JPH09298337A - Semiconductor distribution bragg reflecting mirror and surface light emitting type semiconductor laser - Google Patents

Semiconductor distribution bragg reflecting mirror and surface light emitting type semiconductor laser

Info

Publication number
JPH09298337A
JPH09298337A JP11456996A JP11456996A JPH09298337A JP H09298337 A JPH09298337 A JP H09298337A JP 11456996 A JP11456996 A JP 11456996A JP 11456996 A JP11456996 A JP 11456996A JP H09298337 A JPH09298337 A JP H09298337A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
semiconductor
refractive index
bragg reflector
distributed bragg
lattice constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11456996A
Other languages
Japanese (ja)
Inventor
Kiyohisa Hiramoto
Masahiko Kondo
Misuzu Sagawa
Kazunori Shinoda
Kazuhisa Uomi
みすず 佐川
清久 平本
和典 篠田
正彦 近藤
和久 魚見
Original Assignee
Hitachi Ltd
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor distribution Bragg reflecting mirror which has high reflectivity with a small number of layers, a surface light emitting semiconductor laser using the semiconductor distribution Bragg reflecting mirror as a reflecting mirror, and an application system such as an optical interconnection using the surface light emitting semiconductor laser as a light source.
SOLUTION: A periodical structure (13 periods) wherein In0.42Ga0.58P layers 12 having a film thickness of 104nm and tensile strain of 0.3% and In0.05Ga0.95As layers 13 having a film thickness of 90nm, compression strain of 0.35% are alternately laminated is formed on a GaAs substrate 1 by using an organic metal vapor growth method. Therefore, a thin semiconductor distribution Bragg reflecting mirror having high reflectivity can be provided, and the performance of a surface light emitting type semiconductor laser, a surface light emitting type light emitting diode, a light receiving element, etc., can be improved. The light emitting type semiconductor laser can be used in an application system such as an optical interconnection.
COPYRIGHT: (C)1997,JPO

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明の属する技術分野】本発明は光素子及び光応用システムの技術分野に属し、これらに好適な半導体からなる反射鏡、これを用いた半導体レーザ素子(特に、面発光レーザと称するもの)、更にこれらを利用した光インターコネクションシステム等の光応用装置に係る。 The present invention relates belongs to the technical field of optical devices and optical application systems, the reflector comprising a suitable semiconductor to, semiconductor laser element (in particular, those referred to as a surface emitting laser) using the same, further according to the light application device for optical interconnection system or the like using these.

【0002】 [0002]

【従来の技術】屈折率の異なる2種の格子整合する半導体が交互に積層されて、ブラッグ反射として知られている光波干渉により入射光を反射する半導体分布ブラッグ反射鏡が、面発光型半導体レーザ等に用いられている。 Semiconductors two different lattice matching of the Related Art refractive index are laminated alternately, the semiconductor distributed Bragg reflector that reflects incident light by optical wave interference, known as Bragg reflection, the surface-emitting type semiconductor laser It has been used to like.
例えば、GaAs基板に格子整合するInGaP層とG For example, InGaP layer lattice-matched to GaAs substrate and G
aAs層を交互に積層した面発光型レーザ用反射鏡の反射特性が、Japanese Journal of Applied Physics Part Reflection characteristics of laminating aAs layer alternating surface emitting laser reflecting mirror, Japanese Journal of Applied Physics Part
1 Vol. 34 No. 2B (1995) pp. 1253-1256に報告されている。 1 Vol. 34 No. 2B (1995) pp. 1253-1256 have been reported.

【0003】 [0003]

【発明が解決しようとする課題】半導体分布ブラッグ反射鏡は半導体の周期的な屈折率分布に基づいて特定の波長範囲の光を反射するものである。 Semiconductor distributed Bragg reflector [SUMMARY OF THE INVENTION] is intended to reflect light in a specific wavelength range based on periodic refractive index distribution of the semiconductor. 通常は半導体積層構造の屈折率を反射すべき光の1/2波長の光学長で周期的に変化させた構造を用いる。 Normally used cyclically altered so structures in optical length of a half wavelength of the light to be reflected the refractive index of the semiconductor multilayer structure. 特に屈折率の異なる2種類の半導体層を1/4波長の光学的厚みで交互に積層した構造がよく用いられる。 In particular the structure of alternately laminated with the optical thickness of the two semiconductor layers 1/4 wave having different refractive index is often used. しかしながら、上記従来技術では、格子整合する2種の材料の組み合わせを用いるため、取り得る屈折率差に制限があった。 However, in the conventional art, for using a combination of two materials lattice-matched, there is a limit to the refractive index difference that can be taken. このため高反射率を得るには積層数を増やさねばならない。 Therefore in order to obtain a high reflectivity must increase the number of laminated layers. 積層数が多くなればなる程、半導体分布ブラッグ反射鏡の作製の難しさが指数関数的に増大し、素子の歩留まりが悪くなる。 Enough to become The more number of stacked layers, the difficulty of manufacturing a semiconductor distributed Bragg reflector exponentially increased, the yield of the device is deteriorated. また、半導体分布ブラッグ反射鏡の直列抵抗は積層数に比例して増加し、直列抵抗の増加は素子の消費電力を増加させる。 Also, the series resistance of the semiconductor distributed Bragg reflector increases in proportion to the number of laminated layers increases in series resistance increases the power consumption of the device. さらに、屈折率差が小さい場合、同じ反射率を得る為に必要な積層数が大きく、光の侵入長が長くなるため、光の自由キャリアによる吸収や、積層界面での散乱による損失のため、いくら積層数を増やしても必要な反射率が得られない場合もある。 Furthermore, if the refractive index difference is small, a large number of stacked required to obtain the same reflectivity, since the penetration depth of the light becomes longer, the absorption or by free carriers of light, due to the loss due to scattering at the interface between the layers, How much in some cases the reflectivity can not be obtained necessary to increase the number of laminated layers. このように、従来技術により形成した半導体分布ブラッグ反射鏡には、 Thus, the formed by prior art semiconductor distributed Bragg reflector,
構成する材料系の屈折率差が小さく積層数が多くならざるを得ないために、多くの欠点があった。 To refractive index difference of the material system constituting inevitably becomes much smaller number of stacked layers, there are a number of disadvantages.

【0004】本発明の目的は、少ない層数で高い反射率が得られる半導体分布ブラッグ反射鏡を提供する事であり、また該半導体分布ブラッグ反射鏡を利用した優れた特性の面発光型半導体レーザを提供する事であり、また該面発光型半導体レーザを光源として利用した光インターコネクションシステム等の光応用装置を提供する事である。 An object of the present invention is to provide a semiconductor distributed Bragg reflector that high reflectance in a small number of layers is obtained, also the semiconductor distributed surface emitting semiconductor laser having excellent characteristics using a Bragg reflector the is by providing, also is to provide a light application device such as an optical interconnection system using the said surface-emitting type semiconductor laser as a light source.

【0005】 [0005]

【課題を解決するための手段】上記の目的は、屈折率が周期的に変化し、入射光を光波干渉によって反射するように複数の半導体層で構成された反射鏡、所謂半導体分布ブラッグ反射鏡において、高屈折率領域(第1の半導体層)が圧縮歪みを有し、低屈折率領域(第2の半導体層)が引っ張り歪みを有する構造とすることにより達成される。 [Means for Solving the Problems] The above object, the refractive index periodically changes, reflecting mirror formed by a plurality of semiconductor layers to reflect the light wave interference of incident light, so-called semiconductor distributed Bragg reflector in the high refractive index region (first semiconductor layer) has a compressive strain, are achieved by a structure having a strained low refractive index region (second semiconductor layer) is tensile. また、半導体基板上に形成された、屈折率が周期的に変化し入射光を光波干渉によって反射する半導体分布ブラッグ反射鏡において、高屈折率部分を形成する半導体の少なくとも一部が前記半導体基板の格子定数よりも大きな格子定数の半導体により構成され、尚且つ低屈折率部分を形成する半導体の少なくとも一部が前記半導体基板の格子定数よりも小さな格子定数の半導体により構成することにより達成される。 Further, formed on a semiconductor substrate, the refractive index of the semiconductor distributed Bragg reflector which is reflected by periodically changed optical interference of incident light, at least a portion of the semiconductor forming the high refractive index portion of said semiconductor substrate is composed of a semiconductor of a larger lattice constant than the lattice constant, besides at least a portion of the semiconductor forming the low refractive index portion is achieved by constructing a semiconductor smaller lattice constant than the lattice constant of the semiconductor substrate.

【0006】また、本発明の半導体分布ブラッグ反射鏡は、半導体レーザ、特に面発光型半導体レーザの反射鏡として利用できる。 Further, the semiconductor distributed Bragg reflector of the present invention, a semiconductor laser, particularly applicable as a reflector of the surface-emitting type semiconductor laser. 即ち、本発明によれば半導体基板上部(基板主面の上方)に光を発生する活性層と、活性層から発生した光からレーザ光を得る為に活性層の上方並びに下方を反射鏡で挟んだ共振器構造を有し、半導体基板(正確にいえば基板の主面)に対し略垂直方向に光を出射する面発光型半導体レーザを、当該反射鏡の少なくとも一方は屈折率が周期的に変化し入射光を光波干渉によって反射する(即ち、屈折率の異なる2種の半導体層を交互に積層してなる)半導体分布ブラッグ反射鏡を含み、当該半導体分布ブラッグ反射鏡の高屈折率部分を形成する半導体の少なくとも一部が圧縮歪みを有し、一方の低屈折率部分を形成する半導体の少なくとも一部が引っ張り歪みを有するように構成する。 That is, sandwiching an active layer for generating light in the semiconductor substrate upper portion (above the principal surface of the substrate) according to the present invention, the upper and lower active layer from light generated from the active layer in order to obtain a laser beam by a reflecting mirror it has a resonator structure, the surface-emitting type semiconductor laser that emits light in a direction substantially perpendicular to the semiconductor substrate (the main surface of the substrate to be precise), at least one of periodically refractive index of the reflector altered reflected by optical interference of incident light (i.e., the two kinds of semiconductor layers having different refractive index is formed by alternately laminating) a semiconductor distributed Bragg reflector, a high refractive index portion of the semiconductor distributed Bragg reflector at least a portion of the formed semiconductor has a compressive strain, configured to have at least a portion of the tensile strained semiconductor forming one of the low refractive index portion. この半導体分布ブラッグ反射鏡の仕様に関し、別の観点で規定すれば高屈折率の半導体層の少なくとも一層を半導体の単結晶からなる基板の格子定数よりも大きな格子定数を有する半導体で、低屈折率の半導体層の少なくとも一層を半導体基板の格子定数よりも小さな格子定数を有する半導体で夫々構成する。 Relates specifications of the semiconductor distributed Bragg reflector, a semiconductor having a larger lattice constant than the lattice constant of the substrate at least composed of one semiconductor single crystal of another aspect in defining them if a high refractive index of the semiconductor layer, the low refractive index than the lattice constant of the at least one layer of a semiconductor substrate of the semiconductor layer respectively a semiconductor having a smaller lattice constant.

【0007】さらに、本発明の半導体分布ブラッグ反射鏡を利用した上述の面発光型半導体レーザは、光インターコネクション、光ファイバー通信等の応用システムで利用できる。 Furthermore, the surface-emitting type semiconductor laser described above using a semiconductor distributed Bragg reflector of the present invention, optical interconnection, available in the application system of the optical fiber communication. その場合、面発光型半導体レーザをそれを駆動するIC(集積回路)や光ファイバの部品と共にパッケージしたレーザ光送信モジュールとして利用できる。 In that case, available surface-emitting type semiconductor laser as a laser light transmission module packaged with IC for driving the components (integrated circuits) or an optical fiber.

【0008】以下、本発明の作用について説明する。 [0008] The following is a description of the operation of the present invention. 簡単の為、半導体基板上に屈折率の異なる2種類の半導体層を1/4波長の光学的厚みで交互に積層した周期構造をもつ半導体分布ブラッグ反射鏡を例にとり説明する。 Easy for taking illustrate a semiconductor distributed Bragg reflector having a periodic structure formed by alternately laminating two kinds of semiconductor layers having different refractive index on a semiconductor substrate with an optical thickness of a quarter wavelength as an example.
高屈折率層に基板材料より大きな格子定数を持つ材料を用い、低屈折率層に基板材料より小さな格子定数を持つ材料を用いて、これら2種の層を交互に積層すると、高屈折率層は圧縮歪みを内在し、低屈折率層は引っ張り歪みを内在する。 A material having a larger lattice constant than the substrate material in the high refractive index layer, using a material having a smaller lattice constant than the substrate material in the low refractive index layer, when laminating these two layers alternating high refractive index layer the inherent compressive strain, the low refractive index layer is inherent tensile strain. この場合、高屈折率層の屈折率は基板材料に格子整合する材料を用いる場合よりも大きくなり、 In this case, the refractive index of the high refractive index layer is larger than the case of using a material which is lattice matched to the substrate material,
低屈折率層の屈折率は基板材料に格子整合する材料を用いる場合よりも小さくなる。 The refractive index of the low refractive index layer is smaller than the case of using a material lattice-matched to the substrate material. 従って、大きな屈折率差が得られるので、格子整合する材料を用いる場合よりも少ない層数で高い反射率を得ることができる。 Therefore, a large refractive index difference can be obtained, it is possible to obtain a high reflectance with a small number of layers than the case of using a material lattice-matched. また、高屈折率層と低屈折率層はそれぞれ逆方向に歪むため、反射鏡全体での平均的な歪み量は小さい(応力補償構造)。 Further, since the high refractive index layer and a low refractive index layer strained in opposite directions, the average strain amount of the entire reflector is small (stress compensation structure).
このため、格子不整合転移等の欠陥は発生せず、良質な結晶を得ることができる。 Therefore, defects such as lattice mismatch transition does not occur, it is possible to obtain a high-quality crystal.

【0009】一例として、図6に、従来技術のGaAs [0009] As an example, FIG. 6, the prior art GaAs
基板に格子整合するIn 0.5 Ga 0.5 PとGaAsからなる半導体分布ブラッグ反射鏡と、本発明の引っ張り歪0.3%のIn 0.42 Ga 0.58 Pと圧縮歪0.35%のI Lattice-matched to the substrate In 0.5 Ga 0.5 P and a semiconductor distributed Bragg reflector made of GaAs, a tensile strain of 0.3% of In 0.42 Ga 0.58 P and the compression strain 0.35% I of the present invention
0.05 Ga 0.95 Asとからなる半導体分布ブラッグ反射鏡における積層数と反射率の関係を示す。 n 0.05 shows a number of stacked and reflectance relationship of Ga 0.95 As composed of a semiconductor distributed Bragg reflector. 半導体分布ブラッグ反射鏡での損失が無い場合を実線で、損失が40 The case losses in semiconductor distributed Bragg reflector is not a solid line, loss 40
cm~ 1の場合を破線で示す。 The case of cm ~ 1 indicated by broken lines. まず初めに損失が無い場合について説明する。 Case will be described in First loss is not. 従来の格子整合型In 0.5 Ga 0.5 Conventional lattice matching type In 0.5 Ga 0.5 P
/GaAs分布ブラッグ反射鏡では、99.5%の反射率を得るのに32対の積層数(即ち組成の異なる半導体層を32層ずつ交互に積層した構成)が必要である。 / The GaAs distributed Bragg reflector, (formed by laminating i.e. semiconductor layers having different compositions are alternately every 32 layers) to obtain reflectance of 99.5% 32 pair stack number is required. 一方、本発明の応力補償型In 0.42 Ga 0.58 P/In 0.05 On the other hand, stress compensation of the present invention In 0.42 Ga 0.58 P / In 0.05
Ga 0.95 As分布ブラッグ反射鏡は13対の積層数でよく、必要積層数を約1/3に低減できる。 Ga 0.95 As distributed Bragg reflector may be a 13-to-lamination number, it is possible to reduce the required number of laminated to about 1/3. 次に損失が4 Then loss of 4
0cm~ 1の場合について説明する。 Description will be given of a case of 0cm ~ 1. 本発明の応力補償型In 0.42 Ga 0.58 P/In 0.05 Ga 0.95 As分布ブラッグ反射鏡は15対で99.5%の反射率が得られるが、 Although stress compensation In 0.42 Ga 0.58 P / In 0.05 Ga 0.95 As distributed Bragg reflector 99.5% reflectance at 15 pairs of the present invention is obtained,
従来の格子整合型In 0.5 Ga 0.5 P/GaAs分布ブラッグ反射鏡ではいくら積層数を増やしても反射率は9 The reflectance be much increased number of laminations in the conventional lattice-matching type In 0.5 Ga 0.5 P / GaAs distributed Bragg reflector 9
9.3%で飽和してしまい99.5%に達しない。 It does not reach the saturation to cause 99.5% at 9.3%. 実際の多層膜反射鏡で損失が無い場合と損失が40cm~ 1の場合の間になると考えられ、本発明の応力補償型In In fact if the loss is no loss in the multilayer mirror is considered to be between the case of 40 cm ~ 1, stress compensation of the present invention In
0.42 Ga 0.58 P/In 0.05 Ga 0.95 As分布ブラッグ反射鏡が積層数を低減する事と高い反射率を得る事に非常に有効である事が判る。 0.42 Ga 0.58 P / In 0.05 Ga 0.95 As distributed Bragg reflector is known to be a very effective in obtaining that high reflectivity to reduce the number of lamination.

【0010】なお、上記説明では2種類の半導体層を交互に積層した構造について述べたが、半導体膜中の屈折率が1/2波長の周期性をもって連続的またはステップ状に変化する場合でも、高屈折率部分に圧縮歪となる材料を用い、低屈折率部分に引っ張り歪となる材料を用いることで、上記と同じ効果がある。 [0010] In the above description has dealt with two semiconductive layers alternately laminated structure, even when the refractive index of the semiconductor film changes continuously or stepwise with a periodicity of half wavelength, a material to be compressive strain in the high refractive index portion, by using a material as a tensile strain in the low refractive index portion, the same effect as described above.

【0011】 [0011]

【発明の実施の形態】以下、本発明の望ましき実施の形態を実施例1乃至3及び図1乃至図5を用いて説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, will be explained with reference to implementing Nozomashiki embodiment examples 1 to 3 and FIGS. 1-5 of the present invention.

【0012】<実施例1>図1は本発明の半導体分布ブラッグ反射鏡の一実施例を示す構造図である。 [0012] <Embodiment 1> FIG 1 is a structural diagram showing an embodiment of a semiconductor distributed Bragg reflector of the present invention. GaAs GaAs
基板1上に有機金属気相成長法により膜厚104nmで引っ張り歪0.3%のn型In 0.42 Ga 0.58 P層12と膜厚90nmで圧縮歪0.35%のn型In 0.05 Ga N-type strain of 0.3% tensile in thickness 104nm by organometallic vapor phase epitaxy on the substrate 1 In 0.42 Ga 0.58 P layer 12 and the film thickness 90nm with a compressive strain 0.35% n-type an In 0.05 Ga
0.95 As層13を交互に積層した周期構造(13周期) 0.95 As layer 13 alternately laminated periodic structure (13 cycles)
を形成した。 It was formed. 両層の膜厚は、反射すべき光の波長を1. The film thickness of both layers, the wavelength of light to be reflected 1.
3ミクロン(μm)とし、光学的1/4波長の厚みに設定している。 3 and microns ([mu] m), is set to the thickness of the optical quarter wavelength. 両層は逆方向の歪みを有するため、反射鏡全体での平均的な歪み量は小さくなり、格子不整合転移等の欠陥は発生せず、良質な結晶を得ることができた。 Since both layers having a distortion in the opposite direction, the average strain amount of the entire reflector is reduced, defects such as lattice mismatch transition does not occur, it was possible to obtain a high-quality crystal.
図2に試作した反射鏡の反射スペクトルを示す。 It shows the reflection spectra of the prototype reflector in FIG. 反射すべき光の波長1.3ミクロンにおける反射率は99.5 Reflectance at a wavelength of 1.3 microns of light to be reflected 99.5
%であった。 %Met. この結果、従来の半導体分布ブラッグ反射鏡に比べ、約1/3の層数で99.5%の高反射率を得ることができた。 As a result, compared with the conventional semiconductor distributed Bragg reflector, it was possible to obtain a high reflectance of 99.5% at about 1/3 of the number of layers.

【0013】<実施例2>本発明の一実施例である1. [0013] in one embodiment of the <Example 2> The present invention 1.
3ミクロン帯面発光型半導体レーザ(発振波長が1.3 3 micron band surface emitting semiconductor laser (oscillation wavelength 1.3
μmの半導体レーザ)を光ファイバと結合した構成を図3に示す。 The structure coupled to the optical fiber a semiconductor laser) of μm shown in FIG. 本素子はn−GaAs基板1上に以下の半導体多層構造を有する。 This element has the following semiconductor multi-layer structure on the n-GaAs substrate 1. 膜厚106nm、引っ張り歪0. The film thickness 106nm, tensile strain 0.
35%のn型In 0.3 Ga 0.7 As 0.10.9と膜厚90n 35% of n-type In 0.3 Ga 0.7 As 0.1 P 0.9 and a thickness of 90n
m、圧縮歪0.4%のn型In 0.06 Ga 0.94 Asの組合せを交互に積層した周期構造(16周期)からなる半導体分布ブラッグ反射鏡2、膜厚500nmのn型InP m, the combination of the compressive strain 0.4% n-type In 0.06 Ga 0.94 As comprising periodic structure of alternately laminated (16 cycles) semiconductor distributed Bragg reflector 2, a thickness of 500 nm n-type InP
クラッド層3、膜厚300nmのp型InGaAsP活性層(組成波長1.3ミクロン)4、膜厚580nmのp型InPクラッド層5、膜厚300nmのp型InG Cladding layer 3, p-type InGaAsP active layer with a thickness of 300 nm (composition wavelength 1.3 microns) 4, p-type InP cladding layer 5 having a thickness of 580 nm, a film thickness of 300 nm p-type InG
aAsPコンタクト層6。 aAsP contact layer 6. これらの層のうち、半導体分布ブラッグ反射鏡2は有機金属気相成長法によりGaA Of these layers, the semiconductor distributed Bragg reflector 2 by metal organic chemical vapor deposition GaA
s基板上に成長した。 s was grown on the substrate. また、n型InPクラッド層3からp型InGaAsPコンタクト層6までの各層は、I Each layer from the n-type InP cladding layer 3 to the p-type InGaAsP contact layer 6, I
nP基板(後の工程で除去する為、図3には示さず)上に有機金属気相成長法により成長させた後、直接接着法により半導体分布ブラッグ反射鏡2上に接合した。 (To remove in a subsequent step, not shown in FIG. 3) nP substrate after growing by metalorganic vapor phase epitaxy on and bonded onto the semiconductor distributed Bragg reflector 2 by a direct bonding method. なお、InP基板は接合後にウエットエッチングにより除去した。 Incidentally, InP substrate was removed by wet etching after bonding. CVD工程とホトレジスト工程により直径10 Diameter by a CVD process and a photoresist step 10
ミクロンの円形のSiO 2膜を形成し、これをマスクとしてp型InPクラッド層5の途中までウエットエッチングして凸状にする。 Forming a circular SiO 2 film of microns, which is in a convex shape by wet etching to the middle of the p-type InP cladding layer 5 as a mask. その後、SiO 2マスクを残したままポリイミド7を塗布し、硬化する。 Then, the remains polyimide 7 leaving the SiO 2 mask was applied and cured. 次に、RIE Then, RIE
(反応性イオンエッチング)工程によりSiO 2マスクが露出するまでポリイミド7をエッチングし、メサの上部のSiO 2マスクを図に示したように除去することで平坦な面が得られる。 The polyimide 7 to SiO 2 mask is exposed by (reactive ion etching) process to etch, flat surface by removing the upper portion of the SiO 2 mask mesa as illustrated in FIG. Is obtained. この後、リフトオフ法によりリング状のp側電極8を形成し、さらにスッパタ蒸着法によりSiO 2膜とa−Si膜(アモルファスシリコン膜) Thereafter, by a lift-off method to form a ring-shaped p-side electrode 8, SiO 2 film and the a-Si film by further Suppata deposition (amorphous silicon film)
をそれぞれの媒質内における発振波長の1/4倍の厚みで交互に積層した周期構造(4周期)からなる誘電体多層膜反射鏡10を形成し、n側電極9を形成した。 The dielectric multilayer-film reflective mirror 10 consisting of a periodic structure formed by alternately laminating a quarter times the thickness of the oscillation wavelength (4 cycles) in the respective medium to form, to form an n-side electrode 9. レーザ光11は誘電体多層膜反射鏡側から取り出し、光ファイバ14に結合する。 The laser beam 11 is removed from the dielectric multilayer film reflecting mirror side, coupled to the optical fiber 14.

【0014】本実施例による1.3ミクロン帯面発光型半導体レーザは、少ない層数で高反射率の半導体分布ブラッグ反射鏡が得られたことにより、室温での閾値電流3mA、閾値電圧1.1V、スロープ効率0.5mW/ [0014] 1.3 micron band surface emitting semiconductor laser according to this embodiment, by a semiconductor distributed Bragg reflector having a high reflectance with a small number of layers is obtained, the threshold current 3mA at room temperature, the threshold voltage 1. 1V, slope efficiency 0.5mW /
mA、最大出力10mWの素子特性が得られ、低しきい値電流で且つ低しきい値電圧の面発光型半導体レーザが得られた。 mA, device characteristics of the maximum output 10mW was obtained, the surface emitting semiconductor laser and a low threshold voltage with a low threshold current is obtained. 本レーザは発振波長が1.3ミクロンであり光ファイバー通信で用いられる波長帯と一致するので、 Since the laser coincides with the wavelength band used by and fiber optic communications 1.3 microns the oscillation wavelength,
単体の素子で光ファイバー通信の光源として利用できた。 It was used as a light source for optical fiber communications single element.

【0015】<実施例3>本実施例では、ポリイミド埋め込み型0.98ミクロン帯面発光型半導体レーザダイオード(即ち、発振波長が0.98μm)の4×4二次元レーザアレイモジュールを用いて光インターコネクションシステムを作製した。 [0015] In <Embodiment 3> This embodiment, polyimide implantable 0.98 micron band surface emitting semiconductor laser diode (i.e., the oscillation wavelength of 0.98 .mu.m) using a 4 × 4 two-dimensional laser array module of light to prepare the interconnection system. 図4に全体の構成図を示す。 It shows the overall configuration diagram in FIG.
送信ボードと受信ボードを装着した2つのコンピュータが光ファイバーアレイで接続され、光インターコネクションシステムとなっている。 Two computers mounted transmission board receiving board are connected by an optical fiber array, and has a optical interconnection system. 送信ボードと受信ボードには、それぞれ8個のレーザ光送信モジュール及びレーザ光受信モジュールが実装されている。 The transmission board receiving board includes eight laser transmitting module and laser light reception module of each are mounted. レーザ光送信モジュールは、4×4の面発光型半導体レーザ2次元アレイとそれらを駆動するIC及び光ファイバアレイ等の部品で構成されている。 Laser light transmission module is constituted by IC and components such as an optical fiber array for driving the 4 and the surface-emitting type semiconductor laser 2-dimensional array of × 4 thereof. レーザ光受信モジュールは、4×4 Laser beam receiving module, 4 × 4
のフォトダイオード2次元アレイとそれらを駆動するI I to photodiode 2-dimensional array of a driving them
C及び光ファイバアレイ等の部品で構成されている。 It is composed of C and parts such as an optical fiber array. 本システムでは、8×4×4=128チャンネルの信号を並列伝送できる。 This system can parallel transmission signals 8 × 4 × 4 = 128 channels. 各々の面発光型半導体レーザは200 Each of the surface-emitting type semiconductor laser 200
Mb/秒(Mbは、メガビットの単位)の信号を伝送できるので、本光インターコネクションシステム全体では25.6Gb/秒(Gbは、ギガビットの単位)の大容量の信号を伝送できる。 Mb / s (Mb, the unit of megabits) because it transmits signals, 25.6 GB / sec throughout the optical interconnection system (Gb is gigabit of) can transmit a signal of a large capacity.

【0016】この光インターコネクションシステムの作製において面発光型半導体レーザ以外の部品は従来技術により容易に作製できるので、以下面発光型半導体レーザの作製について詳細に説明する。 [0016] Since the optical interconnection system VCSEL other components in the production of easily manufactured by conventional techniques will be described in detail preparation of the following surface-emitting type semiconductor laser. 図5に素子断面構造を示す。 It shows a device cross-sectional structure in FIG. 1はn−GaAs基板(n型ドーパント濃度: 1 n-GaAs substrate (n-type dopant concentration:
n=1×10 18 cm~ 3 )、2はn型半導体分布ブラッグ反射鏡(n=1×10 18 cm~ 3 )、15はGaAsスペーサ層、16はInGaAs/GaAs歪量子井戸活性層、17はGaAs基板に格子整合したp−InGaP n = 1 × 10 18 cm ~ 3), 2 denotes an n-type semiconductor distributed Bragg reflector (n = 1 × 10 18 cm ~ 3), 15 designates a GaAs spacer layer, 16 is InGaAs / GaAs strained quantum well active layer, 17 p-InGaP is lattice matched to GaAs substrate
クラッド層(p型ドーパント濃度:p=1×10 18 cm Cladding layer (p-type dopant concentration: p = 1 × 10 18 cm
~ 3 )、18はp−GaAsコンタクト層(p=1×10 1-3), 18 p-GaAs contact layer (p = 1 × 10
19 cm~ 3 )である。 19 cm ~ 3) is. 活性層16には、3層の7nm厚I The active layer 16, a three-layer 7nm thick I
nGaAs井戸層を10nm厚のGaAs障壁層で隔てて実効的に1.27eV(波長:0.98ミクロン)のバンドギャップを持つ歪量子井戸層を用いた。 Effectively 1.27 eV (wavelength: 0.98 micrometers) to nGaAs well layer separated by GaAs barrier layer of 10nm thickness with strained quantum well layer having a band gap of. 半導体分布ブラッグ反射鏡2は、高屈折率の引っ張り歪InGa Semiconductor distributed Bragg reflector 2, pulling the high refractive index distortion InGa
P層と低屈折率の圧縮歪InGaAsP層を1/4波長の光学的厚みで交互に積層した。 The P layer and a low refractive index compressive strain InGaAsP layer alternately laminated in an optical thickness of a quarter wavelength. 反射率を99.9%以上にする為に積層数を25対とした。 The number of layers the reflectance to more than 99.9% was 25 pairs. 各半導体層は、化学線エピタキシー装置を用いて1×10~ 5 Torrの高真空中で連続して結晶成長させた。 Each semiconductor layer is grown crystal continuously in a high vacuum of 1 × 10 ~ 5 Torr using chemical beam epitaxy apparatus. III族の原料には有機金属のアルシン、トリエチルガリュウム及びトリメチルインジウムを、V族の原料にはフォスフィン及びアルシンを用いた。 Raw material arsine organometallic Group III, triethyl moth Liu arm and trimethyl indium, the raw material of group V using phosphine and arsine. n型ドーパント、p型ドーパントの原料にはそれぞれSiとBeを用いた。 n-type dopant, the p-type dopant material with Si and Be, respectively. 成長温度は500℃ The growth temperature is 500 ℃
で行った。 It was carried out in. 次に、化学気相堆積工程とホトレジスト工程により直径3ミクロンの円形のSiO 2膜(後の工程で除去する為、図5には示さず)を形成し、これをマスクとしてn型の半導体分布ブラッグ反射鏡2の途中までウエットエッチングしてメサ状にする。 Then, (to remove in a subsequent step, not shown in FIG. 5) chemical vapor deposition process and the photoresist process by the diameter 3 microns of the circular SiO 2 film is formed, n-type semiconductor distribution as a mask to a mesa shape by wet etching to the middle of the Bragg reflector 2. その後、SiO 2 Then, SiO 2
マスクを残したまま化学気相堆積工程によりSiO 2保護層19を形成し、ポリイミド7を塗布し、硬化する。 The SiO 2 protective layer 19 is formed by leaving a chemical vapor deposition process leaving the mask, the polyimide 7 is applied and cured.
次に、反応性イオンビームエッチングによりSiO 2マスクが露出するまでポリイミド7をエッチングし、メサの上部のSiO 2マスクを図に示したように除去することで平坦な面が得られる。 Next, a polyimide 7 until the SiO 2 mask is exposed by reactive ion beam etching is etched, it is a flat surface to remove the upper portion of the SiO 2 mask mesa as illustrated in FIG. Is obtained. この後、リフトオフ法によりリング状のp側電極8を形成し、さらにスッパタ蒸着法により誘電体多層膜反射鏡10を形成し、n側電極9を形成した。 Thereafter, by a lift-off method to form a ring-shaped p-side electrode 8, further forming a dielectric multilayer film reflective mirror 10 by Suppata deposition method to form an n-side electrode 9. 誘電体多層膜反射鏡10は、誘電体中で1/ The dielectric multilayer-film reflective mirror 10 is a dielectric material 1 /
4波長厚さの高屈折率アモルファスSi層と誘電体中で1/4波長厚さの低屈折率SiO 2層を交互に積層して作製した。 4 wavelength thickness of a low refractive index layer of SiO 2 quarter wavelength thick at a high refractive index amorphous Si layer and the dielectric material are laminated alternately was produced. 反射率を99.9%以上にする為に積層数を6対とした。 The laminated number of reflectance to more than 99.9% was 6 pairs.

【0017】本実施例の面発光型半導体レーザでは、極めて高い反射率(99.9%)の半導体分布ブラッグ反射鏡が得られたことにより、室温での閾値電流10マイクロアンペア、閾値電圧1.3Vが得られ、低消費電力動作が実現できた。 [0017] In the surface-emitting type semiconductor laser of this example, by a semiconductor distributed Bragg reflector of very high reflectivity (99.9%) was obtained, the threshold current 10 microamperes at room temperature, the threshold voltage 1. 3V is obtained, low-power consumption operation can be realized. また、少ない層数で高反射率の半導体分布ブラッグ反射鏡が得られたことにより素子の歩留りが高く、安価に供する事ができた。 Also, the yield of the element by a semiconductor distributed Bragg reflector having a high reflectance with a small number of layers is obtained is high and could be subjected to low cost. 因って、本光インターコネクションシステムも安価で低消費電力なシステムとして供給する事ができた。 Due to, was able to supply as the optical interconnection system is also inexpensive and low-power consumption system.

【0018】本実施例では面発光レーザのp側反射鏡に誘電体多層膜を用いたが、もちろん半導体分布ブラッグ反射鏡など他の反射鏡を用いてもよい。 [0018] While using a dielectric multilayer film on the p-side reflector of a surface emitting laser in the present embodiment may be of course using other reflectors such as a semiconductor distributed Bragg reflector. また、本実施例では面発光レーザの誘電体多層膜反射鏡にアモルファスSi層とSiO 2層の材料系を用いたが、誘電体多層膜反射鏡は高屈折率層と低屈折率層が交互に積層されていれば良いので、SiNとSiO 2 、アモルファスSiとSiN、或いはTiO 2とSiO 2等の他の材料系を用いても良い。 Although using a material system of the amorphous Si layer and the SiO 2 layer in the dielectric multilayer film reflective mirror of the surface emitting laser in the present embodiment, a dielectric multilayer film reflective mirror high refractive index layer and a low refractive index layer is alternately since it is sufficient that stacked, SiN and SiO 2, amorphous Si and SiN, or may be used of TiO 2 and other material systems, such as SiO 2. また、本実施例で示した面発光レーザは単独の素子としても動作する事は言うまでもない。 Further, the surface emitting laser shown in this example it is obvious that also operates as a single element.

【0019】 [0019]

【発明の効果】本発明によれば、少ない層数で高反射率の半導体分布ブラッグ反射鏡を提供することができるので、面発光型半導体レーザ、レーザ光送信モジュール或いは光インターコネクション、光ファイバー通信などの応用システムで利用できる。 According to the present invention, it is possible to provide a semiconductor distributed Bragg reflector having a high reflectance with a small number of layers, the surface-emitting type semiconductor laser, the laser beam transmitter module or an optical interconnection, an optical fiber communication etc. available in the application system.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】本発明の実施例を示す構造図。 Structure diagram showing an embodiment of the present invention; FIG.

【図2】本発明の半導体分布ブラッグ反射鏡の反射特性を示す図。 Diagram showing the reflection characteristic of the semiconductor distributed Bragg reflector of the present invention; FIG.

【図3】本発明の一実施例である半導体分布ブラッグ反射鏡を有する面発光型半導体レーザの構造図。 [3] Construction of the surface-emitting type semiconductor laser having a semiconductor distributed Bragg reflector which is an embodiment of the present invention.

【図4】本発明の実施例3における光インターコネクションシステムの構成図。 Configuration diagram of an optical interconnection system according to the third embodiment of the present invention; FIG.

【図5】本発明の実施例3における面発光レーザの断面図。 Cross-sectional view of a surface emitting laser according to Example 3 of the present invention; FIG.

【図6】従来の半導体分布ブラッグ反射鏡と本発明の半導体分布ブラッグ反射鏡における積層数と反射率の関係を示す図。 6 shows a relationship between the number of laminated layers and the reflectance of the semiconductor distributed Bragg reflector of a conventional semiconductor distributed Bragg reflector and the present invention.

【符号の説明】 DESCRIPTION OF SYMBOLS

1…GaAs基板、2…n型半導体分布ブラッグ反射鏡、3…n−InPクラッド層、4…p−InGaAs 1 ... GaAs substrate, 2 ... n-type semiconductor distributed Bragg reflector, 3 ... n-InP cladding layer, 4 ... p-InGaAs
P活性層、5…p−InPクラッド層、6…p−InG P active layer, 5 ... p-InP cladding layer, 6 ... p-InG
aAsPコンタクト層、7…ポリイミド埋め込み層、8 aAsP contact layer, 7 ... polyimide buried layer, 8
…n電極、9…n電極、10…誘電体多層膜反射鏡、1 ... n electrodes, 9 ... n electrode, 10 ... dielectric multilayer-1
1…レーザ光、12…In 0.35 Ga 0.65 P層、13…I 1 ... laser light, 12 ... In 0.35 Ga 0.65 P layer, 13 ... I
0.14 Ga 0.86 As層、14…光ファイバ、15…Ga n 0.14 Ga 0.86 As layer, 14 ... optical fiber, 15 ... Ga
Asスペーサ層、16…InGaAs/GaAs歪量子井戸活性層、17…p−InGaPクラッド層、18… As spacer layer, 16 ... InGaAs / GaAs strained quantum well active layer, 17 ... p-InGaP cladding layer, 18 ...
p−GaAsコンタクト層、19…SiO 2膜。 p-GaAs contact layer, 19 ... SiO 2 film.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 近藤 正彦 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 魚見 和久 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 ────────────────────────────────────────────────── ─── of the front page continued (72) inventor Masahiko Kondo Tokyo Kokubunji Higashikoigakubo 1-chome 280 address Hitachi, Ltd. center within the Institute (72) inventor Uomi Kazuhisa Tokyo Kokubunji Higashikoigakubo 1-chome 280 address Hitachi, Ltd. central within the Institute

Claims (5)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】屈折率が周期的に変化し入射光を光波干渉によって反射する半導体分布ブラッグ反射鏡において、 1. A semiconductor distributed Bragg reflector in which the refractive index is reflected by periodically changed optical interference of incident light,
    高屈折率部分を形成する半導体の少なくとも一部が圧縮歪みを有し、且つ低屈折率部分を形成する半導体の少なくとも一部が引っ張り歪みを有することを特徴とする半導体分布ブラッグ反射鏡。 At least a portion of the semiconductor forming the high refractive index portion has a compressive strain, and the semiconductor distributed Bragg reflector, characterized in that at least part of the tensile strain of the semiconductor forming the low refractive index portion.
  2. 【請求項2】半導体基板上に形成された、屈折率が周期的に変化し入射光を光波干渉によって反射する半導体分布ブラッグ反射鏡において、高屈折率部分を形成する半導体の少なくとも一部が前記半導体基板の格子定数よりも大きな格子定数の半導体により構成され、且つ低屈折率部分を形成する半導体の少なくとも一部が前記半導体基板の格子定数よりも小さな格子定数の半導体により構成されることを特徴とする半導体分布ブラッグ反射鏡。 2. A formed on a semiconductor substrate, a semiconductor distributed Bragg reflector in which the refractive index is reflected by periodically changed optical interference incident light, the semiconductor at least a part of said forming a high refractive index portion is composed of a semiconductor of a larger lattice constant than the lattice constant of the semiconductor substrate, and at least a part of the semiconductor forming the low refractive index portion is constituted by a semiconductor smaller lattice constant than the lattice constant of the semiconductor substrate semiconductor distributed Bragg reflector to be.
  3. 【請求項3】半導体基板上に光を発生する活性層と該活性層から発生した光からレーザ光を得る為に活性層の上下を反射鏡で挟んだ共振器構造を有し、前記基板結晶と略垂直方向に光を出射する面発光型半導体レーザにおいて、前記反射鏡の少なくとも一方は屈折率が周期的に変化し入射光を光波干渉によって反射する半導体分布ブラッグ反射鏡を含み、且つ該半導体分布ブラッグ反射鏡の高屈折率部分を形成する半導体の少なくとも一部が圧縮歪みを有し、且つ上記半導体分布ブラッグ反射鏡の低屈折率部分を形成する半導体の少なくとも一部が引っ張り歪みを有することを特徴とする面発光型半導体レーザ。 3. have a resonator structure sandwiched between reflectors and below the active layer in order to obtain a laser beam from the light generated from the active layer and the active layer for generating light onto the semiconductor substrate, the substrate crystal When the surface-emitting type semiconductor laser that emits light in a direction substantially perpendicular, at least one of said reflecting mirror includes a semiconductor distributed Bragg reflector that reflects the optical interference incident light refractive index periodically changes, and the semiconductor at least partially compressive strain of the semiconductor forming the high refractive index portion of the distributed Bragg reflector, and having at least a portion of the tensile strained semiconductor forming the low refractive index portion of the semiconductor distributed Bragg reflector VCSEL according to claim.
  4. 【請求項4】半導体基板上に光を発生する活性層と該活性層から発生した光からレーザ光を得る為に活性層の上下を反射鏡で挟んだ共振器構造を有し、前記半導体基板と略垂直方向に光を出射する面発光型半導体レーザにおいて、前記反射鏡の少なくとも一方は屈折率が周期的に変化し入射光を光波干渉によって反射する半導体分布ブラッグ反射鏡を含み、且つ該半導体分布ブラッグ反射鏡の高屈折率部分を形成する半導体の少なくとも一部が前記半導体基板の格子定数よりも大きな格子定数の半導体により構成され、且つ上記半導体分布ブラッグ反射鏡の低屈折率部分を形成する半導体の少なくとも一部が前記半導体基板の格子定数よりも小さな格子定数の半導体により構成されことを特徴とする面発光型半導体レーザ。 4. have a resonator structure sandwiched between reflectors and below the active layer in order to obtain a laser beam from the light generated from the active layer and the active layer for generating light onto the semiconductor substrate, the semiconductor substrate When the surface-emitting type semiconductor laser that emits light in a direction substantially perpendicular, at least one of said reflecting mirror includes a semiconductor distributed Bragg reflector that reflects the optical interference incident light refractive index periodically changes, and the semiconductor At least a portion of the semiconductor forming the high refractive index portion of the distributed Bragg reflector is constituted by a semiconductor of the larger lattice constant than the lattice constant of the semiconductor substrate, and forming the low refractive index portion of the semiconductor distributed Bragg reflector semiconductor at least a part of the surface-emitting type semiconductor laser than the lattice constant of the semiconductor substrate, characterized in that is constituted by a semiconductor of a small lattice constant.
  5. 【請求項5】請求項3又は請求項4に記載の面発光型半導体レーザが光源として使用されている事を特徴とする光インターコネクションシステム。 5. A method according to claim 3 or an optical interconnection system, characterized in that the surface-emitting type semiconductor laser according is used as a light source in claim 4.
JP11456996A 1996-05-09 1996-05-09 Semiconductor distribution bragg reflecting mirror and surface light emitting type semiconductor laser Pending JPH09298337A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11456996A JPH09298337A (en) 1996-05-09 1996-05-09 Semiconductor distribution bragg reflecting mirror and surface light emitting type semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11456996A JPH09298337A (en) 1996-05-09 1996-05-09 Semiconductor distribution bragg reflecting mirror and surface light emitting type semiconductor laser

Publications (1)

Publication Number Publication Date
JPH09298337A true true JPH09298337A (en) 1997-11-18

Family

ID=14641116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11456996A Pending JPH09298337A (en) 1996-05-09 1996-05-09 Semiconductor distribution bragg reflecting mirror and surface light emitting type semiconductor laser

Country Status (1)

Country Link
JP (1) JPH09298337A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5943356A (en) * 1996-06-06 1999-08-24 Nec Corporation Semiconductor laser with front face covered with laminated dielectric layers which produce oppositely acting stresses
JP2008108827A (en) * 2006-10-24 2008-05-08 Furukawa Electric Co Ltd:The Surface light emitting laser element, surface light emitting laser element array, and method for manufacturing surface light emitting laser element
US7684456B2 (en) 1999-08-04 2010-03-23 Ricoh Company, Ltd. Laser diode and semiconductor light-emitting device producing visible-wavelength radiation
JP2011135104A (en) * 2011-04-01 2011-07-07 Ricoh Co Ltd Surface emitting laser element, surface emitting laser array equipped with the same, image forming apparatus equipped with surface emitting laser element or surface emitting laser array, optical pickup device equipped with surface emitting laser element or surface emitting laser array, optical transmission module equipped with surface emitting laser element or surface emitting laser array, optical transmission reception module equipped with surface emitting laser element or surface emitting laser array, and optical communication system equipped with surface emitting lase element or surface emitting laser array

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5943356A (en) * 1996-06-06 1999-08-24 Nec Corporation Semiconductor laser with front face covered with laminated dielectric layers which produce oppositely acting stresses
US7684456B2 (en) 1999-08-04 2010-03-23 Ricoh Company, Ltd. Laser diode and semiconductor light-emitting device producing visible-wavelength radiation
US8009714B2 (en) 1999-08-04 2011-08-30 Ricoh Company, Ltd. Laser diode and semiconductor light-emitting device producing visible-wavelength radiation
US8537870B2 (en) 1999-08-04 2013-09-17 Ricoh Company, Limited Laser diode and semiconductor light-emitting device producing visible-wavelength radiation
JP2008108827A (en) * 2006-10-24 2008-05-08 Furukawa Electric Co Ltd:The Surface light emitting laser element, surface light emitting laser element array, and method for manufacturing surface light emitting laser element
JP2011135104A (en) * 2011-04-01 2011-07-07 Ricoh Co Ltd Surface emitting laser element, surface emitting laser array equipped with the same, image forming apparatus equipped with surface emitting laser element or surface emitting laser array, optical pickup device equipped with surface emitting laser element or surface emitting laser array, optical transmission module equipped with surface emitting laser element or surface emitting laser array, optical transmission reception module equipped with surface emitting laser element or surface emitting laser array, and optical communication system equipped with surface emitting lase element or surface emitting laser array

Similar Documents

Publication Publication Date Title
US5068869A (en) Surface-emitting laser diode
US5825047A (en) Optical semiconductor device
US5212706A (en) Laser diode assembly with tunnel junctions and providing multiple beams
EP0124924B1 (en) Semiconductor devise for generating electromagnetic radiation
US4881236A (en) Wavelength-resonant surface-emitting semiconductor laser
US5358880A (en) Method of manufacturing closed cavity LED
US5392307A (en) Vertical optoelectronic semiconductor device
US5491710A (en) Strain-compensated multiple quantum well laser structures
US5903586A (en) Long wavelength vertical cavity surface emitting laser
US6097041A (en) Light-emitting diode with anti-reflector
US5815524A (en) VCSEL including GaTlP active region
US5052016A (en) Resonant-periodic-gain distributed-feedback surface-emitting semiconductor laser
US5732103A (en) Long wavelength VCSEL
US5159603A (en) Quantum well, beam deflecting surface emitting lasers
US5384797A (en) Monolithic multi-wavelength laser diode array
US5978398A (en) Long wavelength vertical cavity surface emitting laser
US6261859B1 (en) Method for fabricating surface-emitting semiconductor device, surface-emitting semiconductor device fabricated by the method, and display device using the device
US5953362A (en) Strain induce control of polarization states in vertical cavity surface emitting lasers and method of making same
US6061380A (en) Vertical cavity surface emitting laser with doped active region and method of fabrication
US5883912A (en) Long wavelength VCSEL
US6002700A (en) Optical semiconductor device having a multilayer reflection structure
US20030231683A1 (en) Nitride based semiconductor structures with highly reflective mirrors
US6148016A (en) Integrated semiconductor lasers and photodetectors
US5637511A (en) Vertical-to-surface transmission electro-photonic device and method for fabricating the same
US6434180B1 (en) Vertical cavity surface emitting laser (VCSEL)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040720

A521 Written amendment

Effective date: 20040909

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050920

A521 Written amendment

Effective date: 20051116

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20060117

Free format text: JAPANESE INTERMEDIATE CODE: A02