戸活性層、17…p−InGaPクラッド層、18…
p−GaAsコンタクト層、19…SiO2膜。
DESCRIPTION OF SYMBOLS 1 ... GaAs substrate, 2 ... n-type semiconductor distributed Bragg reflector, 3 ... n-InP clad layer, 4 ... p-InGaAs
P active layer, 5 ... p-InP clad layer, 6 ... p-InG
aAsP contact layer, 7 ... Polyimide embedded layer, 8
... n electrode, 9 ... n electrode, 10 ... dielectric multilayer mirror, 1
1 ... Laser light, 12 ... In 0.35 Ga 0.65 P layer, 13 ... I
n 0.14 Ga 0.86 As layer, 14 ... Optical fiber, 15 ... Ga
As spacer layer, 16 ... InGaAs / GaAs strained quantum well active layer, 17 ... p-InGaP clad layer, 18 ...
p-GaAs contact layer, 19 ... SiO 2 film.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 近藤 正彦 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 魚見 和久 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masahiko Kondo 1-280, Higashi Koikeku, Kokubunji, Tokyo Inside Central Research Laboratory, Hitachi, Ltd. (72) Inventor, Kazuhisa Uomi 1-280, Higashi Koikeku, Kokubunji, Tokyo Hitachi, Ltd. Central Research Center

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】屈折率が周期的に変化し入射光を光波干渉
によって反射する半導体分布ブラッグ反射鏡において、
高屈折率部分を形成する半導体の少なくとも一部が圧縮
歪みを有し、且つ低屈折率部分を形成する半導体の少な
くとも一部が引っ張り歪みを有することを特徴とする半
導体分布ブラッグ反射鏡。
1. A semiconductor distributed Bragg reflector which changes its refractive index periodically and reflects incident light by light wave interference,
A semiconductor distributed Bragg reflector, wherein at least a part of a semiconductor forming a high refractive index portion has a compressive strain, and at least a part of a semiconductor forming a low refractive index portion has a tensile strain.
【請求項2】半導体基板上に形成された、屈折率が周期
的に変化し入射光を光波干渉によって反射する半導体分
布ブラッグ反射鏡において、高屈折率部分を形成する半
導体の少なくとも一部が前記半導体基板の格子定数より
も大きな格子定数の半導体により構成され、且つ低屈折
率部分を形成する半導体の少なくとも一部が前記半導体
基板の格子定数よりも小さな格子定数の半導体により構
成されることを特徴とする半導体分布ブラッグ反射鏡。
2. A semiconductor distributed Bragg reflector formed on a semiconductor substrate and having a refractive index that periodically changes and reflects incident light by light wave interference, wherein at least a part of a semiconductor forming a high refractive index portion is the above-mentioned. A semiconductor having a lattice constant larger than that of the semiconductor substrate, and at least a part of the semiconductor forming the low refractive index portion is formed of a semiconductor having a lattice constant smaller than that of the semiconductor substrate. Semiconductor distributed Bragg reflector.
【請求項3】半導体基板上に光を発生する活性層と該活
性層から発生した光からレーザ光を得る為に活性層の上
下を反射鏡で挟んだ共振器構造を有し、前記基板結晶と
略垂直方向に光を出射する面発光型半導体レーザにおい
て、前記反射鏡の少なくとも一方は屈折率が周期的に変
化し入射光を光波干渉によって反射する半導体分布ブラ
ッグ反射鏡を含み、且つ該半導体分布ブラッグ反射鏡の
高屈折率部分を形成する半導体の少なくとも一部が圧縮
歪みを有し、且つ上記半導体分布ブラッグ反射鏡の低屈
折率部分を形成する半導体の少なくとも一部が引っ張り
歪みを有することを特徴とする面発光型半導体レーザ。
3. A substrate structure comprising a semiconductor substrate having an active layer for generating light and a resonator structure in which a reflector is sandwiched between upper and lower sides of the active layer to obtain laser light from the light generated by the active layer. And a surface-emitting type semiconductor laser that emits light in a substantially vertical direction, at least one of the reflecting mirrors includes a semiconductor distributed Bragg reflecting mirror that reflects the incident light by light wave interference, the refractive index changing periodically, and the semiconductor At least part of the semiconductor forming the high refractive index portion of the distributed Bragg reflector has compressive strain, and at least part of the semiconductor forming the low refractive index portion of the semiconductor distributed Bragg reflector has tensile strain. A surface-emitting type semiconductor laser characterized by:
【請求項4】半導体基板上に光を発生する活性層と該活
性層から発生した光からレーザ光を得る為に活性層の上
下を反射鏡で挟んだ共振器構造を有し、前記半導体基板
と略垂直方向に光を出射する面発光型半導体レーザにお
いて、前記反射鏡の少なくとも一方は屈折率が周期的に
変化し入射光を光波干渉によって反射する半導体分布ブ
ラッグ反射鏡を含み、且つ該半導体分布ブラッグ反射鏡
の高屈折率部分を形成する半導体の少なくとも一部が前
記半導体基板の格子定数よりも大きな格子定数の半導体
により構成され、且つ上記半導体分布ブラッグ反射鏡の
低屈折率部分を形成する半導体の少なくとも一部が前記
半導体基板の格子定数よりも小さな格子定数の半導体に
より構成されことを特徴とする面発光型半導体レーザ。
4. A semiconductor substrate having an active layer that emits light and a resonator structure in which a reflector is sandwiched between the upper and lower sides of the active layer to obtain laser light from the light generated from the active layer. And a surface-emitting type semiconductor laser that emits light in a substantially vertical direction, at least one of the reflecting mirrors includes a semiconductor distributed Bragg reflecting mirror that reflects the incident light by light wave interference, the refractive index changing periodically, and the semiconductor At least a part of the semiconductor forming the high refractive index portion of the distributed Bragg reflector is made of a semiconductor having a lattice constant larger than that of the semiconductor substrate, and forms the low refractive index portion of the semiconductor distributed Bragg reflector. A surface-emitting type semiconductor laser, wherein at least a part of the semiconductor is composed of a semiconductor having a lattice constant smaller than that of the semiconductor substrate.
【請求項5】請求項3又は請求項4に記載の面発光型半
導体レーザが光源として使用されている事を特徴とする
光インターコネクションシステム。
5. An optical interconnection system, wherein the surface emitting semiconductor laser according to claim 3 or 4 is used as a light source.
JP11456996A 1996-05-09 1996-05-09 Semiconductor distribution bragg reflecting mirror and surface light emitting type semiconductor laser Pending JPH09298337A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11456996A JPH09298337A (en) 1996-05-09 1996-05-09 Semiconductor distribution bragg reflecting mirror and surface light emitting type semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11456996A JPH09298337A (en) 1996-05-09 1996-05-09 Semiconductor distribution bragg reflecting mirror and surface light emitting type semiconductor laser

Publications (1)

Publication Number Publication Date
JPH09298337A true JPH09298337A (en) 1997-11-18

Family

ID=14641116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11456996A Pending JPH09298337A (en) 1996-05-09 1996-05-09 Semiconductor distribution bragg reflecting mirror and surface light emitting type semiconductor laser

Country Status (1)

Country Link
JP (1) JPH09298337A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5943356A (en) * 1996-06-06 1999-08-24 Nec Corporation Semiconductor laser with front face covered with laminated dielectric layers which produce oppositely acting stresses
JP2008108827A (en) * 2006-10-24 2008-05-08 Furukawa Electric Co Ltd:The Surface light emitting laser element, surface light emitting laser element array, and method for manufacturing surface light emitting laser element
US7684456B2 (en) 1999-08-04 2010-03-23 Ricoh Company, Ltd. Laser diode and semiconductor light-emitting device producing visible-wavelength radiation
JP2011135104A (en) * 2011-04-01 2011-07-07 Ricoh Co Ltd Surface emitting laser element, surface emitting laser array equipped with the same, image forming apparatus equipped with surface emitting laser element or surface emitting laser array, optical pickup device equipped with surface emitting laser element or surface emitting laser array, optical transmission module equipped with surface emitting laser element or surface emitting laser array, optical transmission reception module equipped with surface emitting laser element or surface emitting laser array, and optical communication system equipped with surface emitting lase element or surface emitting laser array
JPWO2021038680A1 (en) * 2019-08-26 2021-03-04
WO2023281785A1 (en) * 2021-07-09 2023-01-12 ソニーグループ株式会社 Vertical surface-emitting semiconductor laser, and method for manufacturing vertical surface-emitting semiconductor laser

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5943356A (en) * 1996-06-06 1999-08-24 Nec Corporation Semiconductor laser with front face covered with laminated dielectric layers which produce oppositely acting stresses
US7684456B2 (en) 1999-08-04 2010-03-23 Ricoh Company, Ltd. Laser diode and semiconductor light-emitting device producing visible-wavelength radiation
US8009714B2 (en) 1999-08-04 2011-08-30 Ricoh Company, Ltd. Laser diode and semiconductor light-emitting device producing visible-wavelength radiation
US8537870B2 (en) 1999-08-04 2013-09-17 Ricoh Company, Limited Laser diode and semiconductor light-emitting device producing visible-wavelength radiation
JP2008108827A (en) * 2006-10-24 2008-05-08 Furukawa Electric Co Ltd:The Surface light emitting laser element, surface light emitting laser element array, and method for manufacturing surface light emitting laser element
JP2011135104A (en) * 2011-04-01 2011-07-07 Ricoh Co Ltd Surface emitting laser element, surface emitting laser array equipped with the same, image forming apparatus equipped with surface emitting laser element or surface emitting laser array, optical pickup device equipped with surface emitting laser element or surface emitting laser array, optical transmission module equipped with surface emitting laser element or surface emitting laser array, optical transmission reception module equipped with surface emitting laser element or surface emitting laser array, and optical communication system equipped with surface emitting lase element or surface emitting laser array
JPWO2021038680A1 (en) * 2019-08-26 2021-03-04
WO2023281785A1 (en) * 2021-07-09 2023-01-12 ソニーグループ株式会社 Vertical surface-emitting semiconductor laser, and method for manufacturing vertical surface-emitting semiconductor laser

Similar Documents

Publication Publication Date Title
US5912913A (en) Vertical cavity surface emitting laser, optical transmitter-receiver module using the laser, and parallel processing system using the laser
JP3425185B2 (en) Semiconductor element
US6300650B1 (en) Optical semiconductor device having a multilayer reflection structure
US5381434A (en) High-temperature, uncooled diode laser
US5159603A (en) Quantum well, beam deflecting surface emitting lasers
US8619831B2 (en) Vertical cavity surface emitting laser element, vertical cavity surface emitting laser array element, vertical cavity surface emitting laser device, light source device, and optical module
JPH0418476B2 (en)
US5253263A (en) High-power surface-emitting semiconductor injection laser with etched internal 45 degree and 90 degree micromirrors
JP2002353568A (en) Semiconductor laser, optical module and optical communication system using the same
CA2007383C (en) Semiconductor optical device
US8687269B2 (en) Opto-electronic device
JPH04225588A (en) Semiconductor laser structure
JP3748140B2 (en) Surface emitting semiconductor laser, optical transmission / reception module using the laser, and parallel information processing apparatus using the laser
JP2000066046A (en) Light transmission device
TW202315254A (en) A semiconductor laser diode including multiple junctions and grating layer
JP2005223351A (en) Surface emitting semiconductor laser, optical transceiving module using the laser, and parallel information processing unit using the laser
JPH09298337A (en) Semiconductor distribution bragg reflecting mirror and surface light emitting type semiconductor laser
CN217740981U (en) Human eye safe long wavelength VCSEL array chip for laser radar
JP5149146B2 (en) Optical semiconductor device and integrated device
JP3914350B2 (en) Semiconductor laser device
JP2004039717A (en) Semiconductor distribution bragg reflector, surface luminescence type semiconductor laser, surface luminescence type semiconductor laser array, optical communication system, optical write-in system, and optical pick-up system
KR0174303B1 (en) Semiconductor device and method of manufacturing the same
EP0528439B1 (en) Semiconductor laser
JPH07162072A (en) Semiconductor laser having heterogeneous structure
JP2004063972A (en) Semiconductor laser, and manufacturing method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040720

A521 Written amendment

Effective date: 20040909

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050920

A521 Written amendment

Effective date: 20051116

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20060117

Free format text: JAPANESE INTERMEDIATE CODE: A02